
Appendices
This is the supplemental material for Optimization and Generalization Analysis of Transduction
through Gradient Boosting and Application to Multi-scale Graph Neural Networks.

A Proof of Theorems and Propositions

We give proofs for the theorems and propositions in the order they appeared in the main paper.

A.1 Proof of Proposition 1

We prove the more detailed claim. Proposition 1 is a part of the following proposition. The third
condition below means that the prediction Z is better than a random guess as a solution to the binary
classification problem on the training dataset weighed by wn’s. The proof for the equivalence of the
second and third conditions are similar to that of [10, Theorem 1]
Proposition 6. Let Z, g ∈ RN such that g 6= 0. The followings are equivalent

1. There exist α, β such that α > β ≥ 0 and Z satisfies (α, β, g)-w.l.c.

2. 〈Z, g〉 > 0.

Under the condition, for any r ∈ [sin2 θ, 1), we can take α := C, β := rC, and ‖Z−αg‖2 = β‖g‖2,
where

cos θ =
〈Z, g〉
‖Z‖2‖g‖2

, C :=
〈Z, g〉 ±

√
〈Z, g〉2 − (1− r2)‖Z‖2‖g‖2

(1− r2)‖g‖22
.

Suppose further Z ∈ {±1}N , then, the conditions 1 and 2 are equivalent to

3. There exists δ ∈ (0, 1] such that
∑N
n=1 wn1{sign(gn) 6= Zn} ≤ 1−δ

2 where wn = gn
‖g‖1 .

Proof. (1. =⇒ 2.) We have

‖Z − αg‖2 ≤ β‖g‖2 ⇐⇒ ‖Z‖22 − 2α〈Z, g〉+ α2‖g‖22 ≤ β2‖g‖22

⇐⇒ 〈Z, g〉 ≥ ‖Z‖
2
2

2α
+
α2 − β2

2α
‖g‖22 > 0. (5)

(2. =⇒ 1.) For k > 0, we define

r̃(k) :=
‖Z − kg‖2
k‖g‖2

.

Then, by direct computation, we have

r̃(k)2 =
‖Z‖22
‖g‖22

(
γ − 〈Z, g〉

‖Z‖22

)2

+ 1− 〈Z, g〉2

‖Z‖22‖g‖22
.

where γ := k−1. Therefore, r̃(k) is a quadratic function of γ that takes the minimum value sin2 θ at
γ = 〈Z,g〉

‖Z‖22
> 0. Therefore, for any r ∈ [sin2 θ, 1) there exists k0 > 0 such that r̃(k0) = r. Then, by

setting α := k0 and β := rk0, we have α > β ≥ 0 and

‖Z − αg‖2 = r̃(k0)α‖g‖2 = rα‖g‖2 = β‖g‖2.

By solving r̃(k0) = r, we obtain α = C and β = rC.

(1. =⇒ 3.) Define w+ :=
∑N
n=1 wn1{Zn = sign(gn)} and w− :=

∑N
n=1 wn1{Zn 6= sign(gn)}.

By definition, we have w+ + w− = ‖w‖1 = 1.

〈Z, g〉 =

N∑
n=1

Zngn

1

=

N∑
n=1

Znwn‖g‖1 sign(gn)

= ‖g‖1(w+ − w−). (6)

Therefore, using the reformulation Equation (5) of the assumption, we have

w+ − w− =
〈Z, g〉
‖g‖1

≥ 〈Z, g〉
‖g‖2

√
N

(∵ Cauchy–Schwraz inequality))

≥
√
N

2α‖g‖2
+
α2 − β2

2α

‖g‖2√
N

(∵ Equation (5) and ‖Z‖22 = N)

≥ 2

√
1

2α

α2 − β2

2α
(∵ AM–GM inequality)

=

√
1− β2

α2
.

Set δ :=
√

1− β2

α2 . By the assumption α > β ≥ 0, we have δ ∈ (0, 1]. Therefore, we have

w+ =
1

2
(w+ + w−) +

1

2
(w+ − w−)

≥ 1

2
(w+ + w−) +

δ

2

=
1 + δ

2
,

which is equivalent to w− ≤ 1
2 (1− δ).

(3. =⇒ 2.) Using the same argument as Equation (6), we have

〈Z, g〉 = ‖g‖1(w+ − w−).

By the assumption, we have

w− ≤ 1− δ
2

(w+ + w−)

⇐⇒ w+ ≥ 1 + δ

2
(w+ + w−)

⇐⇒ w+ − w+ + w−

2
≥ 1 + δ

2
(w+ + w−)− w+ + w−

2

⇐⇒ 1

2
(w+ − w−) ≥ δ

2
(w+ + w−)

Therefore, we have

〈Z, g〉 = ‖g‖1(w+ − w−)

= ‖g‖1δ(w+ + w−)

= ‖g‖1δ > 0.

A.2 Proof of Theorem 1

Assumption 1. ` : Ŷ ×Y → R is a non-negative C2 convex funxtion with respect to the first variable
and satisfies |∇2

ŷ`(ŷ, y)| ≤ A for all ŷ ∈ Ŷ and y ∈ Y .

2

Proposition 7. The sigmoid cross entropy loss `σ satisfies Assumption 1 with A = 1
4 .

Lemma 1. Suppose the loss function ` satisfies Assumption 1 with A > 0. Define the training error
L̂ by L̂(Ŷ) := 1

M

∑M
n=1 `(ŷn, yn) for Ŷ > = (ŷ1, . . . , ŷN)>. Suppose Algorithm 1 with the learning

rate η(t) = 1
Aαt

finds a weak learner f (t) for any t ∈ [T]. Then, we have

T∑
t=1

γt‖∇L̂(Ŷ (t))‖2F ≤
2AL̂(Ŷ (1))

M
.

Proof. First, we define C(t)
f := (2αt)

−1 and C(t)
L :=

α2
t−β

2
t

2αt
. Note that we have by definition

γt = 4C
(t)
f C

(t)
L . (7)

We denote Z(t)> = (z
(t)
1 , . . . , z

(t)
N)> := 1

M f (t)(X)> and (ŷ
(t)
1 , . . . , ŷ

(t)
N)> := Ŷ (t)>. Since Z(t)

satisfies (αt, βt,−∇L̂(Ŷ (t−1)))-w.l.c., we have

‖Z(t) + αt∇L̂(Ŷ (t−1))‖F ≤ βt‖∇L̂(Ŷ (t−1))‖F
⇐⇒ ‖Z(t)‖2F + 2αt〈Z(t),∇L̂(Ŷ (t−1))〉+ α2

t ‖∇L̂(Ŷ (t−1))‖2F ≤ β2
t ‖∇L̂(Ŷ (t−1))‖2F

⇐⇒ 〈Z(t),∇L̂(Ŷ (t−1))〉+ C
(t)
f ‖Z

(t)‖2F ≤ −C
(t)
L ‖∇L̂(Ŷ (t−1))‖2F. (8)

Since η(t) =
2C

(t)
f

A , we have

〈∇L̂(Ŷ (t−1)), Z(t)〉+
Aη(t)

2
‖Z(t)‖2F ≤ −C

(t)
L ‖∇L̂(Ŷ (t−1))‖2F.

By Taylors’ theorem, and Assumption 1, we have

`(ŷ(t)
n , yn) ≤ `(ŷ(t−1)

n , yn) + 〈∇ŷ`(ŷ(t−1)
n , yn), ŷ(t)

n − ŷ(t−1)
n 〉+

A

2
‖ŷ(t)
n − ŷ(t−1)

n ‖22.

By taking the average in terms of n, we have

L̂(Ŷ (t)) ≤ L̂(Ŷ (t−1)) +
1

M

M∑
n=1

〈∇ŷ`(ŷ(t−1)
n , yn), y(t)

n − y(t−1)
n 〉+

A

2M

M∑
n=1

‖y(t)
n − y(t−1)

n ‖22.

By the definition of Ŷ (t)’s, we have

ŷ(t)
n − ŷ(t−1)

n = η(t)Mz(t)
n .

Therefore, we have

L̂(Ŷ (t)) ≤ L̂(Ŷ (t−1)) + η(t)
M∑
n=1

〈∇ŷ`(ŷ(t−1)
n , yn), z(t)

n 〉+
1

2
η(t)2AM

M∑
n=1

‖z(t)
n ‖22

≤ L̂(Ŷ (t−1)) + η(t)
N∑
n=1

〈∇ŷ`(ŷ(t−1)
n , yn), z(t)

n 〉+
1

2
η(t)2AM

N∑
n=1

‖z(t)
n ‖22

≤ L̂(Ŷ (t−1)) + η(t)M〈∇ŷL̂(Ŷ (t−1)), Z(t)〉+
1

2
η(t)2AM‖Z(t)‖2F

≤ L̂(Ŷ (t−1))− η(t)MC
(t)
L ‖∇L̂(Ŷ (t−1))‖2F (∵ Equation (8))

= L̂(Ŷ (t−1))−
2MC

(t)
f C

(t)
L

A
‖∇L̂(Ŷ (t−1))‖2F (∵ Definition of η(t))

= L̂(Ŷ (t−1))− Mγt
2A
‖∇L̂(Ŷ (t−1))‖2F (∵ Equation (7))

Rearranging the term, we get

γt‖∇L̂(Ŷ (t−1))‖2F ≤
2A

M

(
L̂(Ŷ (t−1))− L̂(Ŷ (t))

)
.

3

By taking the summation in terms of t, we have

T∑
t=1

γt‖∇L̂(Ŷ (t))‖2F ≤
2A

M

(
L̂(Ŷ (1))− L̂(Ŷ (T+1))

)
≤ 2AL̂(Ŷ (1))

M
.

We used the non-negativity of the loss function L̂ in the final inequality.

Lemma 2. Assume the loss function is the cross entropy loss. Let δ ≥ 0. For any Ŷ ∈ ŶN , we have

R̂(Ŷ) ≤ (1 + eδ)‖∇L̂(Ŷ)‖2,1

Proof. Same as [20, Proposition C].

Proof of Theorem 1. Since we use the cross entropy loss, by Lemma 2, we have

R̂(Ŷ) ≤ (1 + eδ)‖∇L̂(Ŷ)‖2,1 (9)

By the definition of Ŷ , t∗, and Γ, we have

ΓT ‖∇L̂(Ŷ)‖2,1 =

(
T∑
t=1

γt

)
‖∇L̂(Ŷ (t∗))‖2,1

≤
T∑
t=1

γt‖∇L̂(y(t))‖22,1

≤
T∑
t=1

γt‖∇L̂(y(t))‖2F (10)

From Lemma 1 with A = 1
4 (Proposition 7), we have

T∑
t=1

γt‖∇L̂(Ŷ (t))‖2F ≤
L̂[Ŷ (1)]

2M
(11)

Combining Equation (9), Equation (10), and Equation (11), we have

R̂(Ŷ) ≤ (1 + eδ)L̂[Ŷ (1)]

2MΓT
.

A.3 Proof of Proposition 2

The proof is basically the application of [7, Corollary 1] to our setting. We recall the definition of the
transductive Rademacher complexity introduced by [7].
Definition 2 (Transductive Rademacher Complexity). For p ∈ [0, 1

2] and V ⊂ RN , we define

R(V, p) := QEσ
[

sup
v∈V

σ · v
]
,

Here, Q = 1
M + 1

U and σ = (σ1, . . . , σN) is an sequence of i.i.d. random variables whose
distribution is P(σi = 1) = P(σi = −1) = p and P(σi = 0) = 1 − 2p. In particular, we denote
R(V) := R(V, p0) where p0 = MU

(M+U)2 .

We introduce the notion of the (weighed) sum of sets.
Definition 3. For V1, . . . ,VT ⊂ RN and α1, . . . , αT ∈ R, we define their (weighted) sum∑T
t=1 αtVt by

T∑
t=1

αtVt :=

{
T∑
t=1

αtvt

∣∣∣∣∣ vt ∈ Vt
}
.

4

We define the hypothesis spaceH byH :=
∑T
t=1 η

(t)F (t). Note that any output Ŷ of Algorithm 1
satisfies Ŷ ∈ H. We can compute the Rademacher complexity of the sum similarly to the inductive
case.
Proposition 8. For V1,V2 ⊂ RN , a1, a2 ∈ R and p ∈ [0, 1

2], we have R(a1V1 + a2V2) ≤
|a1|R(V1) + |a2|R(V2).

Proof. Take any realization σ of the N i.i.d. transductive Rademacher variable of parameter p. For
any v = a1v1 + a2v2 ∈ a1V1 + a2V2 (v1 ∈ V1, v2 ∈ V2), we have

〈σ, v〉 = 〈σ, a1v1〉+ 〈σ, a2v2〉 ≤ |a1| sup
v1∈V1

〈σ, v1〉+ |a2| sup
v1∈V2

〈σ, v2〉.

By taking the supremum of v, we have

sup
v∈V1+V2

〈σ, v〉 ≤ |a1| sup
v1∈V1

〈σ, v1〉+ |a2| sup
v2∈V2

〈σ, v2〉.

The proposition follows by taking the expectation with respect to σ.

Proof of Proposition 2. Let H =
∑T
t=1 η

(t)F (t). By [7, Corollary 1], with probability of at least
1− δ′ for all Ŷ ′ ∈ H, we have

R(Ŷ ′) ≤ R̂(Ŷ ′) + R(H) + c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
.

Since the output Ŷ of Algorithm 1 satisfies Ŷ ∈ H, we have

R(Ŷ) ≤ R̂(Ŷ) + R(H) + c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
. (12)

By Proposition 8, we have

R(H) ≤
T∑
t=1

η(t)R(F (t)). (13)

Combining Equation (12) and Equation (13) concludes the proof.

A.4 Proof of Proposition 3

We shall prove Proposition 9, which is more general than Proposition 3. To formulate it, we first
introduce the variant of the transductive Rademacher complexity.
Definition 4 ((Symmetrized) Transductive Rademacher Complexity). For V ⊂ RN and p ∈ [0, 1/2],
we define the symmetrized transductive Rademacher complexity R(V, p) by

R(V, p) := QEσ
[
sup
v∈V
|〈σ, v〉|

]
.

We denote R(V) := R(V, p0) for p0 = MU
(M+U)2 . For F ⊂ {X → Ŷ}, we denote R(F , p) :=

R(V, p) where V = {(f(X1), . . . , f(XN)))> | f ∈ F}, where X1, . . . XN are feature vectors of
the given training dataset defined in Section 4.1.

We refer to the transductive Rademacher complexity defined in Definition 2 as the unsymmetrized
transductive Rademacher complexity if necessary1. Note that we have by definition

R(V, p) ≤ R(V, p). (14)

Using the concept of the symmetrized transductive Rademacher complexity, we state the main
proposition of this section.

1We are not aware the standard notion used to tell apart the complexities defined in Definitions 2 and 4. The
notion of (un)symmetrized is specific to this paper.

5

Proposition 9. Let p ∈ [0, 1/2]. Suppose we use G(t) and B(t) defined by Equation (1) and Equa-
tion (2) as a model. Define D(t) = 2

√
2(2B̃(t))L−1

∏t
s=2 C̃

(s) and P (t) :=
∏t
s=2 P̃

(s). Then, we
have

R(F (t), p) ≤
√

2pQB(t)‖P (t)X‖F.

We shall prove this proposition in the end of this section. Reference [7] proved the contraction
property of the unnsymmetrized Rademacher complexity. We prove the contraction property for the
symmetrized variant.
Proposition 10. Let V ⊂ RN , p ∈ [0, 1/2]. Suppose ρ : R→ R is Lρ-Lipschitz and ρ(0) = 0. Then,
we have

R(ρ ◦ V, p) ≤ 2LρR(V, p),
where ρ ◦ V := {(ρ(v1), . . . , ρ(vN))> | v = (v1, . . . , vN)> ∈ V}.

Proof. First, by the definition R and ρ(0) = 0, we have

R(V ∪ {0}, p) = R(V, p),
R(ρ ◦ (V ∪ {0}), p) = R((ρ ◦ V) ∪ {0}, p) = R(ρ ◦ V, p).

Therefore, we can assume without loss of generality that 0 ∈ V . Then, we have

R(ρ ◦ V, p) = QEσ sup
v∈V
|〈σ, ρ(v)〉|

≤ QEσ sup
v∈V
〈σ, ρ(v)〉+QEσ sup

v∈V
〈σ,−ρ(v)〉

= R(ρ ◦ V, p) + R(−ρ ◦ V, p), (15)

where σ = (σ1, . . . , σN) are the i.i.d. transducive Rademacher variables of parameter p. We used
0 ∈ V and ρ(0) = 0 in the inequality above. By the contraction property of the unsymmetrized
transductive Rademacher complexity ([7, Lemma 1]), we have

R(ρ ◦ V, p) ≤ LρR(V, p)
R(−ρ ◦ V, p) ≤ LρR(V, p)

By combining them with Equation (14) and Equation (15), we have

R(ρ ◦ V, p) ≤ 2LρR(V, p) ≤ 2LρR(V, p).

Proof of Proposition 9. The proof is the extension of [18, Exercises 3.11] to the transductive and
multi-layer setting. See also the proof of [20, Theorem 3]. First, we note that the multiplication
X 7→ P̃ (s)X in G(s) and the multiplication X 7→ XW (s−1) ∈ RC×C in G(s−1) are commutative
operations. Therefore, we have

F (t)(X) := {(z1, . . . ,zN) | f ∈ B(t)
base, ‖W

(s)
·c ‖1 ≤ C(s) for all c ∈ [C] and s = 2, . . . , t},

where zn := f(xnW
(2) · · ·W (t)) and xn := (P (t)X)n ∈ RC . Therefore, it is sufficient that we

first prove the proposition by assuming P̃ (s) = IN for all s = 2, . . . , t and then replace X with
P (t)X .

We define J (s) ⊂ RN be the set of possible values of any channel of the s-th representations and
H(l) ⊂ RN be the set of possible values of any output channel of the l-th layer of an MLP. More
concretely, we define

J (1) := {X·c | c ∈ [C]},

J (s+1) :=

{
C∑
c=1

zcwc

∣∣∣∣∣ zc ∈ J (s), ‖w‖1 ≤ C̃(s+1)

}
,

for s = 1, . . . t− 1. Similarly, we define

H(1) := J (t),

6

H̃(l+1) :=


Cl+1∑
c=1

zcwc

∣∣∣∣∣∣ zc ∈ H(l), ‖w‖1 ≤ B̃(t)

 ,

H(l+1) := σ ◦ H̃(l+1) = {σ(z) | z ∈ H̃(l+1)}.

for l = 1, . . . , L. By the definition of F (t), we have {f(X) | f ∈ F (t)} = H̃(L+1). On one hand,
we can bound the Rademacher complexity of H̃(l) as

Q−1R(H̃(l+1), p) = Eσ

 sup
‖w‖1≤B̃(l),Z·c∈H(l)

∣∣∣∣∣∣
N∑
n=1

σn

Cl+1∑
c=1

Zncwc

∣∣∣∣∣∣


= Eσ

 sup
‖w‖1≤B̃(l),Z·c∈H(l)

∣∣∣∣∣∣
Cl+1∑
c=1

wc

N∑
n=1

σnZnc

∣∣∣∣∣∣


= B̃(t)Eσ

[
sup

Z∈H(l)

∣∣∣∣∣
N∑
n=1

σnZn

∣∣∣∣∣
]

= B̃(t)Q−1R(H(l), p). (16)

On the other hand, since σ is 1-Lipschitz, by the contraction property (Proposition 10), we bound the
Rademacher complexity ofH(l+1) as

R(H(l+1), p) ≤ 2R(H̃(l+1), p). (17)

By combining Equation (16) and Equation (17), we have the inductive relationship.

R(H(l+1), p) ≤ 2B̃(t)R(H(l), p). (18)

Using the similar argument to J (s)’s, for s ∈ 2, . . . , t− 1, we have

R(J (s+1), p) ≤ C̃(s)R(J (s), p). (19)

Let Pc ∈ RC be the projection matrix onto the c-th coordinate. Then, for the base step, we can
evaluate the Rademacher complexity of J (1) as

Q−1R(J (1), p) = Eσ

[
max
c∈[C]

∣∣∣∣∣
N∑
n=1

σnXnc

∣∣∣∣∣
]

= Eσ

[
max
c∈[C]

∣∣∣∣∣
(

N∑
n=1

σnXn

)
Pc

∣∣∣∣∣
]

≤ Eσ

[
max
c∈[C]

‖Pc‖op

∥∥∥∥∥
N∑
n=1

σnXn

∥∥∥∥∥
2

]

≤ Eσ

∥∥∥∥∥
N∑
n=1

σnXn

∥∥∥∥∥
2

≤

√√√√Eσ
C∑
c=1

(
N∑
n=1

σnXnc

)2

(∵ Jensen’s inequality)

=

√√√√Eσ
C∑
c=1

N∑
n,m=1

σnσmXncXmc

=

√√√√ C∑
c=1

N∑
n=1

2p(Xnc)2 (20)

7

=
√

2p‖X‖F. (21)

Here, we used in Equation (20) the equality

Eσσmσn = 2pδmn, (22)

which is shown by the independence of transductive Rademacher variables. By using the inequalities
we have proved so far, we obtain

R(F (t), p) = R(H̃(L+1), p)

= 2R(H(L), p) (∵ Equation (17))

≤ 2(2B̃(t))L−1R(H(1), p) (∵ Equation (18))

≤ 2(2B̃(t))L−1R(J̃ (t), p) (∵ Definition ofH(1))

≤ 2(2B̃(t))L−1

(
t∏

s=2

C̃(s)

)
R(J̃ (1), p) (∵ Equation (19))

≤ √pQD(t)‖X‖F, (∵ Equation (21))

where we used D(t) = 2
√

2(2B̃(t))L−1
∏t
s=2 C̃

(s). Therefore, the proposition is true for P̃ (s) = IN
for all s = 2, . . . , t. As stated in the beginning of the proof, we should replace X with P (t)X in the
general case.

Proof of Proposition 3. By applying Proposition 9 with p = p0 = MU
(M+U)2 and using Equation (14),

we have

R(F (t)) ≤ R(F (t), p0) ≤

√
MU

(M + U)2
QD(t)‖P (t)X‖F =

D(t)‖P (t)X‖F√
MU

.

A.5 Proof of Theorem 2

Proof. By Proposition 2, with probability 1− δ′, we have

R(Ŷ) ≤ R̂(Ŷ) +

T∑
t=1

η(t)R(F (t)) + c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
. (23)

By Theorem 1, we have

R̂(Ŷ) ≤ (1 + eδ)L̂(Ŷ (1))

2MΓT
. (24)

By Proposition3, we have

R(F (t)) ≤ D(t)‖P (t)X‖F√
MU

(25)

By applying Equation (24) and Equation (25) to Equation (23) and substituting the learning rate
η(t) = 4

αt
, we obtained Equation (4). In particular, when ΓT = O(T ε), the first term of Equation (4) is

O(T−ε), which is asymptotically monotonically decreasing (assuming δ, Ŷ (1), andM is independent
of T). When α−1

t B(t)‖P (t)‖top = O(ε̃t), the second term of Equation (4) is bounded by

4√
MU

T∑
t=1

D(t)‖P (t)X‖F
αt

≤ 4
√

2‖X‖F√
MU

T∑
t=1

B(t)‖P (t)‖op

αt

.
‖X‖F√
MU

1

1− ε̃
.

The upper bound is independent of T (assuming that ‖X‖F, M , and U are independent of T).

8

A.6 Proof of Proposition 4

First, we recall the usual (i.e., inductive) version of the Rademacher complexity. We employ the
following definition.

Definition 5 ((Inductive) Empirical Rademacher Complexity). For Fbase ⊂ {X → Ŷ} and
Z = (z1, . . . ,zN) ∈ XN , we define the (inductive) empirical Rademacher complexity R̂ind(Fbase)
conditioned on Z by

R̂ind(Fbase;Z) :=
1

N
Eε

[
sup

f∈Fbase

N∑
n=1

εnf(zn)

]
,

where ε = (ε1, . . . , εN) is the i.i.d. Rademacher variables defined by P(εi = 1) = P(εi = −1) =
1/2.

Proof of Proposition 4. Similarly to Proposition 9 it is sufficient that we first prove the proposition
by assuming P̃ (s) = IN for all s = 2, . . . , t and then replace X with P (t)X . By definition, the
transductive Rademacher variable of parameter p = 1/2 equals to the (inductive) Rademacher
variable. Therefore, we have

Q−1R(F (t), 1/2) = Eσ

[
sup
f∈F(t)

N∑
n=1

σnf(X)n

]

= Eσ

 sup
fbase∈B(t)

base,‖W (s)‖1≤C̃(s)

N∑
n=1

σnfbase(XW (2) · · ·W (t))


= NR̂ind(F (t)

base;X). (26)

Since p0 := MU
(M+U)2 < 1/2, by the monotonicity of the transductive Rademacher complexity (see

[7] Lemma 1), we have
R(F (t)) = R(F (t), p0) < R(F (t), 1/2). (27)

The proposition follows from Equation (26) and Equation (27) as follows

R(F (t)) < QNR̂ind(F (t)
base;X) =

(1 + r)2

r
R̂ind(F (t)

base;X)

A.7 Proof of Proposition 5

Proof. We denote p0 = MU
(M+U)2 . Let σ1, . . . , σN be the i.i.d. transductive Rademacher variable of

parameter p0. Since {−1, 0, 1}N ⊂ Vg, for any realization of σ = (σ1, . . . , σN), we have σ ∈ Vg.
By the assumption, there exists Zσ ∈ V such that

‖Zσ − ασ‖2 ≤ β‖σ‖2.
Set Cf := (2α)−1 and CL := α2−β2

2α . Similarly to the proof of Theorem 1, we have
‖Zσ − ασ‖2 ≤ β‖σ‖2

⇐⇒ ‖Zσ‖22 − 2α〈Zσ,σ〉+ α2‖σ‖22 ≤ β2‖σ‖22
⇐⇒ Cf‖Zσ‖22 + CL‖σ‖22 ≤ 〈Zσ,σ〉.

Therefore, we have

Q−1R(V) = Eσ
[

sup
Z∈F
〈σ, Z〉

]
≥ Eσ [〈σ, Zσ〉]
≥ Eσ

[
CL‖σ‖22 + Cf‖fσ‖22

]
≥ Eσ

[
CL‖σ‖22

]
= CL · 2Np0.

In the last equality, we used Equation (22). Therefore, we have R(F) ≥ 2CLNp0Q = α2−β2

α .

9

B More Related Work

Generalization Gap Bounds of GNNs Reference [23] derived the upper bound of the VC dimen-
sion of GNNs. However, the derivation is specific to their model and does not apply to other GNNs.
Reference [5] incorporated the idea of Neural Tangent Kernels [13] and derived a generalization gap
by reducing it to a kernel regression problem. However, they considered graph prediction problems,
where each sample point itself is represented as a graph drawn from some distribution, while our
problem is a node prediction problem. Reference [27] derived the generalization gap bounds for
node prediction tasks using the stability argument. However, they only considered a GNN with a
single hidden layer. It is not trivial to extend their result to multi-layered and multi-scale GNNs.
Similarly to our study, [8] employed the (inductive) Rademacher complexity. However, because they
did not discuss the optimization guarantee, we cannot directly derive the test error bounds from their
analysis.

C Provable Satisfiability of Weak Learning Condition using
Over-parameterized Models

In this section, we show that there exists a model that for any w.l.c. parameters α and β, we can find
a weak learner which probably satisfies the w.l.c. using the gradient descent algorithm. To ensure
the w.l.c., the set of transformation functions B must be sufficiently large so that it can approximate
all possible values of the negative gradient −∇L̂ can take. We can accomplish it by leveraging the
universal approximation property of MLPs, similarly to graph isomorphism networks (GIN) [31],
but for a different purpose. We adopt the recent studies that proved the global convergence of
over-parameterized MLPs trained by a tractable algorithm (e.g., [2, 6]).

Let R ∈ N+. For the parameter Θ = (θri) ∈ RR×N , we consider an MLP with a single hidden layer
fΘ : RC → R defined by

fΘ(x) :=
1√
R

R∑
r=1

arσ(θ>r·x),

where ar ∈ {−1, 1} and σ is the ReLU activation function: σ(x) := x ∨ 0 (we apply ReLU
in an element-wise manner for a vector input). We define the set of transformation functions
B := {(fΘ, . . . , fΘ) | Θ ∈ RR×N}. At the t-th iteration, given a gradient∇L̂(Ŷ (t−1)), we initialize
the model with ar

i.i.d.∼ Unif({−1, 1}) and θri
i.i.d.∼ N (0, I) independently and train it with the gradient

descent to optimize Θ by minimizing the mean squared error between the output of the model and
the properly normalized negative gradient. Using the result of [6], we obtain the following guarantee.

Proposition 11. Suppose Algorithm 1 finds g(s) ∈ G(s) (s ∈ [t]) such that X(t) = g(t) ◦ · · · ◦
g(1)(X) = [x1 · · · xN]

> ∈ RN×C (xi ∈ RC) satisfies the conditions that xi 6= 0 for all
i ∈ [N] and xi ∦ xj for all i 6= j ∈ [N]. Let δ, α, β > 0. Then, there exists R = O(N6δ−3) such
that for all ∇L̂(Ŷ (t−1)), with a probability of at least 1 − δ, the gradient descent algorithm finds
b(t) ∈ B(t) such that the t-th weak learner f (t) satisfies the (α, β,−∇L̂(Ŷ (t−1)))-w.l.c.

Proof. We define H∞ ∈ RN×N by H∞ij := Ew∼N (0,I)[x
>
i xj1{w>xi ≥ 0}1{w>xj ≥ 0}]. Let

λ0 be the lowest eigenvalue of H∞. Under the assumption, we know λ0 > 0 by Theorem 3.1 of [6].
We train the parameter Θ·c· using the dataset ((x1,−α[L̂(Ŷ (t−1)]1), . . . , (xN ,−α[L̂(Ŷ (t−1))]N).
We denote the parameter of the MLP at the k-th iteration of the gradient descent by Θ(k). We denote
the output of the model fΘ(k) by u(k) := (fΘ(k)(x1), . . . , fΘ(k)(xN))>. By [6, Theorem 4.1], with
probability 1− δ, we have

‖u(k) + α∇L̂(Ŷ (t−1))‖2 ≤
(

1− ηλ0

2

)k
‖u(k) + α∇L̂(Ŷ (t−1))‖2,

where η = O
(
λ0

N2

)
. Set

k := log

(
β‖∇L̂(Ŷ (t−1))‖2

‖u(0) + α∇L̂(Ŷ (t−1))‖2 ∨ 1

)(
log

(
1− ηλ0

2

))−1

.

10

Table 2: Dataset specifications.
#Node #Edge #Class (K) Chance Rate

Cora 2708 5429 6 30.2%
CiteSeer 3312 4732 7 21.1%
PubMed 19717 44338 3 39.9%

Then, with probability 1− δ, we have

‖u(k) + α∇L̂(Ŷ (t−1))‖2 ≤ β‖∇L̂(Ŷ (t−1))‖2,

which means u(k) satisfies (α, β,−∇L̂(Ŷ (t−1)))-w.l.c.

Remark 1. Reference [6] assumed that any feature vector x of the training data satisfies ‖x‖ = 1.
However, as commented in [6], we can loosen this condition as follows: there exists clow, chigh > 0
such that any feature vector x satisfies clow ≤ ‖x‖ ≤ chigh.

Although this instantiation provably satisfies the w.l.c. with high probability, its model complexity is
extremely large because it has as many as O(N6) parameters. As we saw in Section 8, such a large
model complexity is inevitable as long as the gradient can take arbitrary values.

D More Model Variants

Input Injection A matrix P ∈ RN×N defines the aggregation model GP := {X 7→ PX}
as we did in Section 7. Typical choices of P are the (normalized) adjacency matrix, a GCN-
like augmented normalized adjacency matrix, or the (normalized) graph Laplacian. If we choose
P ′ := ρP + (1− ρ)IN for some ρ ∈ [0, 1], it aggregates the representations in a lazy manner using
P . In the similar spirit of [21, 32], there is another type of lazy aggregation that allows us to inject
the information of unmixed features directly to the representations. Specifically, for ρ ∈ [0, 1], we
define the input injection model GII(ρ, P) by

GII(ρ, P) := {X 7→ ρPX + (1− ρ)X(1)}.
On one hand, GII(ρ, P) equals GP when ρ = 1. On the other hand, when ρ = 0, GII(ρ, P) ignores the
effect of the representation mixing and employs the original features. We can identify GII(ρ, P) with
{(X,X ′) 7→ (ρPX+(1−ρ)X ′, X ′)}. Therefore, if we redefine a new input space as X ′ := X ×X ,
which means that we double the input channel size, and preprocess features as xi 7→ (xi, xi) for
each i ∈ V , we can think the input injection model as an example of our model. For the augmented
normalized adjacency matrix Ã, we refer to the model that uses GII(ρ, Ã) as the set of aggregation
functions G(t) and the set of MLPs as B(t) for all t as GB-GNN-II. We conducted the same experiment
as the one we did in Section 7 using GB-GNN-II. The result is reported in Section F.1.

E Details of Experiment Settings

E.1 Dataset

We used the Cora [17, 24], CiteSeer [9, 24], and PubMed [24] datasets. Each dataset represents
scientific papers as the nodes and citation relationships as the edges of a graph. For each paper, the
genre of this paper is associated as a label. The task is to predict the genre of papers from word
occurrences and the citation relationships. Table 2 shows the statistics of datasets. We obtained
the preprocessed dataset from the code repository of [15] (https://github.com/tkipf/gcn) and
split each dataset into train, validation, and test datasets in the same way as experiments in [15].

E.2 Model

As shown in Table 4 in Section F.1, we have tested four base models: GB-GNN-Adj, GB-GNN-KTA,
GB-GNN-II, and GB-GNN-SAMME.R. For each model, we consider three types of variants: (1) the

11

https://github.com/tkipf/gcn

base model, (2) the model with fine tuning, and (3) models with different layer sizes (L = 0, 2, 3, 4),
We have shown the result of variants (1) and (2) of GB-GNN-Adj and GB-GNN-KTA in the main
paper. See Section F.1 for the results of other models.

E.2.1 Node Aggregation Functions

For the aggregation functions G, we used the matrix multiplication model with the augmented normal-
ized adjacency matrix Ã of the underlying graph GÃ (for GB-GNN-Adj) and the KTA model GKTA

(for GB-GNN-KTA). We also employed the input injection model with the augmented normalized
adjacency matrix GII(ρ, Ã) defined in Section D (for GB-GNN-II). For the KTA models, we used
GKTA := {g : X 7→ wX +

∑Ndeg

k=0 wkÃ
2k

X | w,wk ∈ R}. We treat weights w and wk’s in GKTA

as learnable parameters and the mixing parameter ρ of GII(ρ, Ã) as a hyperparameter.

E.2.2 Boosting Algorithms

We used two boosting algorithms SAMME and SAMME.R. SAMME is the default boosting algo-
rithm and is applied to GB-GNN-Adj, GB-GNN-KTA, and GB-GNN-II. We used SAMME.R in
combination with the matrix multiplication model GÃ only (for GB-GNN-SAMME.R).

E.2.3 Transformation Functions

For the transformation functions B, we used MLPs with ReLU activation functions that have L =
0, . . . , 4 hidden layers followed by the argmax operation. We showed results for the L = 1 model in
the main paper. See Section F.1 for other models.

The SAMME algorithm assumes that each weak learner outputs one of label categories, while
SAMME.R assumes that the probability distribution over the set of categorical labels. Therefore, we
added the argmax operation to the MLPs when we used SAMME and the softmax operation to the
MLPs when SAMME.R,

We only imposed soft restrictions on MLPs in the models using regularization methods such as
Dropout and weight decay. This is different from the MLP model defined in Section 5 in the main
paper, which hard-thresholded the norms of weights and bias.

We treat weights in the MLP as trainable parameters and treat architectural parameters (e.g., unit size)
other than the layer size L as hyperparameters (see Table 3 for the complete hyperparameters).

E.3 Training

We used the SAMME or SAMME.R algorithm to train the model. At the t-th iteration, we giveX(t−1)

and Y as a set of feature vectors and labels, respectively to the model. We picked B training sample
points randomly and trained the transformation functions B(t) using them. We used a gradient-based
optimization algorithm to minimize the cross entropy between the prediction of the weak learner and
the ground truth labels. We initialized the model (i.e., MLP) using the default initialization method
implemented in PyTorch.

For the aggregation model G(t), if it does not have a learnable parameter, that is, if G(t) consists of a
single function, we just applied the function to convert X(t−1) into X(t). For the KTA model, which
has learnable parameters w and wk’s, we trained the model g using a gradient-based optimization to
maximize the correlation between gram matrices created from transformed features g(X(t−1)) and
labels Y . The correlation is defined as follows:

〈K[g(X(t−1))],K[Y]〉
‖K[g(X(t−1))]‖F‖K[Y]‖F

,

where K is the operator that takes the outer product of training sample points defined in Section 6.
We initialized weights w and wk’s with 1.

After the training using boosting algorithm, we optionally trained the whole model as fine-tuning.
When we used SAMME, we replaced the argmax operation in the transformation functions B with
the softmax function along class labels to make the model differentiable. When we used SAMME.R,
we did not change the same architecture in the training and fine tuning phases. We trained the whole

12

Table 3: Hyperparameters of experiments in Section 7. X ∼ LogUnif[a, b] means the random
variable log10X obeys the uniform distribution over [a, b]. (∗) For KTA + Fine Tuning setting,
we reduce the number of weak learners to 40 due to GPU memory constraints. (∗∗) Learning rate
corresponds to α when Optimization algorithm is Adam [14].

Category Name Value

Boosting #Weak learners {1, 2, . . . , 100 (40(∗))}
Minibatch size B {1, 2, . . . , |Vtrain|}
Clipping value LogUnif[−10,−5]

Model Epoch {10, 20, . . . , 100}
Optimization algorithm {SGD,Adam,RMSProp}
Learning rate(∗∗) LogUnif[−5,−1]
Momentum LogUnif[−10,−1]
Weight decay LogUnif[−10,−1]
Unit size {10, 11, . . . , 200}
Dropout {ON(ratio=0.5),OFF}

Input Injection Mixing ratio ρ Unif[0, 1]
Kernel Target Alignment Epoch {5, 6, . . . , 30}

Optimization algorithm {SGD,Adam,RMSProp}
Learning rate(∗∗) LogUnif[−5,−1]
Degree Ndeg 3

Fine Tuning Epoch {1, 2, . . . , 100}
Optimization algorithm {SGD,Adam,RMSProp}
Learning rate(∗∗) LogUnif[−5,−1]
Momentum LogUnif[−10,−1]
Weight decay LogUnif[−10,−1]

model in an end-to-end manner using a gradient-based optimization algorithm to minimize the cross
entropy between the prediction of the model and the ground truth label.

E.4 Evaluation

We split the dataset into training, validation, and test datasets. For each hyperparameter, we trained
a model using the training dataset and evaluated it using the validation dataset. We defined the
performance of a set of hyperparameters as the accuracy on the validation dataset at the iteration
that maximizes the validation accuracy. If a model has a fine-tuning phase, we used the accuracy
after the fine-tuning as the performance. We chose the set of hyperparameters that maximizes the
performance using a hyperparameter optimization algorithm. We employed Tree-structured Parzen
Estimator [3] and for hyperparameter optimization and the median stopping rule implemented in
Optuna for pruning unpromising sets of hyperparameters. Table 3 shows the set of hyperparameters.
We define the final performance of the model as the accuracy on the test dataset attained by the
optimized set of hyperparameters.

For each pair of the dataset and the model, we ran the above evaluation ten times and computed the
mean and standard deviation of the performance.

E.5 Implementation and Computational Resources

Experimental code is written in Python3. We used PyTorch [22] and Ignite for the implementation and
training of models, Optuna [1] for the hyperparameter optimization, NetworkX [11] for preprocessing
graph objects, and SciPy [28] for miscellaneous machine learning operations. We ran each experiment
on a docker image (OS: Ubuntu18.04) built on a cluster. The image has two CPUs and single GPGPUs
(NVIDIA Tesla V100).

13

Table 4: Accuracy of node classification tasks on citation networks. L denotes the number of hidden
layers. Numbers are (mean) ± (standard deviation) of ten runs. (∗) All runs failed due to GPU
memory errors.

L Cora CiteSeer PubMed

GB-GNN-Adj 0 79.4± 1.9 70.3± 0.5 78.8± 0.7
1 79.9± 0.8 70.5± 0.8 79.4± 0.2
2 79.9± 1.3 68.5± 1.3 78.9± 0.6
3 77.4± 0.8 64.4± 1.5 78.0± 0.5
4 75.6± 2.6 60.7± 1.7 77.9± 0.6

GB-GNN-Adj. + Fine Tuning 1 80.4± 0.8 70.8± 0.8 79.0± 0.5

GB-GNN-KTA 0 80.0± 0.8 70.0± 1.8 79.4± 0.1
1 80.9± 0.9 73.1± 1.1 79.1± 0.4
2 79.8± 1.3 68.8± 1.1 79.1± 0.4
3 78.5± 0.9 65.2± 1.5 78.4± 0.8
4 76.0± 2.5 65.6± 1.7 78.0± 0.7

GB-GNN-KTA + Fine Tuning 1 82.3± 1.1 70.8± 1.0 N.A.(∗)

GB-GNN-II 0 79.2± 1.3 71.4± 0.3 79.3± 0.5
1 79.8± 1.3 71.3± 0.5 79.4± 0.3
2 79.9± 0.8 69.8± 1.1 79.3± 0.3
3 78.7± 1.7 66.7± 1.9 79.2± 0.6
4 75.4± 2.0 65.1± 2.5 78.6± 0.7

GB-GNN-II + Fine Tuning 1 80.8± 1.3 70.8± 0.9 79.2± 0.8

GB-GNN-SAMME.R 0 81.0± 0.8 70.4± 0.7 78.9± 0.3
1 82.2± 1.2 71.6± 0.5 78.8± 0.3
2 80.5± 0.8 67.4± 1.1 78.9± 0.3
3 79.6± 1.1 64.4± 1.4 78.8± 0.5
4 78.9± 1.8 64.6± 1.3 78.1± 0.6

GB-GNN-SAMME.R + Fine Tuning 1 82.1± 1.0 71.3± 0.8 79.4± 0.4

F Additional Experiment Results

F.1 More Results for Model Variants

Table 4 shows the result of the prediction accuracies of models that use MLPs with various layer
size L as transformation functions B(t). It also shows the results for the input injection model
(GB-GNN-II) we have introduced in Section D and the SAMME.R model (GB-GNN-SAMME.R)
in Section E.2. Figures 3–5 show the transition of the training loss for L = 0, . . . , 4 (Figure 3:
Cora, Figure 4: CiteSeer, Figure 5: PubMed). Figures 6–8 show the transition of the training loss
for L = 0, . . . , 4 (Figure 6: Cora, Figure 7: CiteSeer, Figure 8: PubMed). Figures 9–11 show the
transition of the cosine values between the negative gradient −∇L̂(Ŷ (t−1)) and the weak learner
f (t) at the t-th iteration for models that has L = 0 to 4 layers (Figure 9: Cora, Figure 10: CiteSeer,
Figure 11: PubMed).

F.2 Performance Comparison with Existing GNN Models

Table 5 shows the accuracies of node prediction tasks on citation networks for various GNN models.
We borrowed the results of the official repository of Deep Graph Library (GDL) [29] (https:
//github.com/dmlc/dgl), a package for deep learning on graphs.

14

https://github.com/dmlc/dgl
https://github.com/dmlc/dgl

0 20 40 60 80
Iteration t

10.0

7.5

5.0

2.5
Tr

ai
n

Lo
ss

0 hidden layers, Cora

0 20 40 60
Iteration t

40

20

Tr
ai

n
Lo

ss

1 hidden layers, Cora

0 10 20 30 40
Iteration t

15

10

5

Tr
ai

n
Lo

ss

2 hidden layers, Cora

0 10 20 30
Iteration t

10.0

7.5

5.0

2.5

Tr
ai

n
Lo

ss

3 hidden layers, Cora

0 20 40 60
Iteration t

10

5

Tr
ai

n
Lo

ss

4 hidden layers, Cora

Figure 3: Train loss transition for the Cora dataset.

0 20 40
Iteration t

60

40

20

Tr
ai

n
Lo

ss

0 hidden layers, CiteSeer

0 20 40 60
Iteration t

60

40

20

Tr
ai

n
Lo

ss

1 hidden layers, CiteSeer

0 5 10 15
Iteration t

80

60

40

Tr
ai

n
Lo

ss

2 hidden layers, CiteSeer

0 20 40 60 80
Iteration t

80

60

40

20

Tr
ai

n
Lo

ss

3 hidden layers, CiteSeer

0 10 20 30
Iteration t

100

50

Tr
ai

n
Lo

ss

4 hidden layers, CiteSeer

Figure 4: Train loss transition for the CiteSeer dataset.

0 5 10
Iteration t

60

40

20

Tr
ai

n
Lo

ss

0 hidden layers, PubMed

0 20 40 60
Iteration t

100

50

Tr
ai

n
Lo

ss

1 hidden layers, PubMed

0 20 40
Iteration t

100

75

50

25

Tr
ai

n
Lo

ss

2 hidden layers, PubMed

0 20 40 60
Iteration t

300

200

100

0

Tr
ai

n
Lo

ss

3 hidden layers, PubMed

0 10 20
Iteration t

300

200

100

Tr
ai

n
Lo

ss

4 hidden layers, PubMed

Figure 5: Train loss transition for the PubMed dataset.

15

0 20 40 60 80
Iteration t

7.5

5.0

2.5
Te

st
 L

os
s

0 hidden layers, Cora

0 20 40 60
Iteration t

30

20

10

Te
st

 L
os

s

1 hidden layers, Cora

0 10 20 30 40
Iteration t

15

10

5

Te
st

 L
os

s

2 hidden layers, Cora

0 10 20 30
Iteration t

6

4

2

Te
st

 L
os

s

3 hidden layers, Cora

0 20 40 60
Iteration t

8

6

4

2

Te
st

 L
os

s

4 hidden layers, Cora

Figure 6: Test loss transition for the Cora dataset.

0 20 40
Iteration t

40

20

Te
st

 L
os

s

0 hidden layers, CiteSeer

0 20 40 60
Iteration t

40

20

Te
st

 L
os

s

1 hidden layers, CiteSeer

0 5 10 15
Iteration t

60

40

20

Te
st

 L
os

s

2 hidden layers, CiteSeer

0 20 40 60 80
Iteration t

40

20

Te
st

 L
os

s

3 hidden layers, CiteSeer

0 10 20 30
Iteration t

75

50

25

Te
st

 L
os

s

4 hidden layers, CiteSeer

Figure 7: Test loss transition for the CiteSeer dataset.

0 5 10
Iteration t

50

40

30

20

Te
st

 L
os

s

0 hidden layers, PubMed

0 20 40 60
Iteration t

75

50

25

Te
st

 L
os

s

1 hidden layers, PubMed

0 20 40
Iteration t

80

60

40

20

Te
st

 L
os

s

2 hidden layers, PubMed

0 20 40 60
Iteration t

200

100

0

Te
st

 L
os

s

3 hidden layers, PubMed

0 10 20
Iteration t

200

100

Te
st

 L
os

s

4 hidden layers, PubMed

Figure 8: Test loss transition for the PubMed dataset.

16

0 20 40 60 80
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

0 hidden layers, Cora

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

1 hidden layers, Cora

0 10 20 30 40
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

2 hidden layers, Cora

0 10 20 30
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

3 hidden layers, Cora

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

4 hidden layers, Cora

Figure 9: The similarity cos θ(t) between weak learners f (t) and the gradient ∇L̂ of the training loss
for the Cora dataset.

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

0 hidden layers, CiteSeer

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

1 hidden layers, CiteSeer

0 5 10 15
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

2 hidden layers, CiteSeer

0 20 40 60 80
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

3 hidden layers, CiteSeer

0 10 20 30
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

4 hidden layers, CiteSeer

Figure 10: The similarity cos θ(t) between weak learners f (t) and the gradient ∇L̂ of the training
loss for the CiteSeer dataset.

0 5 10
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

0 hidden layers, PubMed

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

1 hidden layers, PubMed

0 20 40
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

2 hidden layers, PubMed

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

3 hidden layers, PubMed

0 10 20
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

4 hidden layers, PubMed

Figure 11: The similarity cos θ(t) between weak learners f (t) and the gradient ∇L̂ of the training
loss for the PubMed dataset.

17

Table 5: Comparison of accuracy of GNN models. Created from the official repository of DGL as
of May 23rd, 2020. Adj.: Matrix multiplication model GÃ by the normalized adjacency matrix Ã.
KTA: Kernel target alignment model GKTA. II: Input injection model GII. FT: Fine Tuning. Paper:
accuracies are cited from the paper in the Ref. column. DGL: accuracies are cited from the official
implementation of DGL. (∗) Not available due to GPU memory errors. (∗∗) Not available from the
DGL repository.

Model Ref. Source Framework Cora Citeseer Pubmed

GB-GNN Adj – – PyTorch 79.9 70.5 79.4
Adj + FT 80.4 70.7 79.0
KTA 80.9 73.1 79.4
KTA + FT 82.3 70.8 N.A.(∗)
II 79.8 71.4 79.4
II + FT 80.8 70.8 79.2
SAMME.R 82.2 71.6 78.8
SAMME.R + FT 82.1 71.3 79.4

SGC [30] Paper – 83.0 72.5 79.0
DGL PyTorch 84.2 70.9 78.5

GCN [15] Paper – 81.5 70.3 79.0
DGL PyTorch 81.0 70.2 78.0

TensorFlow 81.0 70.7 79.2
TAGCN [4] Paper – 83.3 71.4 79.4

DGL PyTorch 81.2 71.5 79.4
MXNet 82.0 70.2 79.8

DGI [26] Paper – 82.3 71.8 76.8
DGL PyTorch 81.6 69.4 76.1

TensorFlow 81.6 70.2 77.2
GraphSAGE [12] DGL PyTorch 83.3 71.1 78.3

MXNet 81.7 69.9 79.0
APPNP [16] Paper – 85.0 75.7 79.7

DGL PyTorch 83.7 71.5 79.3
MXNet 83.7 71.3 79.8

GAT [25] Paper – 83.0 72.5 79.0
DGL PyTorch 84.0 70.9 78.6

TensorFlow 84.2 70.9 78.5
MoNet [19] DGL PyTorch 81.6 N.A.(∗∗) 76.3

MXNet 81.4 N.A.(∗∗) 74.8

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2623–2631.
ACM, 2019.

[2] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. In Pro-
ceedings of the 36th International Conference on Machine Learning (ICML), volume 97 of
Proceedings of Machine Learning Research, pages 322–332. PMLR, 2019.

[3] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems 24, pages
2546–2554. Curran Associates, Inc., 2011.

[4] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology
adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370, 2017.

[5] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In

18

Advances in Neural Information Processing Systems 32, pages 5723–5733. Curran Associates,
Inc., 2019.

[6] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations (ICLR), 2019.

[7] Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications.
Journal of Artificial Intelligence Research, 35:193–234, 2009.

[8] Vikas K. Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational
limits of graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

[9] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. CiteSeer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pages 89–98. ACM,
1998.

[10] Alexander Grubb and Drew Bagnell. Generalized boosting algorithms for convex optimization.
In Proceedings of the 28th International Conference on Machine Learning (ICML), pages
1209–1216, 2011.

[11] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using NetworkX. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30, pages 1024–1034. Curran
Associates, Inc., 2017.

[13] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 31,
pages 8571–8580. Curran Associates, Inc., 2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[16] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural
networks with personalized pagerank for classification on graphs. In International Conference
on Learning Representations (ICLR), 2019.

[17] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

[18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT Press, 2018.

[19] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5115–5124, 2017.

[20] Atsushi Nitanda and Taiji Suzuki. Functional gradient boosting based on residual network
perception. In Proceedings of the 35th International Conference on Machine Learning (ICML),
volume 80 of Proceedings of Machine Learning Research, pages 3819–3828. PMLR, 2018.

[21] Atsushi Nitanda and Taiji Suzuki. Functional gradient boosting for learning residual-like
networks with statistical guarantees. In Proceedings of the Twenty Third International Confer-
ence on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pages 2981–2991. PMLR, 2020.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

19

[23] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The Vapnik–Chervonenkis
dimension of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

[24] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[25] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

[26] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations (ICLR),
2019.

[27] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1539–1548. ACM, 2019.

[28] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nature Methods, 17:261–272, 2020.

[29] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang
Li, Alexander J Smola, and Zheng Zhang. Deep Graph Library: Towards efficient and scalable
deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[30] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153,
2019.

[31] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

[32] Jiawei Zhang. GResNet: Graph residuals for reviving deep graph neural nets from suspended
animation. arXiv preprint arXiv:1909.05729, 2019.

20

	Appendices
	Proof of Theorems and Propositions
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 2
	Proof of Proposition 4
	Proof of Proposition 5

	More Related Work
	Provable Satisfiability of Weak Learning Condition using Over-parameterized Models
	More Model Variants
	Details of Experiment Settings
	Dataset
	Model
	Node Aggregation Functions
	Boosting Algorithms
	Transformation Functions

	Training
	Evaluation
	Implementation and Computational Resources

	Additional Experiment Results
	More Results for Model Variants
	Performance Comparison with Existing GNN Models

