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Abstract

Sampling is a fundamental and arguably very important task with numerous appli-
cations in Machine Learning. One approach to sample from a high dimensional
distribution e~/ for some function f is the Langevin Algorithm (LA). Recently,
there has been a lot of progress in showing fast convergence of LA even in cases
where f is non-convex, notably Vempala and Wibisono| [2019]], Moitra and Risteski
[2020] in which the former paper focuses on functions f defined in R™ and the
latter paper focuses on functions with symmetries (like matrix completion type
objectives) with manifold structure. Our work generalizes the results of |Vempala
and Wibisonol|[2019] where f is defined on a manifold M rather than R™. From
technical point of view, we show that KL decreases in a geometric rate whenever
the distribution e~/ satisfies a log-Sobolev inequality on M.

1 Introduction

We focus on the problem of sampling from a distribution e~/(*) supported on a Riemannian manifold
M with standard volume measure. Sampling is a fundamental and arguably very important task with
numerous applications in machine learning and Langevin dynamics is a quite standard approach.
There is a growing interest in Langevin algorithms, e.g. [Welling and Teh|[201 1]}, Wibisono, [[2018]],
Dalalyan|[2017a]], due to its simple structure and the good empirical behavior. The classic Riemannian
Langevin algorithm, e.g. |Girolami and Calderhead [2011], |Patterson and Teh| [2013]],/Zhang et al.
[2020], is used to sample from distributions supported on R™ (or a subset D) by endowing R™ (or
D) a Riemannian structure. Beyond the classic application of Riemannian Langevin Algorithm
(RLA), recent progress in[Domingo-Enrich et al.| [2020], Moitra and Risteski [2020], Li and Erdogdu
[2020]] shows that sampling from a distribution on a manifold has application in matrix factorization,
principal component analysis, matrix completion, solving SDP, mean field and continuous games
and GANs. Formally, a game with finite number of agents is called continuous if the strategy spaces
are continuous, either a finite dimensional differential manifold or an infinite dimensional Banach
manifold Ratliff et al.|[2013] 2016], Domingo-Enrich et al.|[2020]. The mixed strategy is then a
probability distribution on the strategy manifold and mixed Nash equilibria can be approximated by
Langevin dynamics.

Geodesic Langevin Algorithm (GLA). In order to sample from a distribution on M, geodesic
based algorithms (e.g. Geodesic Monte Carlo and Geodesic MCMC) are considered in[Byrne and
Girolami| [2013]], Liu et al.|[2016], where a geodesic integrator is used in the implementation. We
propose a Geodesic Langevin Algorithm (GLA) as a natural generalization of unadjusted Langevin
algorithm (ULA) from the Euclidean space to manifold M. The benefit of GLA is to leverage
sufficiently the geometric information (curvature, geodesic distance, isoperimetry) of M while
keeping the structure of the algorithm simple enough, so that we can obtain a non-asymptotic
convergence guarantee of the algorithm. In local coordinate systems, the Riemannian metric is
represented by a matrix g = {g;;}, see Deﬁnition We denote g%/ the ij-th entry of the inverse
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matrix g~ ! of g, and |g| = det(g;;), the determinant of the matrix {g;;}. Then GLA is the stochastic
process on M that is defined by

Try1 = Exp,, (el + /297 1&) (1)
where F' = (F1, ..., F},) with
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€ > 0 is the stepsize, &y ~ N(0, I) is the standard Gaussian noise, and Exp,, (-) : T, M — M is the
exponential map (Definition[3.3). Clearly GLA is a two-step discretization scheme of the Riemannian
Langevin equation

dXt = F(Xt)dt —+ v/ 2971dBt

where F is given by (2). Suppose the position at time k is z, then the next position x4 can be
obtained by the following tangent-geodesic composition:

1. Tangent step: Take a local coordinate chart ¢ : U, — R"™ at z, this map induces the

expression of g;; and g%/, then compute the vector v = €F + 1/2eg~1& in tangent space
T, M;

2. Geodesic step: Solve the geodesic equation (a second order ODE) whose solution is a curve
~(t) C ¢(Uy, ), such that the initial conditions satisfy v(0) = ¢(z) and v/(0) = v. Then
let 211 = (1) be the updated point.

The exponential map and ODE solver for geodesic equations is commonly used in sampling algorithms
on manifold, e.g. [Vempala and Lee|[2017], Byrne and Girolamil[2013]], Liu et al.| [2016]. We will
discuss on other approximations of the exponential map without solving ODEs through illustrations
in a later section. Figure[T]gives an intuition of GLA on the unit sphere where the exponential map is
Exp,(v) = cos([[o]l )z + sin([]o]]) oy

ol

Figure 1: f(x1,22,23) = 27 + 3.0525 — 0.923 + 1.1x 25 + —1.022973 + 2.12371, € = 0.1,
Iterations: 100k.

The main result on convergence is stated as follows.

Theorem 1.1 (Informal). Let M be a closed n-dimensional manifold (Definition[3.2). Suppose that
v = e 1) is a distribution on M with o > 0 the log-Sobolev constant. Then there exists a real
number Ko, K3, K4, C, such that by choosing stepsize € properly based on the Lipschitz constant
of the Riemannian gradient of f, log-Sobolev constant of the target distribution v, dimension and
curvature of M, the KL divergence H (py|v) decreases along the GLA iterations rapidly in the sense
that
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The same as unadjusted Langevin algorithm (ULA) in Euclidean space, GLA is a biased algorithm
that converges to a distribution different from e~/(*), Practically we need a lower bound estimate
for ov. With additional condition on Ricci curvature, this lower bound can be chosen based on the
diameter of M by Theorem ??.

Our main technical contributions are:

* A non-asymptotic convergence guarantee for Geodesic Langevin algorithm on closed mani-
fold is provided, with the help of log-Sobolev inequality.

* The framework of this paper serves as the first step understanding to the rate of convergence
in sampling from distributions on manifold with log-Sobolev inequality, and can be general-
ized to prove non-asymptotic convergence results for more general settings and more subtle
algorithms, i.e., for open manifolds and unbiased algorithms.

Comparison to literarture The typical difference between algorithm (1)) and the classic RLA is the
use of exponential map. As € — 0, both GLA and RLA boil down to the same continuous time
Langevin equation in the local coordinate system:

dXt = F(Xt)dt + vV 29_1dBt

where F' is given by (2) and B; is the standard Brownian motion in R™. The direct Euler-Maryuyama
discretization iterates in the way that 231 = x¢ 4+ €F (zx) +1/2eg~ 1 (xx)&o. However, by adding the

vector eF'(zy) + /2eg71 (zx)&o that is in the tangent space to a point xy, that is on the manifold M
has no intrinsic geometric meaning, since the resulted point x4 ; is indeed not in M. The exponential
map just gives a way to pull x5 back to M. On the other hand, since RLA is firstly used to sample
from distributions on R™ (or its domain) with a Riemannian structure, Roberts and Stramer| [2002]],
Girolami and Calderhead| [2011]], Patterson and Teh| [2013]],|Smith et al.|[2018]], this requires a global
coordinate system of M, i.e. M is covered by a single coordinate chart and the iterations do not
transit between different charts. But this makes it difficult to use RLA when there are inevitably
multiple coordinate charts on A/. More sophisticated algorithms like Geodesic MCMC |Liu et al.
[2016] is used to transit between different coordinate charts, but to the best knowledge of the authors,
the rate of convergence is missing in the literature. Li and Erdogdu L1 and Erdogdu|[2020] generalize
the result of [Vempala and Wibisono| [2019] by implementing the Riemannian Langevin algorithm in
two steps (gradient+Riemannian Brownian motion).

2 Related Works

Unadjusted Langevin algorithm (ULA) when sampling from a strongly logconcave density in Eu-
clidean space has been studied extensively in the literature. The bounds for ULA is known in|Cheng
and Bartlett| [2018]], Dalalyan| [2017al], Dalalyan and Karagulyan|[2019], Durmus et al.|[2018]]. The
case when f is strongly convex and has Lipschitz gradient is studied by |Dalalyan| [2017b]],[Durmus
and Moulines|[2017]], [Durmus and Mounline|[2019]]. Since ULA is biased because of the discretiza-
tion, i.e. it converges to a limit distribution that is different from that from continuous Langevin
equation. the Metropolis-Hastings correction is widely used to correct this bias, e.g. [Roberts and
Tweedie|[[1996]], [Dwivedi et al.|[2018]]. A simplified correction algorithm is proposed by [Wibisono
[2018]] that is called symmetrized Langevin algorithm with a smaller bias than ULA. Convergence
results is obtained for Proximal Langevin algorithm (PLA) in|Wibisono| [2019]]. In the case where the
target distribution is log-concave, there are other algorithms proven to converge rapidly, i.e., Langevin
Monte Carlo by Bernton|[2018]], ball walk and hit-and-run |[Kannan et al.|[1997], Lovdsz and Vempala
[2006a, 2007, [2006b], and Hamiltonian Monte Carlo by [Durmus et al.|[2017]], Vempala and Lee
[2018]], Mangoubi and Vishnoi|[2018]]. The underdamped version of the Langevin dynamics under
log-Sobolev inequality is studied by [Ma et al.|[2019]], where an iteration complexity for the discrete
time algorithm that has better dependence on the dimension is provided. A coupling approach is used
by [Eberle et al.|[2018]] to quantify convergence to equilibrium for Langevin dynamics that yields
contractions in a particular Wasserstein distance and provides precise bounds for convergence to
equilibrium. The case where the densities that are neither smooth nor log-concave is studied in |Luu
et al.[[2017] and asymptotic consistency guarantees is provided. For the Wasserstein distance, (Cheng
et al.| [2018]], Majka et al.|[2018]], Raginsky et al.|[2017] provide convergence bound. An earlier
research on stochastic gradient Langevin dynamics with application in Bayesian learning is proposed



by |Welling and Teh| [2011]], The Langevin Monte Carlo with a weaker smoothness assumption is
studied by |Chatterji et al.| [2019]. In order to improve sample quality, Gorham and Mackey|[2017]
develops a theory of weak convergence for kernel Stein discrepancy based on Stein’s method. In
general, sampling from non log-concave densities is hard, |Ge et al.|[2018]] gives an exponential lower
bound on the number of queries required.

The Riemannian Langevin algorithm has been studied in different extent. Related to volume compu-
tation of a convex body in Euclidean space, one can endow the interior of a convex body the structure
of a Hessian manifold and run geodesic (with respect to the Hessian metric) random walk [Vempala
and Lee [2017] that is a discretization scheme of a stochastic process with uniform measure as the
stationary distribution. The rigorous proof of the convergence of Riemannian Hamiltonian Monte
Carlo for sampling Gibbs distribution and uniform distribution in a polytope is given by |Vempala and
Leel[2018]. In sampling non-uniform distribution, Zhang et al.|[2020] gives a discretization scheme
related to mirror descent and a non-asymptotic upper bound on the sampling error of the Riemannian
Langevin Monte Carlo algorithm in Hessian manifold. The mirrored Langevin is firstly considered
by Hsieh et al.|[2018]] and a non-asymptotic rate is obtained and generalized to the case when only
stochastic gradients (mini-batch) are available. An affine invariant perspective of continuous time
Langevin dynamics for Bayesian inference is studied in Inigo et al.| [2019]. Positive curvature is
used to show concentration results for Hamiltonian Monte Carlo in |Seiler et al.| [2014]. |Liu et al.
[2019] understand MCMC as gradient flows on Wasserstein spaces and HMC on implicitly defined
manifolds is studied in Brubaker et al.| [2012].

3 Preliminaries

For a complete introduction to Riemannian manifold and stochastic analysis on manifold, we
recommend Lee|[2018]] and [Hsul[[2002]] for references.

3.1 Riemannian geometry

Definition 3.1 (Manifold). A C*-differentiable, n-dimensional manifold is a topological space M,
together with a collection of coordinate charts {(U,, ¢« )}, where each ¢, is a C*-diffeomorphism
from an open subset U, C M to R™. The charts are compatible in the sense that, whenever
Us NUg # 0, the transition map ¢, 0 05! (Us N U,) — R™ is of C*.

Definition 3.2 (Closed manifold). A manifold M is called closed if M is compact and has no
boundary.

Typical examples of closed manifolds include sphere and torus.

Definition 3.3 (Riemannian metric). A Riemannian manifold (M, g) is a differentiable manifold
M with a Riemannian metric g defined as the inner product on the tangent space T, M for each
point z, g(+,-) : TuM x T, M — R. Then length of a smooth path v : [0,1] — M is |y| =
fol V(' (t),~'(t))dt. In a local coordinate chart, g is represented by a n X n symmetric positive
definite matrix with entries g;;;.

Definition 3.4 (Geodesic). We call a curve (¢) : [0,1] — M a geodesic if it satisfies both of the
following conditions:

1. The curve ~(t) is parametrized with constant speed, i.e. ||-£~(t)|| () is constant for
t €10,1].

2. The curve is the locally shortest length curve between ~(0) and (1), i.e. for any family
of curve c(t,s) with ¢(¢,0) = ~(¢) and ¢(0,s) = v(0) and ¢(1,s) = (1), we have

Lo fy || &elt, s)|| eyt = 0.

We use 7,_, to denote the geodesic from x to y (7;—4(0) = x and v,,(1) = y). The most
important property of a geodesic (t) is that the time derivative (¢) as a vector field, has 0 covariant
derivative, i.e. V4)¥(t) = 0. This property boils down to a second order ODE in local coordinate
systems,

(1) + ) T (v(6) 45 (1) Ak (t) = 0
ik



for i € [n], where I' %1, are the Christoffel symbols. Given a initial position v(0) and initial velocity
4(0), by the fundamental theorem of ODE, there exists a unique solution satisfying the geodesic
equation. This is the principle we can use the ODE solver in GLA.

Definition 3.5 (Exponential map). The exponential map Exp, (v) is maps v € T,, M to y € M such
that there exists a geodesic y with y(0) = x, v(1) = y and 7/ (0) = v.

The exponential map can be thought of moving a point along a vector in manifold in the sense that
the exponential map in R™ is nothing but Exp, (v) = x + v. The exponential map on sphere at

with direction v is Exp,(v) = cos(||v[| )= + sin([[v]| ) 777 -

Definition 3.6 (Parallel transport). The parallel transport I'Y is a map that transport v € T, M to
I'Y € T, M along 7, such that the vector stays constant by satisfying a zero-acceleration condition.

Next, we refer the definition of Riemannian gradient and divergence only in local coordinate systems
that is used in this paper.

Definition 3.7 (Gradient and Divergence). In local coordinate system, the gradient of f and the
divergence of a vector field V =", V; % on a Riemannian manifold is given by

L Of 1 0
df =3 g¥ —S = (VIglvi
gradf %:g .3 ﬁmzi:axi( 9Iv;)

where g%/ is the ij-th entry of the inverse matrix g~* of g, |g| = det(g;;).

and divV =

Definition 3.8 (Lipschitz gradient). f is of Lipschitz gradient if there exists a constant L > 0 such
that
lradf (y) — T¥gradf ()| < Ld(x,y) forall ¢,y € M

where d(z,y) is the geodesic distance between z and y, and I'Y is the parallel transport from x to y,
see Definition

3.2 Stochastic differential equations
Let {X, };>0 be a stochastic process in R” and B, be the standard Brownian motion in R".

Fokker-Planck Equation For any stochastic differential equation of the form
dXt = F(Xt, t)dt + O'(Xt, t)dBt,
the probability density of the SDE is given by the PDE

8 n n
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where A = oo, ie. Aijj = 33—, oin(w, t)oju(w,t)

3.3 Distributions on manifold

Let p and v be probability distribution on M that is absolutely continuous with respect to the
Riemannian volume measure (denoted by dx) on M.

Definition 3.9 (KL divergence). The Kullback-Leibler (KL) divergence of p with respect to v is

Hipl) = [ pta)tog 255

Definition 3.10 (Wasserstein distance). The Wasserstein distance between g and v is defined to be
Wa(p, v) = inf{ d(X,Y)?] : law(X) = p,law(Y) = v}.

Definition 3.11 (Ta]agrand mequahty). The probablllty measure v satisfies a Talagrand inequality
with constant o > 0 if for all probability measure p, absolutely continuous with respect to v, with
finite moments of order 2,

2
Walp,v)* < —H(p|v)



Definition 3.12 (Log-Sobolev inequality). A probability measure v on M is called to satisfy the
logarithmic Sobolev inequality (LSI) if there exists a constant & > 0 such that

2
/ g% log g?dv — (/ gzdu> log (/ g2d1/> < —/ |gradg|| 2dv,
M M M @ Jm

for all smooth functions g : M — R with [ M g? < oco. The largest possible constant « is called the
logarithmic Sobolev constant (LSC).

4 Main Results

4.1 Technical Overview

Wasserstein gradient flow. The equivalence between Langevin dynamics and optimization in the
space of densities is based on the result of Jordan et al.|[1998]], Wibisonol|[2018]] that the Langevin
dynamics captures the gradient flow of the relative entropy functional in the space of densities with
the Wasserstein metric. As a result, running the Langevin dynamics is equivalent to sampling from the
stationary distribution of the Wasserstein gradient flow asymptotically. To minimize [,, f(x)p(z)dx
with respect to p € P (M), we consider the entropy regularized functional of p defined as follows,

L(p) = F(p) + H(p)

where F(p) = [, f(z)p(x)dx and H(p) = [,, p(x)log p(x)dx that is the negative Shannon en-

tropy h(p) = — [,; p(x) log p(z)dzx. According to|Santanmbrogio| [2015]], the Wasserstein gradient
flow associated with functional £ is the Fokker-Planck equation

Ip(,1)
ot

where grad and div are gradient and divergence in Riemannian manifold, and A, is the Laplace-
Beltrami operator generalizing the Euclidean Laplacian A to Riemannian manifold. More details can
be found in Appendix. The stationary solution of equation (3 is e~/(*) that minimizes the entropy
regularized functional £(p), and then the optimization problem over the space of densities boils down
to track the evolution of p(x, t) that is defined by equation (3).

= div (p(z, t)grad f (z) + gradp(z, 1)) = div (p(z, t)grad f (z)) + Amp(z,t),  (3)

Coordinate-independent Langevin equation. In order to implement the aforementioned evolu-
tion of p(z,t) in Euclidean space, one can simulate the stochastic process { X };>o defined by the
Langevin equation: dX; = —V f(X;)dt++/2dB;, where B is the standard Brownian motion and X
has p(x, t) as its density function. In contrast to the Euclidean case, we need a coordinate-independent
formulation of Langevin equation, e.g. [Batrouni et al.|[[1986]. This is derived by expanding the
Fokker-Planck equation (3)) in a local coordinate system and is written in the following form:

dXt = F(Xt)dt + 4/ 2gildBt 4)

where F'(X;) is a vector with i’th component F; = — 3~ gingfj + ﬁ 2 8%_7 ( |g|gij) and |g]|
is the determinant of metric matrix g;;. Note that this local form indicate the fact from Fokker-Planck
equation that the process { X }+>0 is the negative gradient of f followed by a manifold Brownian
motion. The rate of convergence we are interested in is the classic Euler-Maryuyama discretization
scheme in manifold setting, i.e. compute the vector in tangent space and project it onto the base
manifold through exponential map. So the discretization error consists of two parts: one is from
considering grad f(z;) as constant in a neighborhood of z;, and the other is from the approximation
of a curved neighborhood of x; with the tangent space at xy. The main task in the proofs of Theorem
[.3]and ?? is to bound the aforementioned two parts of errors and compare with the density evolving
along continuous time Langevin equation.

4.2 Convergence Analysis

We state some assumptions before presenting main theorems.
Assumption 1. M is a closed manifold.



It means M is compact and has no boundary, Definition[3.2] This assumption is essentially used to
make the boundary integral on dM, i.e. [, log 2 (p,grad f + gradp,, n)dz in the proof of Lemma
M.1] to vanish, see Appendix. This assumption can be relaxed to open manifold by assuming the
integral decreases fast as « approaches the infinity.

Assumption 2. f(z) is differentiable on M.

An immediate consequence by combining Assumption |l{and [2]is that there exists a number L > 0,
such that the Riemannian gradient grad f of f is L-Lipschitz (Definition [3.8) due to the compactness
of M. Another crucial property used in the proof is that the target distribution e~/ satisfies the
log-Sobolev inequality, and this can also be derived by compactness of M.

Assumption 3. We next assume the existence of constants shown in the convergence result. Let the

3250&;0@) log 2t
——2 s bounded by K5 and

Jjoint distribution poi(xo, x) be differentiable and assume that or(70.D)
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Since the prerequisite of convergence of GLA is the convergence of the continuous time Langevin
equation, we show the KL divergence between p, and v converges along the continuous time
Riemannian Langevin equation. The proof is completed by the following lemma showing that
H (py|v) decreases since - H (p;|v) < 0 for all p; # v. Based on the analysis of the previous section,
it suffices to track the evolution of p; according to the Fokker-Planck equation (3).

Lemma 4.1. Suppose p; evolves following the Fokker-Planck equation (3), then

G == [ @ L

v(z)
where dx is the Riemannian volume element.

grad log 2dx

The proof is a straightforward calculation of the time derivative of H (p;|v), followed by the expres-
sion of % in equation , 1.e.

d - 8pt
ﬁH(PtM =y El

:—/ pt
M

The result follows from integration by parts and the Assumption[I} Details are left in Appendix.

og %dm = / div(pigradf + gradp;) log %dm (5)
M

grad log P H 2dx + / log &<ptgradf + gradp;, n)dx (6)
v oM v

Since M is compact, there exists a constant o > 0 such that the log-Sobolev inequality (LSI) holds.
So we can get the following convergence of KL divergence for continuous Langevin dynamics
immediately.

Theorem 4.2. Suppose v satisfies LSI with constant a > 0. Then along the Riemannian Langevin
equation, i.e. the SDE () in local coordinate systems, the density p; satisfies

H(pi|v) < e 2* H(po|v).

The following theorem shows that the KL divergence H (pg|v) decreases geometrically along the
GLA dynamics.

Theorem 4.3. Suppose M is a compact manifold without boundary and R is the Riemann curvature,
v = e~ adensity on M with a > 0 the log-Sobolev constant. Then there exists a global constant
Ky, K3, K4, C, such that for any xo ~ po with H(pg|v) < oo, the iterates xj, ~ py, of GLA with

. . o onL?42n°KoCHnKsKy 1 1 .
stepsize € < Min{ 7t S TS Ky OL) 0 300 20 ) SAMISlY

) 16
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The convergence of KL divergence implies the convergence of Wasserstein distance.

Proposition 4.4. For the closed manifold M with a density v = e~ 7 (), the iterates x}, ~ pj, of GLA
with a properly chosen stepsize satisfy

2 32
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Proof. 1t is an immediate consequence from the convergence of KL divergence that the Wasserstein
distance Ws(pg, v) converges rabidly since log-Sobolev inequality implies Talagrand inequality
(Talagrand|[[1996]], |Otto and Villani|[2000])). Since v satisfies log-Sobolev inequality, then we have

2
Walpilv)? < ~H(pulv) Y
2 ( —ake 16e 2 3
2 —ake 32¢ 2 3
=° H(pol|v) + @(QnL +2n° Ko C + nK3Ky) 9
and the proof completes. O

5 Conclusion

In this paper we focus on the problem of sampling from a distribution on a Riemannian manifold and
propose the Geodesic Langevin Algorithm. GLA modifies the Riemannian Langevin algorithm by
using exponential map so that the algorithm is defined globally. By leveraging the geometric meaning
of GLA, we provide a non-asymptotic convergence guarantee in the sense that the KL divergence (as
well as the Wasserstein distance) decreases fast along the iterations of GLA. By assuming that we
have full access to the geometric data (curvature, geodesic distance, Ricci curvature, diameter, etc)
of the manifold, we can control the bias between the stationary distribution of GLA and the target
distribution to be arbitrarily small through the choice of stepsize.
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7 Broader Impact

Our results is motivated by variant applications of sampling algorithms in machine learning. Generat-
ing random sample especially in higher dimension with good convergence and error bound can be
used in fast integration and volume computation. With the development of continuous game theory
and GANS in recent years, our results have potential impact to solve the Nash equilibrium of the
games with continuous strategy space.
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