
Methods

To study the ways of how real-world agents may learn to make sequential decisions, we built models
of the animal foraging tasks described in this paper. We used the deep actor-critic framework to define
the agent navigating in a simulated environment. On every iteration, the agent received as an input the
sequence of 20 latest effective reward values r̃t (i.e. the physical reward values rt discounted by the
switching costs csw – see below) and the latest action at−1 – together serving as the agent’s state ~st.

~st = [r̃t−1, ..., r̃t−20, at−1]; r̃t = rt −
[
csw, if at = “switch”
0, if at = “stay”

(1)

This sequence (normalized to r̃ → r̃/6− 1; a ∼ {0 = “stay”; 1 = “switch”} so that the input was
roughly zero-mean and has the variance of 1) was propagated through feedforward neural network (a
hidden layer of 400 sigmoid units, and a linear output layer of 3 units; initialized using the Xavier
rule). The outputs of the network were interpreted as: 1) the state value, and 2-3) the log likelihoods
Lst to “stay” at the source of rewards and Lsw to “switch” to another one. We used these log
likelihoods to draw the agent’s actions: at ∼ Bernoulli (expLsw/(expLsw + expLst)).

We communicated the selected action to the simulator of the environment, so that it could provide the
agent with an appropriate reward. Whenever the “switch” action was selected, the environment re-
initialized the physical reward rt with one of the starting values {rinit}; otherwise it yielded ξ = 0.8
of the previous reward value. We added 2 sources of zero-mean Gaussian noise to physical reward
values rt to model perceptual noise in animals: 1) “Weber-Fechner” noise (σ1 = 0.1) proportional
to the current reward (after “switch”) or to the difference between the previous and current rewards
(after “stay”) and 2) constant “background” noise (σ2 = 1). Noisy reward depletion was applied to
the noisy values of previous rewards (Equation 2). The effective reward values r̃t, communicated to
the agent (Equation 1), included the switching cost csw = 18.

rt =

[
r0 + ∆1 · r0 + ∆2, if at = “switch”
ξrt−1 + ∆1 · (1− ξ)rt−1 + ∆2, if at = “stay”

s.t.


r0 ∼ {rinit}
∆1 ∼ N (0, σ1)

∆2 ∼ N (0, σ2)

(2)

We used these rewards to update the network’s outputs as follows. First, we computed the TD error
δ(t). To do so, we defined the agent’s new state ~st+1 using the newly received effective reward r̃t and
20 – 1 = 19 previous rewards, then re-evaluated the outputs of the network using this new state. We
used the new and the previous state values in the Bellman equation to compute the TD error. In case
of the V-learning, the TD error was equal to the latest effective reward minus the discrepancy between
previous and discounted new state values V (·). We used the temporal discount coefficient γ = 0.9.

δV (t) = −V (~st) + r̃t + γV (~st+1) (3)

In case of the R-learning, the effective reward r̃t in the Bellman equation was decreased by the value
of the exponentially averaged effective reward r̃avgt−1, computed over the inputs throughout training
with the constant of exponential averaging κ = 0.9. We refer to the state values in R-learning as R(·):

δR(t) = −R(~st) + r̃t − r̃avgt−1 + γR(~st+1) s.t. r̃avgt−1 =
(1− κ)

(1− κ20)

19∑
τ=0

κτ (r̃t−1−τ ) (4)

The TD error was assigned as the teaching signal to the network’s outputs reflecting the value function
and the latest action. We backpropagated the teaching signals through the network activations
corresponding to the previous state (semi-gradient update). We performed N = 3 · 105 iterations per
experiment with the learning rate decaying linearly from 10−4 to 0. To overcome the temporal credit
assignment problem, we grew the switching cost throughout training iterations (n) from 0.5csw to its
full value: csw(n) = csw · sigmoid(10n/N) as the larger switching costs necessitated accounting for
more future iterations to behave optimally. Training could take multiple restarts to converge.

In the scope of this work, we performed 2 types of training. In the 1st set of experiments, we trained
the models with a “fixed initial reward” value (either always 12 or always 18µl). In a separate 2nd set
of experiments, we trained the models with the “random initial reward” values after every “switch”
action (6/12/18µl). In both cases, we trained V- and R-models, 10 restarts per experiment. Each
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experiment took 2.5 minutes on Intel Core i7-based laptop computer using 1 GB RAM. To evaluate
the policies learned by the models, we ran each trained model 20 times, for 100 iterations each time
(to match the animals’ data containing the behavioral patterns of 4-7 mice in ∼20 sessions of ∼100
iterations in 3 tasks), then we plotted the average probabilities to leave a reward source as a function
of the preceding reward. We only displayed the data points with 6 or more observations. The policies
of each animal and of each model were evaluated separately.

For the “surprising rewards” testing, we used the pretrained model with a “fixed initial reward” value
(12 µl) which we evaluated on reward sequences obtained in the animal task. In this data, in 3% of
the trials the reward values were 50% larger or smaller that we expected ones. For such trials, we
recorded the TD errors in our V- and R-learning models (δV , δR) to be compared with the dopamine
signal in the VTA (df/f ). We normalized the TD erros for display purposes (zero-mean, unit variance
across all surprising trials), then computed Pearson correlations of TD-errors and the VTA DA signal
for every time point within a trial. We recorded the maximum values (over time) of these correlations.

To compare the MVT and the Leaky MVT quantitatively, we performed parameter fitting for these
models using behavior patterns of 7 mice in the “random initial rewards” task. We extracted all
behavior patterns of the length 21 from the data (rewards and actions) and performed gradient descent
on the negative log likelihood computed over the models’ predictions (Appendix A5) independently
for each animal. We performed 105 optimization steps used the learning rate of 10−6. The initial
values of the parameters for the MVT were sampled randomly from N (0, 1); for the Leaky MVT
we started with α = 1;κ = 0.9; csw = 5. The result did not change for the initial values of
α = 0.1...2;κ = 0.5...1; csw = 1...10. We compared the fitted models using the Akaike information
criterion (AIC). We further derived analytical predictions for both models in our experimental settings.

A Appendix

A.1 The marginal value theorem (MVT)

Theorem 1 (the marginal value theorem, MVT). An agent maximizes its average reward intake if it
leaves depleting reward sources when the next expected reward r̃n+1 falls below the average reward
in the environment 〈r̃n〉 computed over rewards {r} and travel costs {csw}.

Proof. Here, we follow Eric Chanov’s 1976 paper. We provide this proof here for completeness.

The goal of the agent here is to optimize the average reward intake rate R. The average reward
intake rate depends on rewards rm received by the agent on each sequential iteration m ∈ {1...n}
at a source of rewards; it also depends on the total number of iterations n that the agent spends
continuously at a source before leaving it, and on the switch-related travel cost csw that an agent
expends to travel between the reward sources. If all sources of reward in the task are identical (e.g.
the “fixed initial rewards” task), the average reward intake rate R matches the average over one visit
to a reward source, and is expressed by the total reward (minus cost) divided by the number of steps:

R =
1

n

n∑
m=1

r̃m ≡
1

n
(

n∑
m=1

rm − csw) (5)

For simplicity of notation, we define the cumulative sum of all received rewards gained throughout a
stay at a source of rewards for n sequential iterations as

∑n
m=1 rm = g(n):

R =
1

n
(g(n)− csw) (6)

Similarly if the task contain multiple different types of reward sources (e.g. the “random initial
rewards” task) offering cumulative rewards gi(ni) and visited with probabilities pi, the average reward
intake rate would be given by the Equation 7. Here we imply that the agent spends a fixed number of
steps ni at each reward source of type i, i.e. behaves consistently under the same circumstances.

R =

∑
i pigi(ni)− csw∑

i pini
(7)

To maximize the reward intake R, we calculate its partial derivative w.r.t the number of sequential
steps ni at the current source of rewards. We then find the number of sequential iterations ni at this
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source, which would turn the partial derivative of reward intake to zero. The partial derivative only
affects those terms of the sums containing ni. Below, we omit the denominator for brevity.

0 =
∂R

∂ni
∼ (pi

∂gi
∂ni

)(
∑
i

pini)− (pi)(
∑
i

pigi − csw) (8)

∂gi
∂ni

=

∑
i pigi∑
i pini

− csw∑
i pini

(9)

The discrete derivative of cumulative reward gi received from one reward source, represented by the
left-hand side of the Equation 9, can be estimated as the difference between the next and current
cumulative rewards: gi(n + 1) − gi(n) = rn+1. In the right-hand part of the Equation 9, the first
term represents the average value of the reward 〈r〉 received by the agent in a single iteration in the
environment. The second term here equals to the average switch-related travel cost 〈csw〉 computed
over all trials with non-zero or zero switching cost. Overall, the Equation 9 can be rewritten as:

rn+1 = 〈r〉 − 〈csw〉 (10)

r̃n+1 = 〈r̃〉 (11)

which proves the theorem. This result does not depend on the particular sequence of the rewards rn,
but only requires the rewards do be decreasing over time.

A.2 The V-learning optimum for the “fixed initial rewards” task

Theorem 2 (the V-learning optimum). The optimal policy for a V-learning agent navigating between
sources of depleting reward in the limit of low temporal discount γ → 1 is defined by the MVT, i.e.
the agent should leave a source of depleting rewards when the next expected reward r̃n+1 falls below
the average reward in the environment 〈r̃n〉 computed over rewards {r} and travel costs {csw}.

Proof. The objective of the V-learning is to maximize the cumulative future discounted reward:

Vt = E
∑
τ

r̃t+τγ
τ (12)

The reward r̃t+τ here can be decomposed into its average value 〈r̃〉 and the residual part ∆r̃t+τ :

Vt = E
∑
τ

(〈r̃〉+ ∆r̃t+τ )γτ (13)

As the average reward value 〈r̃〉 within the sum is constant, we can sum its corresponding coefficients
γτ as a geometric progression:

Vt =
1

1− γ
E〈r̃〉+ E

∑
τ

(∆r̃t+τ )γτ (14)

In the limit of low temporal discount γ → 1, the first term of the right-hand part of (14) is large
(infinitely large in the limit of γ = 1), whereas the second term aims zero:

E
∑
τ

∆r̃t+τ =
∑
τ

E∆r̃t+τ = 0 (15)

The second term (15) of the Equation 14 in the limit of γ → 1 is negligible compared to the first
term. Therefore, maximization of the V-function is equivalent to maximization of the first term in
(14), reflecting the expected average reward intake 〈r̃〉 per single iteration, which is equivalent to the
expected average reward intake rate. The optimal policy for maximizing the reward intake rate is
described by the Theorem 1 (the MVT), which proves the theorem.
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Corollary 2.1 (the V-learning optimum for the “fixed initial rewards” task). The optimal V-learning
agent navigating between reward sources offering the initial reward r0 which depletes exponentially
at the rate ξ s.t. rn+1 = ξrn, in the limit of low temporal discount γ → 1 pays the switching-related
travel cost csw and leaves a reward source after n trials where n is defined by the following equation:

r0 = csw

(
1− ξn

1− ξ
− nξn

)−1
(16)

Proof. Let rn be the current reward, corresponding to sequential iteration n within a reward source;
〈rn〉 – a flat average reward after n sequential iterations within current source of rewards. In
accordance with the Theorem 2, the optimal V-learning agent leaves the reward source when the
next expected reward rn+1 at the source falls below the average reward in the environment 〈rn〉
discounted by the travel costs 〈csw〉:

〈rn〉 − 〈csw〉 = rn+1 (17)

Due to the exponential depletion of rewards within a source at a rate ξ, current reward rn on sequential
iteration n at the same source can be expressed as rn = ξn−1r0. The Equation 17 can be rewritten:

1

n

(
n∑
k=1

(ξk−1r0)− csw

)
= ξnr0 (18)

The sum in the left-hand side of the Equation 18, used in calculation of the average reward 〈rn〉, can
be evaluated as a sum of the geometric progression:

1

n

(
r0

1− ξn

1− ξ
− csw

)
= ξnr0 (19)

We aggregate all the terms containing the initial reward value r0 at the reward source to obtain the
relation between r0 and n, the number of sequential trials that an optimal V-learning agent spends at
a reward source before leaving it:

r0 = csw

(
1− ξn

1− ξ
− nξn

)−1
(20)

which proves the corollary. The Equation 20 cannot be inverted analytically without use of special
functions. The optimal number of sequential iterations n(r0) that a V-learning agent is expected to
spend at a reward source before leaving it can be found as a numerical inverse of (20).

A.3 The R-learning optimum for the “fixed initial rewards” task

Theorem 3 (the R-learning optimum). The optimal policy for an R-learning agent navigating
between sources of depleting reward in the limit of low temporal discount γ → 1 is to leave a source
of depleting reward when the next expected reward r̃n+1 at the source falls below an exponential
average r̃avgn of the previous rewards and travel costs – the decision rule we called the Leaky MVT:

r̃n+1 = r̃avgn ≡ (1− κ)

∞∑
m=0

κmr̃n−m (21)

Proof. Assume an alternative, virtual reward schedule r̃∗ corresponding to the perceived reward r̃ as
follows: the virtual reward of this agent r̃∗n (i.e. the quantity optimized by the agent) is equal to the
difference between the reward r̃n, and its exponential average over past trials r̃avgn−1:

r̃∗n = r̃n − r̃avgn−1 (22)

The reward r̃n is an exponentially depleting value. The exponentially averaged reward r̃avgn−1 is a
slowly changing variable compared to the reward r̃n if its exponential averaging rate κ exceeds
the reward depletion rate ξ: (κ > ξ). As a result, the agent’s virtual reward, being a difference
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of the fast-changing reward r̃n and a slow-changing exponentially averaged reward r̃avgn−1 is also
approximately a depleting value. Consequently, we can apply the Theorem 2 to maximize the average
intake rate of the effective reward r̃∗ that an agent collects in the environment:

r̃n+1 − r̃avgn = 〈r̃n − r̃avgn−1〉 (23)

We then calculate the right-hand side of the decision rule (23). The flat average of the exponential
average of the rewards can be represented as the average of convolution between the vector of
exponential averaging coefficients ~κ = (1 − κ) · (κ, κ2, κ3, ...) and the vector of rewards ~̃r =
(r̃m, r̃m−1, r̃m−2, ...). Here (1− κ) normalizes the exponential averaging coefficients so that, on the
average, the exponential average matches the flat average of rewards.

〈r̃n − r̃avgn−1〉 = 〈r̃〉 − 〈conv(~κ, ~̃r)〉 (24)

Due to the properties of convolution, its average 〈conv(a, b)〉 equals to the product of ||a||1 and 〈b〉.
As the exponential average is normalized so that ||~κ||1 = 1, the average reward value ||~κ||1〈~̃r〉 = 〈r̃〉
cancels out, the right-hand side of the decision rule (23) can be written as:

r̃n+1 = r̃avgn (25)

As r̃∗ replaces the reward in R-learning, the rule described by the Equation 23 optimizes it.

Corollary 3.1 (the R-learning optimum for the “fixed initial rewards” task). The optimal R-learning
agent, which averages rewards exponentially at the rate κ, navigating between reward sources
offering the initial reward r0 which depletes exponentially at the rate ξ s.t. rn+1 = ξrn, in the limit of
low temporal discount γ → 1 pays the switching-related travel cost csw and leaves a reward source
after n sequential iterations where n is defined by the following equation. In the limit of κ→ 1, it
matches the equation for V-learning.

r0 = κn−1csw

(
κn − ξn

κ− ξ
− 1− κn

1− κ
ξn
)−1

(26)

Proof. Using the definition (21) of the exponential averaging at a rate κ stating that r̃avgn+1 = κr̃avgn +
(1− κ)r̃n+1, we write the expression for the exponentially averaged reward value r̃avg1 after an agent
received the first reward at a new source. We assume that the agent spends n sequential trials at each
source of reward before leaving, and call the average reward at the moment of leaving r̃avgn (to be
determined later):

r̃avg1 = κr̃avgn + (1− κ)(r0 − csw) (27)

Similarly, we can write the expression for the exponential average reward r̃avg2 after 2 iterations at a
new source of rewards, and then generalize it to the case r̃avgm of m sequential iterations at a source:

r̃avg2 = κ (κr̃avgn + (1− κ)(r0 − csw)) + (1− κ)ξr0 (28)

r̃avg2 = κ2r̃avgn + κ(1− κ)(r0 − csw) + (1− κ)ξr0 (29)

r̃avgm = κmr̃avgn + (1− κ)

(
m−1∑
k=0

κm−1−kξkr0 − κm−1csw

)
(30)

We further extract the common multiplier κm−1 out of sum in the right-hand part of (30), and
calculate the sum of the remaining geometric progression:

r̃avgm = κmr̃avgn + (1− κ)

(
κm−1

m−1∑
k=0

(ξ/κ)kr0 − κm−1csw

)
(31)

r̃avgm = κmr̃avgn + (1− κ)

(
κm

κ

1− (ξ/κ)m

1− (ξ/κ)
r0 − κm−1csw

)
(32)
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r̃avgm = κmr̃avgn + (1− κ)

(
κm − ξm

κ− ξ
r0 − κm−1csw

)
(33)

We now focus on the iteration when the agent has to leave the source of rewards again, i.e. m = n.
This iteration, considered in the Equation 33, allows us to define the average reward r̃avgn at the
moment of leaving a reward source

r̃avgn =
1− κ
1− κn

(
κn − ξn

κ− ξ
r0 − κn−1csw

)
(34)

We assert that in the limit of long-time exponential averaging (κ→ 1) the result in the Equation 34
matches the flat average of the rewards as used in (19), being the sum of geometric progression of
rewards

∑n
m=1 ξ

m−1rm divided by n. We then plug the identified expression (34) for exponential
average of rewards at the moment of leaving a source r̃avgn into the right-hand side of the Leaky MVT
(21), providing the optimal decision rule for R-learning predicted by the Theorem 3:

r0ξ
n 1− κn

1− κ
=
κn − ξn

κ− ξ
r0 − κn−1csw (35)

r0 = κn−1csw

(
κn − ξn

κ− ξ
− 1− κn

1− κ
ξn
)−1

(36)

which proves the corollary. Like in the case of Corollary 2.1, the Equation 36 cannot be inverted
analytically without use of special functions. The optimal number of sequential iterations n(r0),
which an R-learning agent is expected to spend at a reward source before leaving, can be found as a
numerical inverse of (36).

A.4 The R- (and V-) learning optima for the “random initial rewards” task

Corollary 3.2 (the R-learning optimum for the “random initial rewards” task). The optimal R-
learning agent, which averages rewards exponentially at the rate κ, navigating between reward
sources offering random initial reward r0 ∼ {r10, ..., rk0} which deplete exponentially at the rate ξ s.t.
rn+1 = ξrn, in the limit of low temporal discount γ → 1 pays the switching-related travel cost csw
and leaves a reward source at the reward value rsw which grows with r0 if exponential averaging is
finite (κ < 1) and if forgetting is slower than the reward decay (ξ < κ):

sgn(rsw − 〈rsw〉) = sgn ((log r0 − log〈r0〉)(1− κ)) (37)

Proof. To proceed with this derivation, first consider a case where a single novel restart value has
been introduced after a prolonged period of the “fixed initial rewards” schedule.

The left-hand side of the Leaky MVT decision rule (25) would not change. On the contrast, the
right-hand side of the Leaky MVT has to be rewritten using the general case expression for the
exponentially averaged reward (33), keeping in mind that until now the exponentially averaged reward
satisfied the stable-state expression (34). Here: rnew0 – a novel surprising restart value; m – the
number of iterations from rnew0 to the current reward value.

r̃avgm = κm
(

1− κ
1− κn

(
κn − ξn

κ− ξ
r0 − κn−1csw

))
+ (1− κ)

(
κm − ξm

κ− ξ
rnew0 − κm−1csw

)
(38)

rnew0 ξm−κm
(

1− κ
1− κn

(
κn − ξn

κ− ξ
r0 − κn−1csw

))
− (1−κ)

(
κm − ξm

κ− ξ
rnew0 − κm−1csw

)
= 0

(39)

A similar expression to (39) can be written for the usual case when the initial reward at a new source
of rewards is not surprising, leading to the usual leaving of the new reward source after m = n
sequential iterations:

r0ξ
n − κn

(
1− κ
1− κn

(
κn − ξn

κ− ξ
r0 − κn−1csw

))
− (1− κ)

(
κn − ξn

κ− ξ
r0 − κn−1csw

)
= 0 (40)
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Now consider the Equations (39) and (40) at the same level of current reward (r0ξn = rnew0 ξm ≡ r).
We are interested in the difference between the Equations 39 and 40. This way, we will see whether
the agent will leave the reward sources at the same level of current reward. For instance, if the
difference between the Equations (39) and (40) is positive, it would mean that the left-hand side of
(39) is larger than the right-hand side; the Leaky MVT decision rule criterion therefore has not been
met at the reward r yet, and the agent will stay longer at the same reward source.

(κn − κm)

(
1− κ
1− κn

(
κn − ξn

κ− ξ
r0 − κn−1csw

))
−

−(1− κ)

(
rnew0 κm − r0κn

κ− ξ
− (κm−1 − κn−1)csw

)
> 0

(41)

(κn−κm)

(
κn − ξn

1− κn
r0 −

κ− ξ
1− κn

κn−1csw

)
−(r0ξ

n−mκm−r0κn)+(κ−ξ)(κm−1−κn−1)csw > 0

(42)

Here we have omitted two multipliers, (1 − κ) and (κ − ξ)−1, which are both positive under our
assumptions (ξ < κ < 1). In general, however, these multipliers are not necessarily positive, so we
will reintroduce them later.

κn − κm

1− κn
(κn − ξn)−

((
ξ

κ

)n−m
− 1

)
κn − (κn − κm)(κ− ξ)csw

r0

(
κn−1

1− κn
+

1

κ

)
> 0 (43)

−κ
n − κm

1− κn

((
ξ

κ

)n
− 1

)
−

((
ξ

κ

)n−m
− 1

)
− (κn − κm)(κ− ξ)

(1− κn)κ

csw
r0

> 0 (44)

In the experiments, both κ and ξ/κ are approximately equal to 0.9, which allows us to use the 2nd
order Taylor expansion w.r.t these variables:

−m− n
n

(
−n
(

1− ξ

κ

)
+

1

2
n(n− 1)

(
1− ξ

κ

)2
)
−

−

(
−(n−m)

(
1− ξ

κ

)
+

1

2
(n−m)(n−m− 1)

(
1− ξ

κ

)2
)
− m− n

n

(
1− ξ

κ

)
csw
r0

> 0

(45)
We simplify the Equation (45) while using the notion of the average switching cost 〈csw〉 ≡ csw/n:

−
(
〈csw〉
r0

+
m

2

(
1− ξ

κ

))
(m− n)

(
1− ξ

κ

)
> 0 (46)

As m and n are the numbers of steps from rnew0 and r0 respectively to r, these values can be rewritten
in terms of the initial and current rewards, keeping in mind the exponential reward schedule:

m− n = logξ
r

rnew0

− logξ
r

r0
= logξ

r0
rnew0

∼ − log
r0
rnew0

(47)

(
〈csw〉
r0

+
m

2

(
1− ξ

κ

))
log

r0
rnew0

·
(

1− ξ

κ

)
> 0 (48)

As a result, if rnew0 is smaller than r0, the quantity in (48) is positive and the switch will occur later in
the reward sequence, at the reward level smaller than r. To consider the effect of the other parameters
on stay-or-leave decisions, we bring back the multipliers (1− κ) and (κ− ξ)−1, omitted in (42):(

〈csw〉
r0

+
m

2

(
1− ξ

κ

))
log

r0
rnew0

·
(

1− ξ

κ

)
1− κ
κ− ξ

> 0 (49)

Below we assess the relative contribution of both terms in the first parentheses of the equation (49)
above. The switching cost, as estimated from the data fits, roughly equals to csw = 4; the average
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restart reward was equal to r0 = 12, and the average number of trials before switching a port was
equal to m = 4. The reward decrease coefficient was selected to be ξ = 0.8, and the exponential
averaging rate was estimated from the data as κ = 0.9 This way, the terms in the first parentheses of
(49) are roughly equal to 0.1 and 0.2 respectively, implying that exponential forgetting of rewards
and switching costs in the R-learning / Leaky MVT model contribute comparably to stay-or-leave
decisions. We further discard both of these coefficients as their sum in parentheses is positive and
does not affect the sign in (49):

log
r0
rnew0

· (1− κ) > 0 (50)

The logic from this paragraph can be extended to the case where each restart value is selected
randomly. In this paragraph, the key idea of a single surprising restart value was that we know the
average reward value r̃avgn . Now, if we use randomly selected restart rewards on every restart, we can
on average consider these restart values as one-time surprising values w.r.t some average-case policy,
starting from the reward 〈r0〉∗, and lasting for 〈n〉∗ iterations. These randomly selected restart values
therefore would not on average change the average-case constants, such as 〈r̃avgn 〉∗, allowing us to
use the logic from this paragraph and to extend its predictions to the “random initial rewards” task:

log
〈r0〉
r0
· (1− κ) > 0 (51)

sgn(rsw − 〈rsw〉) = sgn ((log r0 − log〈r0〉)(1− κ)) (52)

which proves the corollary.

Corollary 3.3 (the V-learning optimum for the “random initial rewards” task). The optimal V-learning
agent, navigating between reward sources offering random initial rewards r0 ∼ {r10, ..., rk0}, which
deplete exponentially at the rate ξ s.t. rn+1 = ξrn, in the limit of low temporal discount γ → 1
pays the switching-related travel cost csw and leaves a reward source at the same reward value rsw
regardless of r0.

Proof. V-learning may be viewed as R-learning with infinitle exponential averaging (κ→ 1). In the
Equation 52, κ = 1 turns the right-hand side to zero implying that the reward threshold at which an
agent would leave a reward source rsw would be equal to its average value 〈rsw〉 independently of
random initial reward r0.

A.5 Inference of the model parameters for MVT and Leaky MVT; model comparison

To infer the model parameters for MVT and Leaky MVT decision rules from our mouse data, we
follow the approach used in logistic regression. The probability p to correctly predict the animal’s
actions can be written as a function of the animal’s recorded choices t and predicted choices y:

p(t|w) =

N∏
n=1

ytnn (1− yn)1−tn s.t. yn ≡ σ(w[φn]) (53)

Here w are the functions computed on the model’s inputs φ and optimized so that the model yields
the best predictions. The best predictions are defined so that they optimize the negative log likelihood
L of the model to predict the animal’s recorded actions:

L = − log p(t|w) = −
N∑
n=1

(tn log yn + (1− tn) log(1− yn)) (54)

The negative log likelihood L can be optimized by setting its gradient to zero:

∇wL = −
N∑
n=1

(
tn

1

yn
yn(1− yn) + (1− tn)

1

1− yn
yn(1− yn)

)
∂w[φ]

∂w
(55)

∇wL = −
N∑
n=1

(yn − tn)
∂w[φ]

∂w
(56)
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In case of the MVT (Equation 11), the decision variable for a stay-or-leave action is computed as
w[φ] ≡ w[rt+1] = α · (rt+1 − 〈r̃〉) ≡ αξrt − α〈r̃〉 ≡ w1rt +w2 (here α is the decision noise). The
parameters w1 and w2 affect the model inputs rt and 1 independently:

∇w1
L = −

N∑
n=1

(yn − tn)rt;∇w2
L = −

N∑
n=1

(yn − tn) (57)

The equation above corresponds to the classic format of logistic regression: it has an exact solution,
or can be solved approximately using gradient descent. In case of the the Leaky MVT (Equation 21),
the decision variable is computed as w[φ] = α · (r̃t+1− r̃avgt ) ≡ α · (ξrt− (1−κ)

∑∞
τ=0 κ

τ (rt−τ −
cswδ

sw
t−τ )) where delta-function δswt−τ indicates the trials to which the switching cost has been applied.

To optimize the log likelihood L, we compute its derivatives w.r.t the model parameters (α, κ, csw):

∂w[~r, ~δsw]

∂α
= ξrt − r̃avg (58)

∂w[~r, ~δsw]

∂csw
= α(1− κ)

∞∑
τ=0

κτδswt−τ (59)

∂w[~r, ~δsw]

∂κ
= α

r̃avg

1− κ
− α(1− κ)

∞∑
τ=0

τκτ−1r̃t−τ (60)

To compute the gradient of the log likelihood, we put partial derivatives above into the Equation 56:

∇αL = −
N∑
n=1

(yn − tn)(ξrn − r̃avgn ) (61)

∇cswL = −α(1− κ)

N∑
n=1

(yn − tn)

∞∑
τ=0

κτδswn−τ (62)

∇κL = −α
N∑
n=1

(yn − tn)

(
r̃avgn

1− κ
− (1− κ)

∞∑
τ=0

τκτ−1r̃n−τ

)
(63)

As the model parameters (α, κ, csw) are not independent, we cannot derive the exact solution as for
the linear system in case of the MVT, so we have to run the gradient descent instead. To perform
an adequate comparison between the MVT and Leaky MVT models, we therefore find optima for
each of them using gradient descent under the same learning parameters. We then use the Akaike
information criterion (AIC) to establish which model explains the data better:

AIC = 2(k + L) (64)

where the number of parameters k is equal to k = 2 for the MVT, and k = 3 for the Leaky MVT, and
L is the negative log likelihood of a model to predict the recorded animal’s choices.
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