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Abstract

Tensor completion is a natural higher-order generalization of matrix completion
where the goal is to recover a low-rank tensor from sparse observations of its
entries. Existing algorithms are either heuristic without provable guarantees, based
on solving large semidefinite programs which are impractical to run, or make strong
assumptions such as requiring the factors to be nearly orthogonal. In this paper we
introduce a new variant of alternating minimization, which in turn is inspired by
understanding how the progress measures that guide convergence of alternating
minimization in the matrix setting need to be adapted to the tensor setting. We
show strong provable guarantees, including showing that our algorithm converges
linearly to the true tensors even when the factors are highly correlated and can be
implemented in nearly linear time. Moreover our algorithm is also highly practical
and we show that we can complete third order tensors with a thousand dimensions
from observing a tiny fraction of its entries. In contrast, and somewhat surprisingly,
we show that the standard version of alternating minimization, without our new
twist, can converge at a drastically slower rate in practice.

1 Introduction

In this paper we study the problem of recovering a low-rank tensor from sparse observations of its
entries. In particular, suppose

T =

r∑
i=1

σi xi ⊗ yi ⊗ zi

Here {xi}i, {yi}i and {zi}i are called the factors in the low rank decomposition and the σi’s
are scalars, which allows us to assume without loss of generality that the factors are unit vectors.
Additionally T is called a third order tensor because it is naturally represented as a three-dimensional
array of numbers. Now suppose each entry of T is revealed independently with some probability p.
Our goal is to accurately estimate the missing entries with p as small as possible.

Tensors completion is a natural generalization of the classic matrix completion problem [7]. Similarly,
it has a wide range of applications including in recommendation systems [33], signal and image
processing [20, 19, 24, 4], data analysis in engineering and the sciences [26, 18, 29, 31] and harmonic
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analysis [27]. However, unlike matrix completion, there is currently a large divide between theory
and practice. Algorithms with rigorous guarantees either rely on solving very large semidefinite
programs [3, 25], which is impractical, or else need to make strong assumptions that are not usually
satisfied [6], such as assuming that the factors are nearly orthogonal, which is a substantial restriction
on the model. In contrast, the most popular approach in practice is alternating minimization where
we fix two out of three sets of factors and optimize over the other

(ẑ1, . . . , ẑr) = arg min
z1,...,zr

∥∥∥∥∥
(
T −

r∑
i=1

x̂i ⊗ ŷi ⊗ zi

)∣∣∣∣∣
S

∥∥∥∥∥
2

2

(1)

Here S is the set of observations and we use X
∣∣∣
S

to denote restricting a tensor X to the set of entries
in S. We then update our estimates, and optimize over a different set of factors, continuing in this
fashion until convergence. A key feature of alternating minimization that makes it so appealing in
practice is that it only needs to store 3r vectors along with the observations, and never explicitly writes
down the entire tensor. Unfortunately, not much is rigorously known about alternating minimization
for tensor completion, unlike for its matrix counterpart [16, 14].

In this paper we introduce a new variant of alternating minimization for which we can prove strong
theoretical guarantees. Moreover we show that our algorithm is highly practical. We can complete
third order tensors with a thousand dimensions from observing a tiny fraction of its entries. We
observe experimentally that, in many natural settings, our algorithm takes an order of magnitude
fewer iterations to converge than the standard version of alternating minimization.

1.1 Prior Results

In matrix completion, the first algorithms were based on finding a completion that minimizes the
nuclear norm [7]. This is in some sense the best convex relaxation to the rank [8], and originates from
ideas in compressed sensing [10]. There is a generalization of the nuclear norm to the tensor setting.
Thus a natural approach [32] to completing tensors is to solve the convex program

min ‖T̂‖∗ s.t. T̂
∣∣∣
S

= T
∣∣∣
S

where ‖ · ‖∗ is the tensor nuclear norm. Unfortunately the tensor nuclear norm is hard to compute
[13, 15], so this approach does not lead to any algorithmic guarantees.

Barak and Moitra [3] used a semidefinite relaxation to the tensor nuclear norm and showed that an
n×n×n incoherent tensor of rank r can be recovered approximately from roughly rn3/2 observations.
Moreover they gave evidence that this bound is tight by showing lower bounds against powerful
families of semidefinite programming relaxations as well as relating the problem of completing
approximately low-rank tensors from few observations to the problem of refuting a random constraint
satisfaction problem with few clauses [9]. This is a significant difference from matrix completion
in the sense that here there are believed to be fundamental computational vs. statistical tradeoffs
whereby any efficient algorithm must use a number of observations that is larger by a polynomial
factor than what is possible information-theoretically. Their results, however, left open two important
questions:
Question 1. Are there algorithms that achieve exact completion, rather than merely getting most of
the missing entries mostly correct?
Question 2. Are there much faster algorithms that still have provable guarantees – ideally ones that
can actually be implemented in practice?

For the first question, Potechin and Steurer [25] gave a refined analysis of the semidefinite program-
ming approach through which they gave an exact completion algorithm when the factors in the low
rank decomposition are orthogonal. Jain and Oh [17] obtain similar guarantees via an alternating
minimization-based approach. For matrices, orthogonality of the factors can be assumed without loss
of generality. But for tensors, it is a substantial restriction. Indeed, one of the primary applications of
tensor decomposition is to parameter learning where the fact that the decomposition is unique even
when the factors can be highly correlated is essential [2]. Xia and Yuan [30] gave an algorithm based
on optimization over the Grassmannian and they claimed it achieves exact completion in polynomial
time under mild conditions. However no bound on the number of iterations was given, and it is only
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known that each step can be implemented in polynomial time. For the second question, Cai et al. [6]
gave an algorithm based on nonconvex optimization that runs in nearly linear time up to a polynomial
in r factor. (In the rest of the paper we will think of r as constant or polylogarithmic and thus we will
omit the phrase “up to a polynomial in r factor" when discussing the running time.) Moreover their
algorithm achieves exact completion under the somewhat weaker condition that the factors are nearly
orthogonal. Notably, their algorithm also works in the noisy setting where they showed it nearly
achieves the minimax optimal prediction error for the missing entries.

There are also a wide variety of heuristics. For example, there are many other relaxations for the
tensor nuclear norm based on flattening the tensor into a matrix in different ways [11]. However we
are not aware of any rigorous guarantees for such methods that do much better than completing each
slice of the tensor as its own separate matrix completion problem. Such methods require a number of
observations that is a polynomial factor larger than what is needed by other algorithms.

1.2 Our Results

In this paper we introduce a new variant of alternating minimization that is not only highly practical
but also allows us to resolve many of the outstanding theoretical problems in the area. Our algorithm is
based on some of the key progress measures behind the theoretical analysis of alternating minimization
in the matrix completion setting. In particular, Jain et al. [16] and Hardt [14] track the principal angle
between the true subspace spanned by the columns of the unknown matrix and that of the estimate.
They prove that this distance measure decreases geometrically. In Hardt’s [14] analysis this is based
on relating the steps of alternating minimization to a noisy power method, where the noise comes
from the fact that we only partially observe the matrix that we want to recover.

We observe two simple facts. First, if we have bounds on the principal angles between the subspaces
spanned by x1, . . . , xr and x̂1, . . . , x̂r as well as between the subspaces spanned by y1, . . . , yr and
ŷ1, . . . , ŷr then it does not mean we can bound the principal angle between the subspaces spanned by

x1 ⊗ y1, . . . , xr ⊗ yr and x̂1 ⊗ ŷ1, . . . , x̂r ⊗ ŷr
However if we take all pairs of tensor products, and instead consider the principal angle between the
subspaces spanned by

{xi ⊗ yj}i,j and {x̂i ⊗ ŷj}i,j
then we can bound the principal angle (see Observation 3.1). This leads to our new variant of
alternating minimization, which we call KRONECKER ALTERNATING MINIMIZATION, where the
new update rule is:

{ẑi,j} = arg min
zi,j

∥∥∥∥∥∥
T − ∑

1≤i,j≤r

x̂i ⊗ ŷj ⊗ zi,j

∣∣∣∣∣
S

∥∥∥∥∥∥
2

2

(2)

In particular, we are solving a least squares problem over the variables zi,j by taking the Kronecker
product of X̂ and Ŷ where X̂ is a matrix whose columns are the x̂i’s and similarly for Ŷ . In contrast
the standard version of alternating minimization takes the Khatri-Rao product2.

This modification increases the number of rank one terms in the decomposition from r to r2. We show
that we can reduce back to r without incurring too much error by finding the best rank r approximation
to the n× r2 matrix of the ẑi,j’s. We combine these ideas with methods for initializing alternating
minimization, building on the work of Montanari and Sun [22], along with a post-processing algorithm
to solve the non-convex exact completion problem when we are already very close to the true solution.
Our main result is:
Theorem 1.1 (Informal version of Theorem 3.2). Suppose T is an n× n× n low-rank, incoherent,
well-conditioned tensor and its factors are robustly linearly independent. There is an algorithm that
runs in nearly linear time in the number of observations and exactly completes T provided that each
entry is observed independently with probability p where

p ≥ C r
O(1)

n3/2

2The Khatri-Rao product, which is less famililar than the Kronecker product, takes two matrices A and B
with the same number of columns and forms a new matrix C where the ith column of C is the tensor product
of the ith column of A and the ith column of B. This operation has many applications in tensor analysis,
particularly to prove (robust) identifiability results [1, 5].
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Moreover the constant C depends polynomially on the incoherence, the condition number and the
inverse of the lower bound on how far the factors are from being linearly dependent.

We state the assumptions precisely in Section 2.1. This algorithm combines the best of many worlds:

(1) It achieves exact completion, even when the factors are highly correlated.

(2) It runs in nearly linear time in terms of the number of observations.

(3) The alternating minimization phase converges at a linear rate.

(4) It scales to thousands of dimensions, whereas previous experiments had been limited to
about a hundred dimensions.

(5) Experimentally, in the presence of noise, it still achieves strong guarantees. In particular, it
achieves nearly optimal prediction error.

We believe that our work takes an important and significant step forward to making tensor completion
practical, while nevertheless maintaining strong provable guarantees.

2 Preliminaries

2.1 Model and Assumptions

As usual in matrix and tensor completion, we will need to make an incoherence assumption as
otherwise the tensor could be mostly zero and have a few large entries that we never observe. We
will also assume that the components of the tensor are not too close to being linearly dependent as
otherwise the tensor will be degenerate. (Even if we fully observed it, it would not be clear how to
decompose it.)

Definition 2.1. Given a subspace V ⊂ Rn of dimension r, we say V is µ-incoherent if the projection
of any standard basis vector ei onto V has length at most

√
µr/n

Assumptions 1. Consider an n× n× n tensor with a rank r CP decomposition

T =

r∑
i=1

σi(xi ⊗ yi ⊗ zi)

where xi, yi, zi are unit vectors and σ1 ≥ · · · ≥ σr > 0. We make the following assumptions

• Robust Linear Independence: The smallest singular value of the matrix with columns
given by x1, . . . , xr is at least c. The same is true for y1, . . . , yr and z1, . . . , zr.

• Incoherence: The subspace spanned by x1, . . . , xr is µ-incoherent. The same is true for
y1, . . . , yr and z1, . . . , zr.

Finally we observe each entry independently with probability p and our goal is to recover the original
tensor T .

We will assume that for some sufficiently small constant δ,

max

(
r,
σ1

σr
,

1

c
, µ

)
≤ nδ.

In other words, we are primarily interested in how the number of observations scales with n, provided
that it has polynomial dependence on the other parameters.

3 Our Algorithms

Here we will give our full algorithm for tensor completion, which consists of the three phases,
initialization through spectral methods, our new variant of alternating minimization, and finally a
post-processing step to recover the entries of the tensor exactly (when there is no noise). We defer a
formal description of the initialization and post-processing steps to the Section A of the appendix. In
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Algorithm 1 FULL EXACT TENSOR COMPLETION

Input: Let T̂ be a sample where we observe each entry of T independently with probability p
Let p1, p2, p3 be parameters with p1 + p2 + p3 ≤ p
Split T̂ into three samples T̂1, T̂2, T̂3 using Claim C.7 such that for i = 1, 2, 3, in T̂i each entry is
observed with probability pi
Run INITIALIZATION using T̂1 to obtain initial estimates V 0

x , V
0
y , V

0
z for the subspaces Vx, Vy, Vz

Run KRONECKER ALTERNATING MINIMIZATION using T̂2 and initial subspace estimates
V 0
x , V

0
y , V

0
z to obtain refined subspace estimates V̂x, V̂y, V̂z

Run POST-PROCESSING VIA CONVEX OPTIMIZATION using T̂3 and the subspace estimates
V̂x, V̂y, V̂z from the previous step.

Section H, we will show that our algorithm can be implemented so that it runs in nearly linear time in
terms of the number of observations.

We will use the following notation in the detailed description of our alternating minimization
algorithm. Let Ux(T ) denote the unfolding of T into an n×n2 matrix where the dimension of length
n corresponds to the xi. Define Uy(T ), Uz(T ) similarly.

Algorithm 2 KRONECKER ALTERNATING MINIMIZATION

Input: Let T̂ be a sample where we observe each entry of T independently with probability p2

Input: Let V 0
x , V

0
y , V

0
z be initial subspace estimates that we are given

Set k = 102 log nσ1

cσr
Let p′ be a parameter such that kp′ ≤ p2

Split T̂ into independent samples T̂1, . . . T̂k using Claim C.7 such that
• For 1 ≤ i ≤ k, in T̂i each entry is revealed with probability p′

for t = {0, 1, . . . , k − 1} do
Let Bt be an r2 × n2 matrix whose rows are an orthonormal basis for V ty ⊗ V tz
Consider the sample T̂t+1 and let St+1 be the set of observed entries

Let Ht+1 be the solution to minH

∥∥∥(Ux(T̂t+1)−HBt)
∣∣
St+1

∥∥∥2

2

Let V t+1
x be the space spanned by the top r left singular vectors of Ht+1

Compute V t+1
y from V tx , V

t
z and compute V t+1

z from V tx , V
t
y similarly

Output: V kx , V ky , V kz

Alternating Minimization, with a Twist Recall the standard formulation of alternating minimiza-
tion in tensor completion, given in Equation 1. Unfortunately, this approach is difficult to analyze
from a theoretical perspective. In fact, in Section 4 we observe experimentally that it can indeed get
stuck. Moreover, even if we add randomness by looking at a random subset of the observations in each
step, it converges at a prohibitively slow rate when the factors of the tensor are correlated. Instead, in
Equation 2 we gave a subtle modification to the alternating minimization steps that prevents it from
getting stuck. We then update ẑ1, . . . , ẑr to be the top r left singular vectors of the n × r2 matrix
with columns given by the ẑi,j . With this modification, we will be able to prove strong theoretical
guarantees, even when the factors of the tensor are correlated.

The main tool in the analysis of our alternating minimization algorithm is the notion of the principal
angles between subspaces. Intuitively, the principal angle between two r-dimensional subspaces
U, V ⊂ Rn is the largest angle between some vector in U and the subspace V . For matrix completion,
Jain et al. [16] and Hardt [14] analyze alternating minimization by tracking the principal angles
between the subspace spanned by the top r singular vectors of the true matrix and of the estimate at
each step. Our analysis follows a similar pattern. We rely on the following key observation (whose
proof is in Section C) as the starting point for our work:
Observation 3.1. Given subspaces U, V ∈ Rn of the same dimension, let α(U, V ) be the sine of the
principal angle between U and V . Suppose we have subspaces U1, V1 ⊂ Rn1 of dimension d1 and
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U2, V2 ⊂ Rn2 of dimension d2, then

α(U1 ⊗ U2, V1 ⊗ V2) ≤ α(U1, V1) + α(U2, V2).

Thus if the subspaces spanned by the estimates (x̂1, . . . , x̂r) and (ŷ1, . . . , ŷr) are close to the sub-
spaces spanned by the true vectors (x1, . . . , xr) and (y1, . . . , yr), then the solution for {zi,j} in
Equation 2 will have small error – i.e.

∑
1≤i,j≤r x̂i⊗ ŷj⊗zi,j will be close to T . This means that the

top r principal components of the matrix with columns given by {ẑi,j} must indeed be close to the
space spanned by z1, . . . , zr. For more details, see Corollary E.7; this result allows us to prove that
our alternating minimization steps make progress in reducing the principal angles of our subspace
estimates.

On the other hand, Observation 3.1 does not hold if the tensor product is replaced with the Khatri-Rao
product, which is what would be the natural route towards analyzing an algorithm that uses Equation 1.
To see this consider

U1 = V1 = U2 =

[
1 0
0 1
0 0

]
, V2 =

[
0 1
1 0
0 0

]

(where we really mean that U1, V1, U2, V2 are the subspaces spanned by the columns of the respective
matrices). Then the principal angles between U1, V1 and and U2, V2 are zero yet the principal angle
between U1 ⊗ U2 and V1 ⊗ V2 is π

2 i.e. they are orthogonal. This highlights another difficulty in
analyzing Equation 1, namely that the iterates in the alternating minimization depend on the order of
(x̂1, . . . , x̂r) and (ŷ1, . . . , ŷr) and not just the subspaces themselves.

Initialization and Cleanup For the full theoretical analysis of our algorithm, in addition to the
alternating minimization, we will need two additional steps. First, we obtain a sufficiently good
initialization by building on the work of Montanari and Sun [22]. We use their algorithm for
estimating the subspaces spanned by the {xi}, {yi} and {zi}. However we then slightly perturb those
estimates to ensure that our initial subspaces are incoherent.

Next, in order to obtain exact completion rather than merely being able to estimate the entries to any
desired inverse polynomial accuracy, we prove that exact tensor completion reduces to an optimization
problem that is convex once we have subspace estimates that are sufficiently close to the truth (see
Section A.1 for a further discussion on this technicality). To see this, applying robustness analyses
of tensor decomposition [21] to our estimates at the end of the alternating minimization phase it
follows that we can not only estimate the subspaces but also the entries and rank one components
in the tensor decomposition to any inverse polynomial accuracy. Now if our estimates are given by
{σ̂i}, {x̂i}, {ŷi}, {ẑi} we can write the expression

T̂ (∆) =

r∑
i=1

(σ̂i + ∆σi)(x̂i + ∆xi)⊗ (ŷi + ∆yi)⊗ (ẑi + ∆zi) (3)

and attempt to solve for ∆σi ,∆xi ,∆yi ,∆zi that minimize∥∥∥(T̂ (∆)− T
) ∣∣∣

S

∥∥∥2

2
.

The key observation is that since we can ensure {σ̂i}, {x̂i}, {ŷi}, {ẑi} are all close to their true values,
all of ∆σi ,∆xi ,∆yi ,∆zi are small and thus T̂ (∆) can be approximated well by its linear terms. If
we only consider the linear terms, then solving for ∆σi ,∆xi ,∆yi ,∆zi is simply a linear least squares

problem. Intuitively,
∥∥∥(T̂ (∆)− T

) ∣∣∣
S

∥∥∥2

2
must also be convex because the contributions from the

non-linear terms in T̂ (∆) are small. The precise formulation that we use in our algorithm will be
slightly different from Equation 3 because in Equation 3, there are certain redundancies i.e. ways to
set ∆σi ,∆xi ,∆yi ,∆zi that result in the same T̂ (∆). See Section G and in particular, Lemma G.2
for details.

We will now state our main theorem:
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Theorem 3.2. The FULL EXACT TENSOR COMPLETION algorithm run with the following parameter
settings:

p = 2

(
µr log n

c
· σ1

σr

)300

· 1

n3/2
, p1 =

(
2µr log n

c2
· σ

2
1

σ2
r

)10

· 1

n3/2

p2 =

(
µr log n

c
· σ1

σr

)300

· 1

n3/2
, p3 = 2

log2 n

n2

(
10rµ

c
· σ1

σr

)10

successfully outputs T with probability at least 0.9. Furthermore, the algorithm can be implemented
to run in n3/2poly(r, log n, σ1/σr, µ, 1/c) time.

4 Experiments

In this section, we describe our experimental results and in particular how our algorithm compares to
existing algorithms. First, it is important to notice that how well an algorithm performs can sometimes
depend a lot on properties of the low-rank tensor. In our experiments, we find that there are many
algorithms that succeed when the factors are nearly orthogonal but degrade substantially when the
factors are correlated. To this end, we ran experiments in two different setups:

• Uncorrelated tensors: generated by taking T =
∑4
i=1 xi ⊗ yi ⊗ zi where xi, yi, zi are

random unit vectors.
• Correlated tensors: generated by taking T =

∑4
i=1 0.5i−1xi ⊗ yi ⊗ zi where x1, y1, z1 are

random unit vectors and for i > 1, xi, yi, zi are random unit vectors that have covariance
∼ 0.88 with x1, y1, z1 respectively.

Unfortunately many algorithms in the literature either cannot be run on real data, such as ones
based on solving large semidefinite programs [3, 25] and for others no existing code was available.
Moreover some algorithms need to solve optimization problems with as many as n3 constraints
[30] and do not seem to be able to scale to the sizes of the problems we consider here. Instead,
we primarily consider two algorithms: a variant of our algorithm, which we call KRONECKER
COMPLETION, and STANDARD ALTERNATING MINIMIZATION. For KRONECKER COMPLETION,
we randomly initialize {x̂i}, {ŷi}, {ẑi} and then run alternating minimization with updates given
by Equation 2. For given subspace estimates, we execute the projection step of POST-PROCESSING
VIA CONVEX OPTIMIZATION to estimate the true tensor (omitting the decomposition and convex
optimization). It seems that neither the initialization nor the post-processing steps are needed in
practice. For STANDARD ALTERNATING MINIMIZATION, we randomly initialize {x̂i}, {ŷi}, {ẑi}
and then run alternating minimization with updates given by Equation 1. To estimate the true tensor,
we simply take

∑r
i=1 x̂i ⊗ ŷi ⊗ ẑi. The code for all of the experiments can be found in Section I.

For alternating minimization steps, we use a random subset consisting of half of the observations. We
call this subsampling. Subsampling appears to improve the performance, particularly of STANDARD
ALTERNATING MINIMIZATION. We discuss this in more detail below.

We ran KRONECKER COMPLETION and STANDARD ALTERNATING MINIMIZATION for n =
200, r = 4 and either 50000 or 200000 observations. We ran 100 trials and took the median
normalized MSE i.e. ‖Test−T‖2

‖T‖2
. The results for these experiments are in Figure 1. For both

algorithms, the error converges to zero rapidly for uncorrelated tensors. However, for correlated
tensors, the error for KRONECKER COMPLETION converges to zero at a substantially faster rate than
the error for STANDARD ALTERNATING MINIMIZATION. Compared to STANDARD ALTERNATING
MINIMIZATION, the runtime of each iteration of KRONECKER COMPLETION is larger by a factor
of roughly r (here r = 4). However, the error for KRONECKER COMPLETION converges to zero in
around 30 iterations while the error for STANDARD ALTERNATING MINIMIZATION fails to converge
to zero after 1000 iterations, despite running for nearly 10 times as long. Naturally, we expect the
convergence rate to be faster when we have more observations. Our algorithm exhibits this behavior.
On the other hand, for STANDARD ALTERNATING MINIMIZATION, the convergence rate is actually
slower with 200000 observations than with 50000.

In the rightmost plot, we run the same experiments with correlated tensors without subsampling. Note
the large oscillations and drastically different behavior of STANDARD ALTERNATING MINIMIZATION
with 50000 observations.
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Error over time for KRONECKER COMPLETION and STANDARD ALTERNATING MINIMIZATION

Figure 1: Top Row: The plot on the left is for uncorrelated tensors. The plot in the middle is for
correlated tensors and with subsampling. The plot on the right is for correlated tensors and no
subsampling. Bottom Row: The plots are the same as for the top row, but zoomed out so that it is
easier to see the behavior of alternating minimization after a large number of iterations.

We also ran both algorithms with noisy observations (10% noise entrywise). The error is measured
with respect to the true tensor. We ran KRONECKER COMPLETION for 100 iterations compared
to running STANDARD ALTERNATING MINIMIZATION for 400 iterations, to correct for the fact
that each iteration of the former takes longer. Note (see Figure 2b) that the error achieved by both
estimators is smaller than the noise that was added. Furthermore, the error decays with the square root
of the number of samples, which is essentially optimal (see [6]). Although both algorithms converge
to roughly the same error, similar to the non-noisy case, the error of our algorithm converges at a
significantly faster rate in this setting as well.

Finally, we ran various tensor completion algorithms on correlated tensors for varying values of n
and numbers of observations. UNFOLDING involves unfolding the tensor and running alternating
minimization for matrix completion on the resulting n × n2 matrix. We ran 100 iterations for
KRONECKER COMPLETION and UNFOLDING and 400 iterations for STANDARD ALTERNATING
MINIMIZATION. We defined success as achieving < 1% normalized MSE. Note how the sample
complexity of KRONECKER COMPLETION appears to grow as n3/2 whereas even for fairly large
error tolerance (1%), STANDARD ALTERNATING MINIMIZATION seems to have more difficulty
scaling to larger tensors.

It is important to keep in mind that in many settings of practical interest we expect the factors to be
correlated, such as in factor analysis [21]. Thus our experiments show that existing algorithms only
work well in seriously restricted settings, and even then they exhibit various sorts of pathological
behavior such as getting stuck without using subsampling, converging slower when there are more
observations, etc. It appears that this sort of behavior only arises when completing tensors and not
matrices. In contrast, our algorithm works well across a range of tensors (sometimes dramatically
better) and fixes these issues.
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Additional plots

(a) Error over time with noisy observations, n =
200, r = 4

(b) Error vs samples with noisy observations,
n = 200, r = 4.

(c) Number of samples required for varying n, r = 4. Shaded
areas represent [20%, 80%] success rates.

Figure 2

5 Discussion

In this paper, we propose an algorithm for tensor completion that involves a modification to standard
alternating minimization. We prove that our algorithm has strong theoretical guarantees. It runs
in nearly linear time and provably achieves exact completion even for tensors whose components
are highly correlated. Furthermore, we show empirically that the standard alternating minimization
algorithm does get stuck in local minima when completing tensors with correlated components
whereas our algorithm does not.

Moving forward, our work raises a few natural follow-up questions. From a theoretical perspective,
our algorithm is limited to the under-complete case r ≤ n and our theoretical bounds scale somewhat
poorly as a function of the rank. It would be fascinating to see if we can improve the dependence on
r or if our ideas can be extended to the overcomplete regime. From a practical perspective, there are
several other existing algorithms beyond standard alternating minimization that would be interesting
to compare with in empirical studies. These comparisons likely require a modified setup involving
different types of tensors e.g. non-cubical or higher noise ratio. We leave these directions for future
investigation
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Broader Impact

Our work gives new algorithms for tensor completion. These could certainly have positive societal
benefit in terms of furnishing better methods to use in applications, such as those we discussed in the
introduction. While a main application is to recommendation systems, where biases in the data can
be amplified through algorithms, we believe that an important intermediate goal towards mitigating
unfairness is to have a suite of algorithms where we can rigorously analyze them and understand their
behavior. Our work takes a positive step in this direction.
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