Content Provider Dynamics and Coordination in
Recommendation Ecosystems

Omer Ben-Porat Itay Rosenberg
Technion Technion
Haifa 32000 Israel Haifa 32000 Israel
omerbp@campus.technion.ac.il itayrose@campus.technion.ac.il

Moshe Tennenholtz
Technion
Haifa 32000 Israel
moshet@ie.technion.ac.il

Abstract

Recommendation Systems like YouTube are vibrant ecosystems with two types
of users: Content consumers (those who watch videos) and content providers
(those who create videos). While the computational task of recommending relevant
content is largely solved, designing a system that guarantees high social welfare for
all stakeholders is still in its infancy. In this work, we investigate the dynamics of
content creation using a game-theoretic lens. Employing a stylized model that was
recently suggested by other works, we show that the dynamics will always converge
to a pure Nash Equilibrium (PNE), but the convergence rate can be exponential.
We complement the analysis by proposing an efficient PNE computation algorithm
via a combinatorial optimization problem that is of independent interest.

1 Introduction

Recommendation systems (RSs hereinafter) play a major role in our life nowadays. Many modern
RSs, like YouTube, Medium, or Spotify, recommend content created by others and go far beyond
recommendations. They are vibrant ecosystems with multiple stakeholders and are responsible for
the well-being of all of them. For example, in the online publishing platform Medium, the platform
should be profitable; suggest relevant content to the content consumers (readers); and support the
content providers (authors). In light of this ecosystem approach, research on RSs has shifted from
determining consumers’ taste (e.g., the Netflix Prize challenge [10, 28]) to other aspects like fairness,
ethics, and long-term welfare [6, 32, 34, 38, 40, 44-46, 48].

Understanding content providers and their utility' is still in its infancy. Content providers produce a
constant supply of content (e.g., articles in Medium, videos on YouTube), and are hence indispensable.
Successful content providers rely on the RS for some part of their income: Advertising, affiliated
marketing, sponsorship, and merchandise; thus, unsatisfied content providers might decide to provide
a different type of content or even abandon the RS. To illustrate, a content provider who is unsatisfied
with her exposure, which is heavily correlated with her income from the RS, can switch to another
type of content or seek another niche. Such downstream effects are detrimental to content consumer
satisfaction because they change the available content the RS can recommend. The synergy between
content providers and consumers is thus fragile, and solidifying one side solidifies the other.

"We use the term urility to address the well-being of the content providers, and social welfare for the
well-being of the content consumers.
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In this paper, we investigate the dynamics of RSs using a stylized model in which content providers
are strategic. Content providers obtain utility from displays of their content and are willing to change
the content they offer to increase their utility. These fluctuations change not only the utility of
the providers but also the social welfare of the consumers, defined as the quality of their proposed
content. We show that the provider dynamics always converges to a stable point (namely, a pure Nash
equilibrium), but the convergence time may be long. This observation suggests a more centralized
approach, in which the RS coordinates the providers, and leads to fast convergence.

While our model is stylized, we believe it offers insights into more general, real-world RSs. The
game-theoretic modeling allows counterfactual reasoning about the content that could-have-been-
generated, which is impossible to achieve using existing data-sets and small online experiments. Our
analysis advocates increased awareness to content providers and their incentives, a behavior that
rarely exists these days in RSs.”

Our contribution We explore the ecosystem using the following game-theoretic model, and use the
blogging terminology to simplify the discussion. We consider a set of players (i.e., content providers),
each selects a topic to write from a predefined set of topics (e.g., economics, sports, medieval movies,
etc.). Each player has a quality w.r.t. each topic, quantifying relevance and attractiveness of that
author’s content if she writes on that topic, and a conversion rate. Given a selection of topics (namely,
a strategy profile), the RS serves users who consume content. All queries concerned with a topic
are modeled as the demand for that topic. The utility every player obtains is the sum of displays
her content receives (affected by the demand for topics and the operating RS) multiplied by the
conversion rate. The game-theoretic model we adopt in service is suggested by Ben Basat et al. [5]
and is well-justified by later research [9, 46].

Technically, we deal with the question of reaching a stable point—a point in which none of the players
can deviate from her selected topic and increase her utility. We are interested in the convergence
time and the welfare of the system in these stable points. We first explore the decentralized approach:
Better-response learning dynamics (see, e.g., [18, 23]), in which players asynchronously deviate to
improve their utility (an arbitrary player to an arbitrary strategy, as long as she improves upon her
current utility). We show that every better-response dynamic converges, thereby extending prior
work [9]. Through a careful recursive construction, we show a negative result: The convergence time
can be exponential in the number of topics. Long convergence time suggests a different approach. We
consider the scenario in which the RS could act centrally, and support the process of matching players
with topics. We devise an algorithm that computes an equilibrium fast (roughly squared in the input
size). To solve this computational challenge, which is a mixture of matching and load-balancing, we
propose a novel combinatorial optimization problem that is of independent interest.

Conceptually, we offer a qualitative grounding for the advantages of coordination and intervention®
in the content provider dynamics. Our analysis relies on the assumption of complete knowledge of all
model parameters, in particular the qualities. While unrealistic in practice, we expect that incomplete
information will only exacerbate the problems we address. The main takeaway from this paper is that
RSs are not self-regulated markets, and as much as suggesting authors topics to write on can lead to a
significant increase in the system’s stability. We discuss some practical ways of reaching this goal in
Section 5.

Related work Strikingly, content provider welfare and their fair treatment were only suggested
very recently in the Recommendation Systems and Information Retrieval communities [13, 15, 20,
38, 44, 50]. All of these works do not model the incentives of content providers explicitly, and
consequently cannot offer a what-if analysis like ours.

Our model is similar to those employed in several recent papers [5, 6, 8, 9, 33]. Ben-Porat et al.
[9] study a model that is a special case of ours, and show that every learning dynamic converges.
Our Theorem 1 recovers and extends their convergence results. Moreover, unlike this work, they
do not address convergence time, social welfare, and centralized equilibrium computation. Other
works [6, 8, 33] aim to design recommendation mechanisms that mitigate strategic behavior and

There are some exceptions, e.g., YouTube instructing providers how to find their niche [1]. However, these
are sporadic, primitive, and certainly do not enjoy recent technological advancements like collaborative filtering.

3We do not say that the RSs should dictate authors what to write; instead, it should suggest to each author
profitable topics that he/she can write on competently to increase her utility.



lead to long-term welfare. On the negative side, their mechanisms might knowingly recommend
inferior content to some consumers. We see their work as parallel to ours, as in this work we focus
on the prevailing recommendation approach—recommending the best-fitting content. We suggest
that a centralized approach, in which the RS orchestrates the player-topic matching, can significantly
improve the time until the system reaches stability (in the form of equilibrium). Furthermore, we
envision that our approach can also lead to high social welfare, as we discuss in Section 5.

More broadly, an ever-growing body of research deals with fairness considerations in Machine
Learning [16, 19, 39, 41, 49]. In the context of RSs, a related line of research suggests fairer ranking
methods to improve the overall performance [12, 29, 47]. For example, Yao and Huang [47] propose
metrics mitigating discrimination in collaborative-filtering methods that arise from learning from
historical data. Despite not always being explicit, the ultimate goal of fairness imposition is to achieve
long-term welfare [31]. Our paper and analysis share a similar flavor: To achieve high stability via
faster convergence, RSs should coordinate the process of content selection.

2 Model

We consider the following recommendation ecosystem, where for concreteness we continue with the
blog authors* example. There is a set of authors P, each owning a blog. We further assume that each
blog is concerned with a single topic, from a predefined topic set 7. We assume P and 7 are finite,
and denote |P| = P and | 7| = T'. The strategy space of each player is thus 7T; she selects the topic
she writes on. A pure strategy profile is a tuple a = (a1, ... ap) of topic selections, where a; is the
topic selected by author j.

For every author j and topic k, there is a quality that quantifies the relevance and attractiveness of
J’s blog if she picks the topic k. We denote by Q the quality matrix, for @ € [0,1]7*T. The RS
serves users who consume content. We do not distinguish individual consumers, but rather model the
need for content as a demand for each topic. A demand distribution D over the topics T is publicly
known, where we use D(k) to denote the demand mass for topic k € 7. W.Lo.g., we assume that
D(1) >D(2) >...>D(m).

The recommendation function R matches demand with available blogs. Given the demand for topic
k, a strategy profile a, and the quality Q of the blogs for the selected topics in a, the recommendation
function R recommends content, possibly in a randomized manner. It is well-known that content
consumers pay most of their attention to highly ranked content [14, 24, 27, 30]; therefore, we assume
for simplicity that R recommends one content solely. For ease of notation, we denote R ;(Q, k, a) as
the probability that author j is ranked first under the distribution R(Q, k, a) (or rather, author j’s
content is ranked first). While blog readers admire high-quality recommended blogs, blog authors
care for payoffs. As described in Section 1, authors draw monetary rewards from attracting readers
in various ways. We model this payoff abstractly using a conversion matrix C,C € [0,1]7*T. We
assume that every blog reader grants C; ;, monetary units to author 7 when she writes on topic k. For
example, if author j only cares for exposure, namely the number of impressions her blog receives,
then C; ;, = 1 for every k € 7. Alternatively, if author j cares for the engagement of readers in her
blog, then the conversion C; . should be somewhat correlated with the quality Q; . We will return to
these two special cases later on, in Subsection 3.1. The utility of author j under a strategy profile a is
given by

Ui(a) = > g, - D(k) - R;(Q, k. a) - Cjpe (1)

keT

Overall, we represent a game as a tuple (P, 7, D, Q,C, R,U), where P is the authors, T is the topics,

D is the demand for topics, Q and C are the quality and conversion matrices, R is the recommendation
function, and I/ is the utility function.

Recommending the Highest Quality Content In this paper, we focus on the RS that recommends
blogs of the highest quality, breaking ties randomly. Such a behavior is intuitive and well-justified in
the literature [4, 11, 26, 42]. More formally, let B (a) denote the highest quality of a blog written on

topic k under the profile a, i.e., Bi(a) &ef maxjep{la;=x - Q;}. Furthermore, let Hy(a) denote
the set of authors whose documents have the highest quality among those who write on topic & under

*We use authors and players interchangeably.



a, Hi(a) &« {j € P| 14;=k - Qjx = Br(a)}. The recommendation function R'® is therefore
defined as

1 .
= J € Hi(a)
ROP(Q k a) & | Hi(a)] ,
i (Qka) 0 otherwise

Consequently, we can reformulate the utility function from Equation (1) in the following succinct
form,’
def D(k)
U(a) = Y Lajmk oo Ci )
27 Hy(a)]
From here on, since R'P and U are fully determined by the rest of the objects, we omit them from
the game representation; hence, we represent every game by the more concise tuple (P, 7, D, Q,C).

Quality-Conversion Assumption Throughout the paper, we make the following Assumption |
about the relation between quality and conversion.

Assumption 1. For every topic k € T and every two authors j1, jo € P,

Qiik > ok = Cji i > Cjp -

Intuitively, Assumption 1 implies that quality and conversion are correlated given the topic. For every
topic k, if authors j; and j, write on topic k and j;’s content has a weakly better quality, then j;’s
content has also a weakly better conversion. This assumption plays a crucial role in our analysis; we
discuss relaxing it in Section 5.

Solution Concepts The social welfare of the readers is the average weighted quality. Formally,
given a strategy profile a,

SW(a) & Y D(k) Y Ri(Q.k a) Q. 3)

k€T jeP

As the recommendation function R'P always recommends the highest quality content, we can have the
following more succinct representation of social welfare, SW(a) = ), .+ D(k)By(a). However,
social welfare maximization does not concern author utility. Authors may be willing to deviate from
the socially optimal profile if such a deviation is beneficial in terms of utility. Consequently, we seek
stable solutions, as captured by the property of pure Nash equilibrium (hereinafter PNE). We say that
a strategy profile a is a PNE if for every author j and topic k, U;(a) > U;(a_;, k), where a_; is the
tuple obtained by deleting the j’s entry of a. It is worth noting that while mixed Nash equilibrium is
guaranteed to exist in finite games, a PNE generally does not exist in games. However, as we show
later on, it always exists in our class of games.

Example To clarify our notation and setting, we provide the following example. Consider a
game with two players (P = 2), two topics (I' = 2) and the demand distribution D such that
D(1) = 3/5,D(2) = 2/5. Let the quality and conversion matrices be

1 /s s 1
o= (o ) o=l 1)
Consider the strategy profile (a1,a2) = (1,1). Author 1 is more competent that author 2 on
topic 1, since Q11 = 1 > Q1 = %; thus, the utility of author 1 under the profile (1,1) is
U(1,1) = D(1) - RYP(Q,1,(1,1)) - C1;; = 2-1-% = L. On the other hand, author 2 gets
Uz(1,1) = 2 -0 £ = 0. Author 2 has a beneficial deviation: Under the profile (1, 2), her utility is
Us(1,2) = 2-1-1 = 2, while the utility of author 1 remains the same, 2, (1,2) = 1. For the strategy
profile (2,2), both authors have the same quality; thus, R1"(Q, 2, (2,2)) = R3"(Q,2,(2,2)) = L.
As for the utilities, U (2,2) = Us(2,2) = 2 - 1 - 1 = L. Overall, we see that both (1,2) and (2, 2)

5
are PNEs, since the authors do not have beneficial deviations. However, the social welfare of these

PNEs is different: SW(1,2) =2 -1+ 2.1 ~0.73, yet SW(2,2) = 2 - 0+ 21 ~ 0.13.

Ut

>In case no author writes on topic % under @, R do not make any recommendation. As reflected in the utility
function U through the indicator 1, =, readers associated with a non-selected topic k do not contribute to any
author’s utility.



3 Decentralized Approach

In this section, we consider the prevailing, decentralized approach. Starting from an arbitrary profile,
authors interact asynchronously, each improving her utility in every time step. Such dynamics
is widely-known in the Game Theory literature as better-response dynamics (hereinafter, BRDs).
Studying BRDs is a robust approach for assuring the environment reaches a stable point, while
making minimal assumption on the information of the players. Two central questions about BRDs in
games are a) whether any BRD converges; and b) what is the convergence rate. We show that the
answer to the first question is in the affirmative. For the second question, we show through an intricate
combinatorial construction a result of negative flavor: The convergence rate can be exponential in the
number of topics 7.

3.1 Better-Response Dynamic Convergence

Before we go on, we define BRDs formally. Given a strategy profile a, we say that a;- € T is a better
response of author j w.r.t. a if Uj(a_;, a}) > U;(a). A BRD is a sequence of profiles (a',a?,...),
where at every step i + 1 exactly one author better-responds to a', i.e., there exists an author 5 (i)
such that @' ™! = (ai_j(i), a%%) and U;(;)(a'™') > U;(;)(a'). A BRD can start from any arbitrary
profile, and include improvements of any arbitrary author at any arbitrary step (assuming she has
a better response in that time step). If a BRD a',. .., a' converges, namely no player can better
respond to a', then by definition a' is a PNE.

Our goal is to show that every BRD of any game in our class of games converges. If there exists
an infinite BRD, then it must contain cycles as the number of different strategy profiles is finite.
Equivalently, nonexistence of improvement cycles suggests that any BRD will converge to a PNE
[35]. General techniques for showing BRD convergence in games are rare, and are typically based on
coming up with a potential function [7, 23, 37] or a natural lexicographic order [2, 21]. However, as
already established by prior work [9, Proposition 1], our class of game does not fit into the category
of an exact potential function; and a lexicographic order does not seem to arise naturally. Ben-Porat
et al. [9] prove BRD convergence for two sub-classes of games: Games where C is identically 1, and
games with C = Q. Interestingly, they prove BRD convergence for each sub-class separately using
different arguments. We extend their technique to deal with any conversion matrix C that satisfies
Assumption 1.

Theorem 1. If a game G satisfies Assumption 1, then every BRD in G converges to a PNE.

3.2 Rate of Convergence

We now move on to the second question proposed in the beginning of the section, which deals with
convergence rate. The convergence rate is the worst-case length of any BRD. Recall that a BRD can
start from a PNE and thus converge after one step, and hence the worst-case approach we offer here
is justified.

Our next theorem lower bounds the worst case convergence rate by an exponential factor in the
number of topics 7. This result is illuminating as it shows that in the worst case, although convergence
is guaranteed, it may not be reachable in feasible time.

Theorem 2. Consider P > 1 and T > 2. There exist games satisfying Assumption 1 with |P| = P
and |T| = T, in which there are BRDs with at least (% + 1)P steps.

Proof sketch of Theorem 2. The proof relies on a recursive construction. We construct a game and
an improvement path with at least the length specified in the theorem. To balance rigor and intuition,
we present here a special case of our general construction and defer the formal proof to the appendix.

Consider the game with P = 3,7 = 5, D(k) = £ forevery k € T and

c|2c 3c 4c be

Q=C= c| 9 8c Tc 6¢c

c|10c 1lc 12¢ 13c




al=@nn C=@nhH C=@nD =D ad =651 a’=(@1,51
a" =@ o=@ o’ =@ o’ =4,4,1) o' =(1,4,1) a'? =204
a®=@&D a'*=@3,3,1) a®=(1,3,1) a'* =@ a'"=2,2,1) a®*=(1,2,1)
a =(1,2,2) a® =(1,1,2) o> =@11h2 a*’’ =@ 152 a* =EGN2) a* =5,5,2)
a® =(1,5,2) a®** =352 a*" = @52 a®® =44,2) a** =(1,4,2) a*° =342
a®'=@3,3,2) a®=(1,3,2) a®® =(1,3,3) a** =(1,1,3) a* = @NL3) o’ =E1,3)
a® =(5,5,3) a® =(1,5,3) a*® =@513) a'’ =4, 4,3) a** =(1,4,3) a*?=(1,4,4)
a®=(1,1,4) a** =G4 a* =(5,5,4) a*=(1,54) a*"=(1,5,5 a*®*=(1,1,5)

Figure 1: A long improvement path for the instance in the proof sketch of Theorem 2.

forc = %. The first column of the matrix, which is associated with the quality of topic 1, is identical
for all authors. The snake-shape path in the matrix is always greater than the value c in the first
column, and is monotonically increasing (top-down). The immediate implications are a) odd players
improve their quality when deviating to a topic with a greater index, while even players improve their
quality when deviating to a topic with a smaller index (which is not topic 1); and b) every player is
more competent than all the players that precede her on every topic but topic 1. The initial profile
isa’ = (1,1,...,1). We construct the BRD that appears in Figure 1.° It comprises three types of
steps: Purple, green and yellow. In purple steps, author 1 deviates to a topic with a higher index. In
yellow steps, author 2 deviates to the topic selected by author 1 (e.g., in @®) or author 3 deviates to
the topic selected by author 2 (e.g., in a'?). Green steps always follow yellow steps. In green steps,
the author whose topic was selected in the previous step by an author with a higher index deviates
back to topic 1 (e.g., author 1 in a® after author 2 selects topic 5 in a®, or author 2 in a2° after author
3 selects topic 2 in a'?).

In steps a' — a*, only author 1 deviates (purple steps). This is also the recursive path in a game with
author 1 solely (disregarding the entries of the other players). Then, in a®, author 2 deviates to topic
5 (yellow). Since author 2 is more competent than author 1 in every topic (excluding topic 1), author
1’s utility equals zero. Then, author 1 deviates to back topic 1 in a® (green). This goes on until step
a'8—author 1 improves, author 2 ties, and author 1 returns to topic 1. Steps a' — a'® comprise the
recursive path for two players. Until step a'®, author 3 did not move. Then, in step a'®, author 3
deviates to topic 2. Author 3 is more competent than author 2, so in @?° author 2 returns to topic 1.
In steps a2 — a>? authors 1 and 2 follow the same logic as before, but they overlook topic 2 (since
author 3, who is more competent than both of them, selects it). In steps a®® — a3* author 3 deviates
to topic 3, and then author 2 returns to topic 1. In steps a®® — a*! authors 1 and 2 follow the same
logic as before, but they overlook both topics 2 and 3. The path continues similarly until we reach the
profile a*8. Notice that the latter profile is not an equilibrium, but we end the path at this point for the
sake of the analysis. This path is indeed exponential—for every step author 7 makes, for 1 < ¢ < 3,
author ¢ — 1 makes at least twice as many (in fact, much more than that; see the formal proof for
more details). O]

Theorem 2 implies that there are BRDs of length (% +1) P, which is O(exp(T)) for large enough
P. Furthermore, if the number of topics 7" and the authors P are in the same order of magnitude,
then length is also exponential in P.

4 Centralized Approach - Equilibrium Computation

To remedy the long convergence rate, in this section we propose an efficient algorithm for PNE
computation. The algorithm is a matching application and relies on a novel graph-theoretic notion.
To motivate the matching perspective, we reconsider social welfare (see Equation (3)) and neglect
strategic aspects momentarily. We can find a social welfare-maximizing profile using the following
matching reduction. We construct a bipartite graph, one side being the authors and the other side
being the topics. The weight on each edge (j, k) is Q; D (k), the quality author j has on topic
k times the user mass on that topic. Notice that every author can only select one strategy (topic).
Furthermore, for the purpose of social welfare maximization, it suffices to consider candidate profiles
in which every topic is selected by at most one author. Consequently, a maximum weighted matching

8 An accessible version of Figure 1 appears in Figure 4.



of this graph corresponds to the social welfare maximizer. By using, e.g., the Hungarian algorithm,
the problem of finding a social welfare-maximizing profile can be solved in O(max{P,T}3).

However, equilibrium profiles and social welfare-maximizing profiles typically do not coincide
(see the celebrated work on the Price of Anarchy [36]). The maximum matching that we proposed
in the previous paragraph is susceptible to beneficial devotions; therefore, it is not stable in the
equilibrium sense.” There exist many variants of stable matching in the literature, but virtually none
fit the equilibrium stability we seek. In particular, the deferred acceptance algorithm [22] cannot be
used since several players can select the same topic and thus the matching is not one-to-one. If we
create several copies of the same topic (a common practice for the deferred acceptance algorithm),
high-quality players would block low-quality authors matched to it (unlike several medical students
with varying qualities that are matched to the same hospital). In the remainder of this section, we
propose a sequential matching technique to compute a PNE. Our approach contributes to the matching
literature and is based on the definition of saturated sets.

Due to our extensive use of graph theory in what follows, we introduce a few notational conventions.
We denote a graph by G = (V, E). For a subset W C V, the induced sub-graph G[W] is the graph
whose vertex set is /7 and whose edge set consists of all the edges in E that have both endpoints
in V. We use the standard notation N (W) to denote the neighbors of the vertices W in the graph
G. A matching M in G is a set of pairwise non-adjacent edges. For our application, we care mostly
about bipartite graphs; thus, we denote V' = X UY. An X-saturating matching is a matching that
covers every node in X. Hall’s Marriage Theorem, a fundamental result in combinatorics, gives
necessary and sufficient conditions for the existence of perfect matching. The theorem asserts that
there exists an X -saturated matching in G if and only if for every subset W C X, |W| < |Ng(W)].
In other words, the size of every subset in X does not exceed the number of its neighbors. The
essential property we use in the PNE algorithm is saturated sets.

Definition 1 (Saturated set). Let G = (X UY, E) be a finite bipartite graph. A set W C X is called
saturated if |W| = |Ng(W)|.

Of course, this definition naturally extends beyond bipartite graphs. Furthermore, if for every other
saturated set W it holds that |IW| > |W’|, we say that W is a maximum saturated set. Despite its
striking simplicity, to the best of our knowledge, this notion of saturated sets did not receive enough
attention in the CS literature (under this name or a different one), and is therefore interesting in its
own right.

4.1 PNE Computation

We now turn to discuss the intuition behind Algorithm 1, which computes a PNE efficiently. By and
large, Algorithm | can be seen as a best-response dynamic. It starts from a null profile (assigning all
players to a factitious topic with zero user mass) and then determines the order of best-responding.

The input is the entire game description,® as described in Section 2. In Lines 1-5 we initialize the
variables we use. 7 is the set of unmatched topics; Ly, is a lower bound on the load on topic k, namely
the ongoing number of players we matched to it; X, Y and E are the elements of the bipartite graph
G (Y stores the set of unmatched players); and a* is a non-valid, empty profile that we construct as
the algorithm advances. The for loop in Line 6 goes as follows. We first find the set of highest-quality
players for every topic k, denoted A (Line 7). These players can block the others from playing k
because their quality is higher, and thus we prioritize them in our sequential process. Afterwards, we
set k* to be the most profitable topic under the current partial matching (Line 8). That is, for every
topic k, we consider the set of most profitable players w.r.t. £ and their potential utility if matched to
k. The term P(*)Cj.x /L, +1 upper bounds the utility of every player j € Ay, (see Equation (2)), in case
we match Ly 4+ 1 or more players to topic k& (we might increase the load Ly in later iterations). We
subsequently update Ly~ in Line 9.

We now move to the bipartite graph G. In Line 10, we create a new node x, which is the Ly~-copy of
topic k* (we store this information about ). We add « to the left side of G, X (Line 11), and connect

"There are exceptions, of course. In degenerate cases where Q has no ties, the game is essentially a stable
marriage problem.

8For the sake of illustration, we assume P < 7. If that is not the case, we can add enough topics with zero
mass D to achieve it. Noticeably, a PNE in the new game can be converted to a PNE in the original game.
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Algorithm 1: PNE computation

Input: A game description (P, T, D, Q,C) \\for loop continues...
Qutput: A PNE a 10 create a new node x associated with topic k*
T + T // available topics 1 X.add(x)
Vk €T : Lk <+ 0// loads on topic 12 E.add ({(z,7) : j € Ak~})
X+ 0Y P E+ 13 Let W C X be the maximum saturated set in G
G+ (XUY,E) 14 if W # 0 then
a* < (0)™ // empty profile 15 find a maximum matching M in G[W UY]
fort=1...P 16 Vj € No(W) : aj < Topic(M(j))
VkeT : Ay arg max,cy Qi k 17 Y.remove(Na(W))
) DR)C, 1 18 X.remove(W)
setk’ € argmaxye \MaXjeA, 1,5 } 19 T .remove(Topics(W)) // see Line 10
Ly < Ly~ 41 20 return a*

x to the players of Ag+ in Y (Line 12). Line 13 is the crux of the algorithm: We find a subset W of X
that is the maximum saturated set. We will justify our use of the article the in the previous sentence
later on, as well as describe the implications of having a saturated set in this dynamically constructed
graph. If W is empty, we continue to the next iteration of the for loop. But if W is non-empty, we
enter the if block in Line 14. We find a maximum matching M in the induced graph G[W UY]. We
will later prove that G[W U Y] satisfies Hall’s marriage condition, and thus |M| = |W| = |[Ng(W)|.
In Line 16 we use M to set the strategies of the players in N (W): Every player j € Ng(W) is
matched to the topic associated with the node M (j) € W. In Lines 17-19 we remove the newly
matched players N (W) from Y, the topic copies W from X, and the topics associated with W
from the set of unmatched topics T. We repeat this process until all players are matched.

Let us explain the implications of having a non-empty saturated set in G. Focus on the first time a
non-empty saturated set W was found in Line 13, and denote the iteration index by ¢’. The set W is
composed of nodes associated with several topics (association in the sense we explain about Line 10);
each one may have several copies. Importantly, every time we add a node x to X with an associated
topic k, we increased the load Ly; hence, in iteration ¢/, Lj, accurately reflects the number of copies
of k in X. Furthermore, k was selected for the Lj, 4 1 time, suggesting that it is more profitable than
other topics. With a few more arguments, we show that all L, copies of £ must be in W. Crucially, if
we match the players in N (W) they cannot have beneficial deviations. We formalize this intuition
via Theorem 3.

Theorem 3. If the input game G satisfies Assumption 1, then Algorithm I returns a PNE of G.

We now move on to discuss its run-time. The only two lines that require a non-trivial discussion are
Lines 13 and 15. As we describe in Lemma 1 below, finding the maximum saturated set includes
finding a maximum matching, and thus we need not recompute it in Line 15. We therefore focus on
the complexity of finding the saturated set in G solely. The following Lemma 1 shows that as long as
a bipartite GG satisfies Hall’s marriage condition, we can find the maximum saturated set W efficiently.
Because of the independent interest in this combinatorial problem, we state it in its full generality.

Lemma 1. Let G = (V, E) be a bipartite graph that satisfies Hall’s marriage condition. There exists
an algorithm that finds the maximum saturated set of G in time O(\/|V || E|).

The proof of this basic lemma appears in Subsection D.3. The sketch of the proof is as follows. Let
G = (X UY, FE) be a graph satisfying Hall’s marriage condition. We first compute a maximum
matching M of G. Since Hall’s marriage condition holds, we are guaranteed that M is an X-
saturating matching. We then devise a technique to find whether a node = € X participates in at least
one saturated set. We show that nodes participating in saturated sets are reachable from the set of
unmatched nodes in Y via a variation of alternating paths, and thus can be identified quickly. By
the end of this procedure, we have a set X’ C X such that every x € X’ participates in at least one
saturated set. The last part is showing that under the marriage condition, every union of saturated sets
is a saturated set. As a result, we conclude that X’ is the maximum saturated set. Using Lemma [,
we can bound the run-time of Algorithm 1.

Corollary 1. Algorithm I can be implemented in running time of O(P? - T).



5 Discussion

With great effort, companies like Amazon turned the “you bought that, would you also be interested
in this” feature into a significant source of revenue. In this paper, we suggest that a “you wrote this,
would you also be interested in writing on that?” feature could be revolutionary as well—contributing
to better social welfare of content consumers, as well as the utility of content providers. Such a
policy could be implemented in practice by a direct recommendation to providers, or by a more
moderate action like nudging content providers to experiment with a different set of contents. To
support our vision of content provider coordination in RSs even further, we show in Proposition 1 in
Section A that the ratio between the social welfare of the best equilibrium and the worst equilibrium
is unbounded. Indeed, such a coordination between content providers may lead to a significant lift
in social welfare. More broadly, we note that maximizing the overall welfare of RSs with multiple
stakeholders is an important challenge that goes way beyond this paper (see, e.g., [13]).

From a technical perspective, this work suggests a variety of open questions. First, the challenge
of computing the social welfare-maximizing equilibrium is still open. Second, as we show in
Proposition 2 in Section A that if Assumption 1 does not hold, BRDs may not converge. A recent
work [6] demonstrates that using randomization in the recommendation function R in a non-trivial
manner can break this divergence. Finding a reasonable way to do so (in terms of social welfare) in
our model is left as an open question. Third, implementing cooperation using other solution concepts
like no-regret learning and correlated or coarse-correlated equilibrium are also natural extensions of
this work. Lastly, our modeling neglects many real-world aspects of RSs: Providers join and leave
the system, demand for content changes over time, providers create content of several types, etc.
Future work with a more complex modeling is required for implementing our ideas in real-world
applications.

Broader Impact

It is well-understood in the Machine Learning community that economic aspects must be incorporated
into machine learning algorithms. In that view, estimating content satisfaction in RSs is not enough.
As we argue in this paper, content providers depend on the system for some part of their income;
thus, their better treatment makes them the main beneficiaries of the stance this paper offers. We
envision that RSs that will coordinate their content providers (and hence the content available for
recommendation) will suffer from less fluctuations, be deemed fairer by all their stakeholders, and
will enjoy long-term consumer engagement.
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Symbol Description First introduced
P set of players, P = {1,2,... P} Section 2
p number of players, P = |P| Section 2
T set of players, 7 = {1,2,...T} Section 2
T number of topics, T' = |T| Section 2

a strategy profile, @ = (a1, az,...ap) Section 2

j player index, j € P Section 2

k topic index, k € T Section 2
Q quality matrix, Q; j is the quality of player j on topic k Section 2
D user mass over topics, D(k) is the demand for topic k Section 2
R Recommendation function Section 2

C conversion matrix, C; i is the conversion of player j on topic k Section 2
u utility function, U (a) is player j’s utility under profile a Section 2
By (a) highest quality of blog written on k under profile a Section 2
Hy(a) number of top-quality bloggers on topic k£ under profile a R Section 2
G =(XUY,FE) bipartite graph with parts X and Y’ Section 4
W subset of nodes in a graph (in the context of saturated sets) Section 4
Ag set of high-quality authors on topic k Algorithm 1
Ly, load on topic k Algorithm 1
M partial matching in a graph Algorithm 1
Zi(a) highest conversion of displayed content on topic k£ under profile @  Section B

¥ an improvement path, better-respond dynamic Section B
Hj, minimal H}, value throughout the path Section B
By maximal By value throughout the path Section B
Zi(7) maximal Z value throughout the path Section B

D parameter of Recurse, indicates the number of players Section C
S parameter of Recurse, indicates the available topics Section C

Figure 2: Notation table.

A Omitted Claims from Section 5

A.1 The Value of Coordination

Many worst-case measures of the inefficiency due to selfish behavior were proposed over the years,
e.g., the Price of Anarchy [17, 43]. In this work, however, we care about social welfare and the
impact of intervention in the dynamic (that we introduce in Section 3); thus, to distill the lift in social
welfare due to coordination, we focus on the Price of Correlation [3].

. . ) . Lo def
Definition 2. Given a game instance, the Price of Correlation is PoC = maxeen SW(E) -\ opore B

min,/cp SW(e’)’
is the set of PNE profiles.

Proposition 1. The price of Correlation can be unbounded.

Proof. The construction relies on the tension between content quality and conversion. Consider the
following two-player (P = 2) with two topics (I" = 2). Let the demand distribution D such that
D(1) =1 —€,D(2) = ¢, and let the quality and conversion matrices be

(11  [¢1-e 1
o=(e 1) ()
The normal-form game resulting from this bi-matrix is

topic 1 topic 2

topic 1 |: 6,0 €, € :|

6,(1—¢€e £,5

topic 2 515

It is immediate to see that both profiles (1,2) and (2, 1) are in equilibrium. However, SW(1,2) = 1,
while STW(2,1) = €(1 — €) + € < 2e. The result is obtained when taking € to zero. O
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A.2 Relaxing Assumption 1

Proposition 2. If Assumption I does not hold, there can be infinite BRDs.

Proof. 1t suffices to show a better-response cycle. Consider the following three-player (P = 3) with
three topics (T' = 3). Let the demand distribution D such that D(1) = D(2) = D(3) = d = %, and
let the quality and conversion matrices be

1 10 10 10 1 5
Q—q<1o 1 o), C—c<1 10 0).
0 5 5 0 1 5

for0 < g < 1—10 and 0 < c < %. From here on, since the utilities are linear in the term cdq, we omit
it from the analysis. Let a’ = (2,1, 3). Consider the following sequence of better improvements:

1. a' = (3,1,3). Player 1 is the deviating one, and 1 = U; (a®) < U;(a') = 5.
2. a® = (3,2,3). Player 2 is the deviating one, and 1 = Us(a') < Us(a?) = 10.
3. a® = (3,2,2). Player 3 is the deviating one, and 0 = Us(a?) < Uz(a®) = 1.
4. a* = (1,2,2). Player 1 is the deviating one, and 5 = U, (a®) < U, (a*) = 10.
5. a® = (1,1,2). Player 2 is the deviating one, and 0 = Uy (a?) < Usz(a®) = 1.
6. a® = (2,1,2). Player 1 is the deviating one, and 0 = U, (a®) < U;(a%) = 1.
7. a” = (2,1, 3). Player 3 is the deviating one, and 0 = Us(a®) < U3(a”) =5
Notice that a® = a7, hence this is indeed an improvement cycle. O

B Proof of Theorem 1

In this section, we formally prove Theorem 1. We begin by setting a few convenient notations
in Subsection B.1, prove some useful claims in Subsection B.2, and finally prove the theorem in
Subsection B.3.

B.1 Notations for this Section
In addition to Hy(a) and By (a) introduced in Section 2, we also let

Zr(a) = max {Ljem, @)Cik}

In words, Zj,(a) is the highest conversion of a player writing on topic & under the strategy profile a.

We denote an improvement path, i.e., a sequence of improvement profiles by . For a given ~, we use
Bi(7) &f maxaecy Bi(a) to denote the highest value of By, along the profiles on the path . Similarly,

we let Hy(7) & ming e~ |Hy(a)| be the minimal size of Hy, along v, and Z () &f maxXeey Zi(a)
be the highest Z;, along ~.

Finally, when a strategy profile a” is part of an improvement path, we use p,. to denote the index of
the deviating player. Namely p;. is the only player such that a;, # a;fl.

B.2 Useful Claims

The following observation is an immediate corollary of Assumption 1.

Observation 1. If Q. ;, = Qy j, for some topic k € M and two players ji, jo € N, then Cy, j, =
Ck7j2

The next proposition shows that after a deviation to a topic, the highest quality on that topic can only
increase.
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Proposition 3. Let v be a finite improvement path, and let agfl = k for an arbitrary improvement
step r. It holds that Q,, 1 > Bi(a”).

Proof of Proposition 3. Since author p, improves her utility, U, (a”) < U, (a”"*'). By definition
of R, if Q,, 1 < Bi(a”) thenl, (a"™') =0 < U,, (a”), which results in a contradiction. [

In Proposition 4 we bound the utility of an improving author in an improvement step.

Proposition 4. Let v be a finite improvement path, and let agjl = k for an arbitrary improvement
stepr. If @, < Bi(a”), then

D(k) - Zx(7)
k +

upr(am—l)g Hy() +1

Proof of Proposition 4. We are given that Q,, , < Bjy(a”). Combined with Proposition 3, we
know that

Qp.k = Bi(a”). )
Notice that a;,  # k and a;)jl = k; hence, together with Equation (4) we obtain
Def. of Hy, ()
[Hy(a™)| = [Hy(@")|+1 > Hp(y) +1 )
Observe that Equation (5) suggests that
Up,.(ar+1) _ D(k) 'Cpr,lc _ D(k) .Cp'r'7k < D(k) 'Cpry-,k < D(k) 'Z(7>7
[Hi(a™ 1) |[Hi(a™)|+1 7 Hep(y)+1 = He(7)+1

where the last inequality holds since Cp, r < Zi(a" ') < Zj (). This concludes the proof of this
proposition. 0

Proposition 5. Ifc = (a',...,a' = a') is an improvement cycle and k is a topic such that

1. there exists an improvement step 1 satisfying |Hy(a™ )| # |Hy(a™ )|, and
2. for every improvement step 3, Bi(a") = By/(c),

then there exist an index r such that a;, =k and

r _ D(k) - Zy(c)
Up, (a") = ﬂ(ci)—&-kl

Proof of Proposition 5. From Property 1 we know that there exists an improvement step r; such
that |Hy(a™)| # |Hy(a™*1)|. Assume w.l.o.g. that |[Hy(a™)| > |Hi(a™*1)|; hence
[Hi(a™)| > [Hi(a™ )] > Hy(c): (6)

hence, |Hy(a™)| > Hy(c) + 1. By definition of Hj(c) we know that there exists an improvement
step 73 such that

[Hy(a")| = Hi(c). ©)
From Property 2 we get that for every improvement step 72, By, (a™?) = By,(c), which implies that
1 Hi(a™)] = [Hi(a™ )| < 1. (3)
Moreover, Property 2 along with Assumption 1 imply that
Cpy b = Zi(c). ©)
Combining Equations (6)-(9) with the fact that ¢ is an improvement cycle leads to the existence
of an improvement step  such that a” € {a™,a™ !, ... a™ '}, |Hy(a")| = Hy(c) + 1, and

|Hy(a"*')| = Hy(c). This suggests that a/, =k and Q,, 1 = By(a") = By(c); therefore,

D) -Cps D) Z(0)
U@ = T~ Ha@ 41
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B.3 Proof of Theorem 1

To ease the presentation, throughout this subsection we re-index the topics according to the following
order

D(1) - Zi(c) > D(2) - Zy(c) > ... > D(T) - Zr(c).
The proof of Theorem 1 relies on several supporting lemmas, which are proven first.

Lemma 2. Ifc = (a!,...,a! = a') is an improvement cycle, then for every improvement step r
and every topic k it holds that By(a") = By(a™1).

Proof of Lemma 2. Assume w.l.o.g. that c is a simple improvement cycle. It suffices to show that
Bi(a™) < By(a"1) for every r and k, since this implies

Bk(al) < Bk(ag) <...<Z Bk(al_l) < Bk(al) = Bk(al).

The left-hand-side and the right-hand-side of the inequality above are identical; thus, they must all
hold in equality.

We prove by induction on the topic index & that By, (a”) < By (a"!) holds forevery 7, 1 < r < [—1.
Base case As we elaborate shortly, the base case is a special case of the Step.

Step Suppose the assertion holds for every k£ where k¥ < K < T, but does not hold for K (where
K =1 is the inductive base, for which we assume nothing). For better readability, we divide the
analysis into parts.

Part 1: By definition of By (c), there exists 7/, 1 < ' < | — 1 such that B (a”’) = Bg (c). Since
the assertion does not hold for K, there exists v/, 1 < r" < [ —1, such that BK(a"'”) > BK(aT'”“).

Therefore, as c is an improvement cycle, there exists 7y such that a™ € {a’”/, ar/“, - 7aT”} and
BK(C) = BK(CLH) > BK(a“‘H).

As a result, it holds for the improving author p,., in step r1 that Q) x = Bk(c) > B K(arjprl)

and |Hg (a™)| = 1. Put differently, the quality of author p,,’s document exceeds all other qualities
under a™ on topic K; thus,

U, (a")=DK) Zx(c). (10)

Pry
In addition, py., is the improving author so U, (a™) < U, (a™*'); hence, with Equation (10) we
get

D(K) - Zk(c) < Uy, (a™"). (11)

Let k1 denote the topic that author p,., is writing on under a"tliek = a;ﬁl. By definition of I/

we obtain
Up,, (@) <D(k1) - Cp, ki, < D(k1) - Zg, (). (12)

Inequalities (11) and (12) suggest that D(K) - B/(c) < D(k;) - By, (c) holds. Recall that we
re-indexed the topics according to a decreasing order of D - V, and hence k1 < K (for the base case
K =1 and thus we get a contradiction). To summarize this part, we conclude that there must exist a

topic k1 such that ky < K and D(k;) - Zy, (¢) > D(K) - Zk(c).

Part 2: Since k; < K, the induction hypothesis hints that By, (a™) = By, (a™*!); therefore,
Qp,, ks < By, (a™) holds and by Proposition 3 we get that Q,, x, = B, (a™). By invoking
Proposition 4 for ¢, 1 and k; we get

D(k1) 'Z?E;(C).

U,
Hk1 (C) +1

Pry (ar1+1) S

Together with Inequality (11), we conclude that

(13)
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Next, we wish to find an improvement step such that the improving author’s utility strictly bounds
the right-hand-side of Inequality (13). Since agijl = ki and Qp, k, = By, (a™) we get that
|Hy, (a™)] # |Hy, (@™ 1)|. The inductive assumption suggests that for every improvement step 7,

By, (a’”/) = By, (¢); therefore, we can invoke Proposition 5. Proposition 5 guarantees the existence
of a step 72 such that a;’iQ = kq and

D(kl) ) Th(c) _ T2
7%(0) - Up,, (a™). (14)

Since p., is the improving author 4y, (a™) < U, (a™*") holds, which together with Equation (14)
implies
D(k1) - Zi, (c)

ro+1 1
Ho@+1 <@ )

Let a;f_jl = k. By definition of I/, we know that

Up,, (@) < D(k2) - Zi,(c). (16)

The crucial observation is that k; < K must hold. To see this, assume otherwise that ko > K, and
D(ks)- Z,(c) < D(K)- Zk/(c) follows for the re-indexing of topics. Incorporating Inequalities (13),
(15) and (16) we obtain

Zie) < 2D <y, (@) £ D) 7€) < D) - Zale),

which is a contradiction; hence, ko < K.
To complete this step, notice that the iductive hypothesis suggests that By, (a™) = By, (a™*1),

implying Q,, . k, < By, (a™). By invoking Proposition 4 for ¢, 3, and ko we conclude that

- D(ky) - Zy, (c)
Uy, (a™") < Hy,(c) +1

Together with Inequality (15), we conclude that

D(k1) - Z, (c) < D(ks) “Zyy (c)
Hy,(c) + 1 Hyy(0) + 1

A7)

To summarize this part, we conclude that there must exist a topic ko, ko < K and ko # k; that
satisfies Inequality (17).

Part 3: We repeat the process in Part 2 to obtain additional topics k3, k4, . . . , ki, such that for all
i€ [K], ki < K and
D(k1) - Zi, () _ Dks) - Ziy(c) _ Dlks) - Ziy(0) _ D(kk) - Ziy (c)
Hp, (c) +1 Hy,(c) +1 Hi,(c) +1 Hp(c)+1

While the inequality above contains K elements, there are only K — 1 topics with index lower than
K; hence, at least two of them must be identical, and we obtain a contradiction. We conclude that
Bk (a") < Bg(a™1) for every step r. This completes the proof of the induction. O

In addition,

Lemma 3. Ifc = (a',...,a' = a') is an improvement cycle, then for every improvement step r
and topic k such that a);™' = k there exist (', k') such that a}, ** = k" and

D(k) - Zy(c) . D) - Zy(c)
Hi(c) +1 Hy(e)+1
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Proof of Lemma 3. Let r, £ such that a;:rl = k. From Lemma 2, we know that for every im-
provement step 7, By(a” ) = By(c); thus, Q, r < Bi(a”) which by Proposition 3 leads to

Qp..k = Bi(a") = Bi(0). (18)
By definition of improvement step, a;, # k; hence, together with Equation (18), we get that

|Hi(a")| # |Hk(a™')|. Notice that c is a finite improvement path, and that the conditions of
Proposition 5 holds; thus, by invoking it for ¢, r, and k we conclude the existence of an index r’ such
that a;, , = k and

D(k) - Zk(c) /
————=U ™.
Hy()+1 (@)
In addition, p,- is the improving author, and so
D(/{;) . Zk (C) ’ ’
v TR Yy u U 1y 19
Hk (C) + 1 2% (a’ ) < Pt (a’ ) ( )

Clearly, a;/jl = k' # k. Lemma 2 indicates that By (a™) = By (a” *!); hence, Qp i <

By (ar/). Having showed the condition of Proposition 4 holds, we invoke it for v/, k" and conclude
that
D(K) - Z(c)

Hy(c) 11

Combining the above inequality with Inequality (19), we have
D(k) - Z(e) _ D) - Zur(c)
Hi(e) +1 Hi(o)+1

Uy, (a"+) <

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let v be any arbitrary improvement path. Since there is a finite number of
different strategy profiles, v can only be infinite if it contains cycles. Assume by contradiction that y
contains an improvement cycle ¢ = (a',a?,...,a' = a'). Let ; be an arbitrary improvement step
and denote by k; the topic such that a;;i 1“ = k;. From Lemma 3 we know that there exist (1o, k)

such that agjjl = ky and - -
D(ky) - Zk,(c) _ D(k2) - Zk,(c)
Ho (@) +1 — Hylo) +1

Since a;'fjl = ko, we can now use Lemma 3 again in order to find (r3, k3) such that a;?;:l = k3 and

D(ks) - Zige) _ Dlks) - Zaac)
Hy,(c) +1 Hy, (o) +1
This process can be extended to achieve additional kg4, ks, . . ., kp41 such that
D) Zi(e) _ Dlho) - Ziale) __ Dlkran) - Zipr (0
Hiy(e) +1 Hp,(o)+1 Hipy, () +1

Since there are only 7" topics while the inequality above contains T' 4 1 elements, there are at least
two elements which are identical; thus, we obtain a contradiction. We conclude that an improvement
cycle can not exist. The above suggests that every better-response dynamics must converge. O

C Proof of Theorem 2

In this section, we construct the exponential improvement path stated in Theorem 2 and exemplified
in its proof sketch. We first construct the game formally for every P and 7. Second, we define the
path recursively via Algorithm 2, and exemplify it using a simple game. Third, we demonstrate
several properties of the constructed path, among them its exponential length.
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Figure 3: Illustration of the quality matrix for P = 5 players and 1" = 7 topics.

Algorithm 2: Constructing Exponential Better-Response Dynamics

a <— (1, R 1) // initial profile, exists globally and is accessed by Recurse

p<+« P

S« T\{1}// S is the list of all non-tie topics

Recurse(p, S)

procedure Recurse(p, S):

if p==1 then

/* The base case concerns with player 1 only. */

while S # 0 do

ay < min(S) // Player 1 advances

S.remove(min(S))

return

while S £ () do

execute Recurse(p — 1,.5) // See Proposition 6 for the intermediate profile

if p is even then

‘ ap <+ max(S) // Player p dislodges

S.remove(max(.S))

else if p is odd then

ap < min(S) // Player p dislodges

S.remove(min(S))

ap—1 < 1// Player p—1 withdraws

return

C.1 Game Construction

Let P and T denote |P| and | T, respectively. Let ¢ = 5, and consider the quality matrix Q such
that

c ifk=1
Qk=1c-(2(T—1)(F) +k). if k>1landoddj . (20)
c-(2T+1-k+2(T—1)(4—1)) ifk>landevenj

Despite the involved definition, Q has a simple structure; see Figure 3 for illustration. Notice that
all players have the same quality w.r.t. topic 1. Moreover, the rest of the qualities (of topics 2 to T
follow a snake-shape increment. A structural property of this increment is dominance: Every player
j for 1 < j < T is better than player j — 1 on all topics but topic 1.”

We define the conversion matrix C to be identical to Q, C = Q (the action-target utility of Ben-
Porat et al. [9]). To conclude the game description, let D be the uniform distribution over T, i.e.,

D(k) = % for every k € T. In the next subsection, we construct an exponentially long path in the

game (P, T,D, Q,C).
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C.2 Recursive Path

We define the path recursively over the players and the topics via the procedure Recurse, which
is detailed in Algorithm 2. We first describe the course of the algorithm and the way Recurse
operations, and then illustrate it using the example from Subsection 3.2.

In Line | we set up the initial profile, which is (1, 1, ..., 1). Under this profile, every player gets the
same share of the user mass on topic 1, namely 7. In Line 2 we assign to p the number of players
that are still unmatched. In Line 3 we initialize the S to include all the topics but topic 1. Recall that
topic 1 is singular, as the qualities of all players are a like. In Line 4 we call the Recurse procedure,
which is the heart of the construction. Implied by its name Recurse. It gets the number of players p
and a set of topics S C T \ {1}, and makes recursive calls. Every recursive call only concerns with
players 1, ..., p and the topics S U {1}. We now briefly describe the course of its execution, and later
elaborate on the path it induces.

Lines 5-9 are devoted for the base case, where p = 1. In such a case, player 1 iterates through the
topics in S in increasing order; she deviates to topic min(S), then this topic is removed from S, and
the while loop in Line 6 continues. When there are no more topics in S, the call returns (Line 9).

Otherwise, if p > 2, we enter the while loop in Line 10. Line 11 includes a recursive call to
Recurse(p — 1,.5); this is the only place recursive calls are executed. We then continue according
to the parity of p. If p is even, we enter the if clause in Line 12. Player p deviates to topic max(.5)
(Line 13), and then max(.S) is removed from S (Line 14). Alternatively, if p is odd, we enter the else
clause in Line 15. In this case, Player p deviates to topic min(.S) (Line 16), and min(.S) is removed
from S (Line 17). The final step of the while loop is the deviation of player p — 1 to topic 1, in Line
18. When S contains no more topics, the call returns (Line 19).

Having explained the dry details of the procedure, we now get into the crux of Recurse(p, S) and
the BRD that it forms. When p and S are clear from the contexts, it will be useful to discuss the
partial strategy profile, addressing players 1, ..., p only. It is almost straightforward to see that

Observation 2. During the course of Recurse(p, S) with p < P, no player j with j > p plays a
topic from S.

Due to this observation, whenever a player deviate to topic different than 1 inside a recursive call, we
know that we can neglect players with index higher than p while calculating her utility. To use the
recursive construction, we wish to characterize how the partial strategy profile looks like after every
call. We will later prove that

even déf

Proposition 6. The call Recurse(p,S) terminates in the partial strategy profile a;’s

1,1,...,1,min(S)) if p is even, and a®%¢ &t 1,1,...,1,max(S)) if p is odd.
p,S

In words, the call Recurse(p, S) terminates when all the players 1,2,...p — 1 are playing topic
1, while player p plays his best topic from S: Either topic min(.S) or max(S), depending on
her index parity. To illustrate, consider the call the quality matrix in Figure 3 and the call
Recurse(4,{2,3,4,5}). Since p = 4 is even, by the end of this call the partial strategy profile
for players 1 to 4 is (1,1,1,2),

Next, we focus on the deviations. Throughout its execution, players deviate using the \“gets” operator,
<, (Lines 7, 13, 16 and 18). Those deviations are always w.r.t. the strategy profile globally defined
in Line 1. We prove later that those deviations are in fact improvement steps.

Proposition 7. Throughout the course of Recurse(p, S), every time a player deviates the deviation
is beneficial.
To simplify the explanation of the procedure, we divide all deviation into three types:
1. advance (Line 7): This improvement step is part of the base case, for p = 1. Player 1, and
only player 1, deviates to the minimal topic in .S.

2. dislodge (Line 13 for even p and 16 for odd p): We explain the case for even p, and the odd
case is similar. After executing Recurse(p — 1,.5) in Line 11, the partial strategy profile of

°In fact, any monotonically increasing values along the snake (top-down) will suffice; these are selected for
readability.
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Step | Executing call Advance Dislodge | Withdraw
1 |Recurse(1,{2.3,4,5}) | 2@ LD —=G.LD)—@1,1)—6.1,1)

2 |Recurse(2,{2,3,4,5}) —(5,5,1) | =(1,5,1)
3 |Recurse(1,{2,3,4}) |/ S@5.1) G511 @5,1)

4 |Recurse(2,{2,3,4}) —(44,1) | =(14,1)
5 |Recurse(1,{2,3}) —(2,4,1)—(3,4,1)

6 |Recurse(2,{2,3}) —(3,3,1) | =(1,3,1)
7 |Recurse(1,{2}) —(2,3,1)

8 |Recurse(2,{2}) —2,2,1) | =(1,2,1)
9 |Recurse(3,{2,3,4,5}) —(1,2,2) | —(1,1,2)
10 |Recurse(1, {3,4,5)) |[SGI2)S@12)5612)

11 |Recurse(2,{3,4,5}) —(5,5,2) | —(1,5,2)
12 |Recurse(1,{3,4}) —(3,5,2)—(4,5,2)

13 |Recurse(2,{3,4}) —(4,4.2) | =(1.4.2)
14 |Recurse(1,{3}) —(3,4,2)

15 |Recurse(2,{3}) —(3,3,2) | =(1,3,2)
16 |Recurse(3,{3,4,5}) —(1,3,3) | ks
17 |Recurse(1,{4,5}) —(4,1,3)—(5,1,3)

18 |Recurse(2,{4,5}) —(5,5,3) | FES)
19 |Recurse(1,{4}) —(4,5,3)

20 |Recurse(2,{4}) —(4,4,3) | =(1,4,3)
21 |Recurse(3,{4,5}) —(1,44) | =(1,1,4)
22 |Recurse(1,{5}) —(5,1.4)

23 |Recurse(2,{5}) —(5,54) | =(1,54)
24 |Recurse(3, {5}) 5(1,5,5) | =(1,1,5)

Figure 4: A long improvement path for the illustration in Subsection C.2

players 1,2,...p — 1lis agd_dl,s. Indeed, this is true due to Proposition 6 and p — 1 being
odd. In particular, player p — 1 plays max(.5). When we reach Line 13, player p deviates
to max(.S) as well. Recall that by the construction of Q, player p’s quality dominates the
quality of player p — 1 on every topic excluding 1. Consequently, since every topic in S is
always greater than 1, the utility of player p — 1 zeros. More pictorially, player p dislodges
player p — 1 from being the highest-quality author on topic max(S).

3. withdraw (Line 18): Player p — 1 withdraw from writing on a favorable topic (the one she
was just dislodged from in Line 13), and deviates to topic 1.

To illustrate the terminology and the path, we return to example proposed in Subsection 3.2, and
iterate through the path that the procedure forms. In Figure 4 we give the improvements and the call
that executes them.

C.3 Proofs from Subsection C.2

Proof of Observation 2. We prove the claim by induction on the depth of the call stack. If P = 1,
then the claim holds trivially. To see that the claim holds for P > 1, focus on the first call,
Recurse(P, T \ {1}). Recall that the starting profile is (1,1,...,1). Since P > 1, the procedure
enters the while loop in Line 10. Then, the call to Recurse(P — 1, T) is executed (Line 11). W.lo.g.
assume P is even (similarly otherwise), and hence we enter the if condition in Line 12. Player P
deviates to max(.S) and dislodges player P — 1, and then max(.S) is removed from S. Later, in
Line 18, player P — 1 withdraws to topic 1. In the next iteration of the while loop in Line 10, S do
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not contain ap. This reasoning can be applied for every iteration of the while loop during the call
Recurse(P, 7).

Assume the claim holds for player J + 1 and .S C T, and focus on Recurse(j, S) for j > p. By the
inductive step, we know that players j + 1,... P do not play the topics in .S. To finalize the proof,
we use the same arguments as before to show that Recurse(j, S) only makes calls witha; ¢ S. O

Proof of Proposition 6. The key ingredient of this proof is to watch the snake-trail closely (see the
definition of @ and Figure 3).

We prove the claim by induction on p. First, notice that S is non-empty, because recursive calls can
only happen in Line 11, which means the while expression, S # () is true.

The base case is when p equals 1. We enter the if statement in Line 5, and each iteration player
1 advances to topic min(S). By the end of the loop, the only topic still in S is max(S), player 1
advances to max(S), which is then removed. We are hence guaranteed that at the return command in
Line 9, the partial strategy profile for player 1 is (max(.5)).

Consider an even p and the call Recurse(p, S), and assume the claim holds for p — 1, which is odd.
To avoid notational confusion, we will denote by S’ the set S at the beginning of the call, and let S
change through the course of the call. Therefore, we essentially analyze Recurse(p, S’).

Due to the inductive assumption, every time the recursive call to Recurse(p—1, .S) for the appropriate
subset S returns, the partial strategy profile for players 1,2, ...,p—1is (1,1,...,1, max(S)). Player
p then dislodges player p — 1 from max(S) (Line 13), max(S) is removed from S and player p — 1
withdraws to topic 1 (Line 18). Consequently, by the end last iteration of the while loop in Lines
10, player p dislodges player p — 1 from min(S’) (Since |S| = 1 and all other topics were removed),
the last topic is removed from S, and player p — 1 withdraws to topic 1; hence, the partial strategy
profile for players 1,2, ...,p at the end of this call is (1,1,...,1, min(S")) (with ap—; = 1 and
a, = min(S")).

Next, consider an odd p and the call Recurse(p, S), and assume the claim holds for p — 1, which is
even. We follow the same notation convenience as before, and analyze Recurse(p, S').

The arguments are almost identical to the even case, but appear here for completeness. Due to the
inductive assumption, every time the recursive call to Recurse(p — 1, S) for the appropriate subset
S returns, the partial strategy profile for players 1,2,...,p — 1is (1,1,...,1, min(S)). Player p
then dislodges player p — 1 from min(S) (Line 16), min(.S) is removed from S and player p — 1
withdraws to topic 1 (Line 18). Consequently, by the end last iteration of the while loop in Lines 10,
player p dislodges player p — 1 from max(S’) (Since |S| = 1 and all other topics were removed),
the last topic is removed from S, and player p — 1 withdraws to topic 1; hence, the partial strategy
profile for players 1,2, ..., p at the end of this call is (1,1,...,1, max(S")) (with a,_y = 1 and
a, = max(S")).

This completes the proof of the proposition. O
Proof of Proposition 7. We prove the claim by addressing each type of deviation separately.

1. advance: (Line 7): Consider the call Recurse(1,.S) for some S. Due to Proposition 6,
the partial profile of player 1 at the beginning of the iteration is (1), namely a; = 1. Due
to Observation 2, no other player plays min(.S), and thus this is a beneficial deviation.
Since player 1 advances along the snake-trail in the while loop in Line 6, her deviations are
beneficial.

2. dislodge: W.1.0.g. consider an even p (Line 13, the odd case is almost identical and hence
omitted). Due to Proposition 6, the partial profile of players 1,2, ..., p at the beginning of
the iteration is (1,1, ..., 1). During the course of the execution, player p deviates only using
dislodge operations. In the first iteration of the while loop, player p deviates from topic 1
to topic max(.S). Recall that Observation 2 guarantees that no other player with greater
index player max(.S); hence, due to the construction of Q in Equation (20), she improves
her utility from at most c to a strictly greater utility. Afterwards, in every iteration of the
while loop, she follows the snake-trail and thus her deviations are beneficial.
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3. withdraw: (Line 18): We address the case of even p, and the odd case follows similarly.
After every recursive call the Recurse(p — 1,.5), the obtain partial strategy profile is
(1,1,...,1, max(S) (partial for players 1,2, ...p—1). Recall that player p dislodges player
p — 1 from her topic, since by the construction of Q, player p’s quality dominates the quality
of player p — 1 on every topic excluding 1. Consequently, the utility of player p — 1 zeros.
When player p — 1 withdraws to topic 1, she gets a strictly positive utility as all the players
are of equal quality w.r.t. this topic.

Overall, we have showed that all deviations are beneficial. O

C.4 Path Length

We now lower bound the length of the BRD Recurse generates. Let f (P, s) denote the number of
profiles Recurse(P, S) iterates (for s = |S]). According to the base case (Lines 5-9), if p = 1 then
f(1,s) = s. Furthermore, for completeness, we note that if s = 0 then f(p,0) = 0.

For p, s such that p > 1 and s > 1, the analysis should incorporate the deviations in the while loop
(Line 10). Every iteration includes a recursive call to Recurse(p — 1, .5”), were |.S’| goes from s to 1
inclusive, and dislodge and withdraw steps. As a result,

f(p,S):QS-l-Zf(p—l,k).
k=1

Put differently,
s s—1
fs) = fps—1) =25+ flo—1Lk)—2s—1)=> flp—1,k) =2+ f(p—1,s);
k=1 k=1
therefore,

fp.s)=flp.s =)+ flp—1s)+2
One can solve this recurrence using generating functions, but here we show a much simpler solution.
Let F(p, s) denote the multiset coefficient'’, i.e., F(p, s) & ; = (p+;_1). Next, we show that
f(p,s) > F(p, s). This inequality holds as equality for the base cases (1, s) for s > 0 and (p, 0) for
p > 0. Assume that the f(p’,s’) > F(p/, s’) whenever either p’ < p or s’ < s. It holds that
f(p78) Zf(p,8—1)+f(p—1,8)+2
>F(p,s—1)+F(p—1,s)+2

-2 -2
_ (Pt L (P +2.
D p—1

where we use the inductive step and Pascal’s triangle; thus, f(p,s) > F(p, s) holds. Recall that
the initial call (Line 4) is Recurse(|P|, T \ {1}); therefore, the number of steps is in this call is
f(P,T —1). Using the relation between f and F,

FP,T—1)> F(P,T—1) = ((Tpl)) — <P+§2) > (T}fH)P.

This concludes the proof of Theorem 2 and this section.

10https ://en.wikipedia.org/wiki/Binomial_coefficient#Multiset_(rising)_binomial_
coefficient.
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D Proofs from Section 4

D.1 Proof of Theorem 3

Before we begin, we make the following notational remarks. When referring to the value of any
object used in Algorithm 1, we use the super script ¥*¢ to denote the value of that object at the end of
the #’th iteration, and ** to denote the value of that object at the beginning of the t’th iteration. For
instance, A%® or k**¢. In addition, we denote by o' the value of the maximum in Line 8 in iteration
t,1.e.,
D k*t:e Ci rwtie
o' = max —( 5 )yt .
jeAte,, Lyl +1

The proof of this theorem relies on Propositions 8-10 below; we defer their proofs to Subsection D.2.
To claim that the returned profile a* is a PNE, we first need to show that it is a valid strategy profile.

Proposition 8. Algorithm [ returns a valid strategy profile.

Next, we claim that (o), is monotone.
Proposition 9. The sequence (a)f_; is monotonically non-increasing.

The next proposition lower bounds the utility of every player by the appropriate value of a.

Proposition 10. Let j be an arbitrary player index and t(j) be the index of the iteration player j
was matched and removed (Lines 16 and 17). It holds that

Uj(a*) > ot

Using the above propositions, the proof of Theorem 3 is almost straightforward. Assume by contra-
diction that the claim does not hold; namely, there is a player j and topics k, &’ such that a; = k but
Uj(a* ;, k") > U;j(a*). Let t(j) denote the iteration when we matched and removed player j. In addi-
tion, notice that Lff,j )*® denotes the number of players selecting &’ under a*; thus, L};(,j e — |Hy (a®)].
Observe that j € Hy(a” ;, k'), since otherwise U;(a” ;, k') = 0. By invoking Propositions 9 and 10,
we get that
ot > PENCw - D(K)C)w
L9 41 [Hi(a k)|

=Uj(a”;, k);

—j

thus, we obtained a contradiction.

D.2 Proofs from Subsection D.1

Proof of Proposition 8. To prove the proposition, we need to show that every player is matched.
Recall that we assume for simplicity that P < T’ (see Footnote 8), or otherwise we add columns of
zeroto Qand Cuntil P =T.

Every time the algorithm matches players to topics (Line 16), it removes a set of players and a set
of topics form the graph (Lines 17 and 19). Clearly, the number of topic copies we remove ||
equals the number of players we remove, | N (W)|; thus, in every iteration |Y| < |T|. To complete
the argument, notice that as long as there are players in Y there are topics in 7, and hence we will
continue to pick £* (Line 8), add new nodes to = (Lines 10 and 11), and match them with players in
Y.

Proof of Proposition 9. The sequence of sets (ft:b)le is monotonically non-increasing, since at

the beginning 7 :* = 7T and afterwards elements can only be removed (in Line 19). In addition, D(k)
is fixed for every k € T, and (L*)Z_, is monotonically non-decreasing for every k € 7. The only
tricky part is the conversion C; .. To illustrate, matching and removing a player might decrease the
highest quality on topic k, thereby changing Aj. This change could increase potentially increase the
conversion of the players in Aj. However, due to Assumption 1, the conversion of the highest-quality
player on a fixed topic is non-increasing as we remove players. As a result, forevery ¢,1 <t < P

: DECik & pax PECik oo PEGk e

o =

ma. -
; ‘e t:b — . t:b — . t+1):b
jeaps L +1 7 jealeve LV 41 7 jeq@eness pIHDD
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Algorithm 3: Find saturated set in a bipartite graph

Input: A bipartite graph G = (X U'Y, E) satisfying the marriage condition
Output: A maximum saturated set in G
procedure GetSaturated(G):

find an X -saturated matching M in G

denote by Y C Y the nodes that M does not match

set directions to the edges in E, such that edges in M are directed from X to Y while the
other edges are directed from Y to X

run a BFS starting from the nodes of Y in the directed graph, traversing each edge only once

return the set of nodes in X that were not discovered during the BFS

Proof of Proposition 10. Let j be an arbitrary player, let ¢() be the iteration number it was matched
and removed, and let £ denote its strategy, a; = k. Notice that

D(k)Cjs _ D(k)Ciie PR D)Ciperir _ )

Hi(a)] g T pfOr

Uj(a™)

)

where the inequality sign holds due to Proposition 9, and holds as equality if and only if k& = k**(),
This concludes the proof of Proposition 10.

D.3 Proof of Lemma 1

We prove the lemma by constructing Algorithm 3 and prove its guarantees. Before we begin, we
make the following useful argument.

Proposition 11. Let G = (X UY, E) be a bipartite graph satisfying the marriage condition. If
W1, Wa, ... Wy are saturated sets, then Ule W is also a saturated set.

We defer the proof to Subsection D.4. Proposition 11 suggests that it suffices to find all nodes that
participate in any saturated set, since their union forms the maximum saturated set. One useful notion
in the algorithm and its analysis is that of a crossing path.

Definition 3 (M-crossing path). Let M be an X-saturating matching in G. A path
Y, L1, Y1, -, LTk, Yk, T between y € Y and x € X is called an M-crossing path if for every
1,1 < i < k it holds that (x;,y;) € M.

Moreover, we leverage the definition of crossing paths to show that

Proposition 12. Let M be any arbitrary X -saturating matching in G, and let f{ denote the nodes in
Y that where not matched. There exists an M -crossing path from a node y € Y to anode x € X if
and only if x does not participate in any saturated set in G.

We defer the proof to Subsection D.4. We move to describe the details of the procedure
GetSaturated, which is given in Algorithm 3. First, in Line 1, we find an X -saturated matching.
Since we are given that GG satisfies the marriage condition, such a matching is guaranteed to exist. To
obtain this matching, we can use, e.g., the Hopcroft—Karp algorithm [25]. Then, in Line 2, we denote
by Y the set of nodes that were not matched, all belong to Y. We then construct a directed version of
the graph, such that all paths from Y are M -crossing paths (see Definition 3). The final step is to run
a BFS to conclude the reachable nodes from ).

The correctness of GetSaturated follows immediately from Proposition 12. As for running time
considerations, the heaviest operation in terms of run-time is using the Hopcroft—Karp algorithm in

Line 1, which takes O («/|VHE|) time. Lines 2-5 can be executed in O(|V| 4 |E|) time.

D.4 Auxiliary Claims for this Section

Proof of Proposition 11. We prove the claim for the case of k = 2, and the general case follows by
induction.
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First, by applying the marriage condition on W7 U W5, we get
|[W1 UWs| < |Ng (Wi UWs). 21

On the other hand, by applying the marriage condition on W; N W5 and using the fact that W; and
W are saturated, we get

(W1 UWs| = |[Wi| 4+ |[Wa| — [W1 N Wa| > [Ng(W1)| + |[Na(Wa)| — |[Na(W1 N Wa)|.  (22)
Due to Proposition 13, |[Ng(W; N W2)| < [Ng(W7) N Ng(Ws)|; thus, Inequality (22) implies that
W1 UWa| = [Ne(Wh)| + [Ne(W2)| — [Na(W1) N Na(W2)| = [Na(W1 U Wa)|.

We get the required result by combining Inequalities (21) and (22). O

Proof of Proposition 12. Denote M and Y as in the statement of the proposition.

Direction =-:Assume there exists an M -crossing path y, 21, y1, . . ., Tk, Yk, £ for some y € Y, and
w.l.o.g. let it be the shortest path. We need to show that for every W C X such that x € W,
(W[ < [Ne(W)|.

Let E’ denote the edges of that M -crossing path, when we add the node matched to x, M (z) as the
final node. Namely, F contains the edges of the path

&M &M &M

AN AN A~

Y, T1,Y1,22,Y3 - - -xkayk7x7M($)
eM eM eM eM

Notice that the definition of M -crossing path does not require anything from edges (y;, fEiJrl),];;ll.
Nevertheless, if (y;, z;+1) € M then x; = x;41 must hold, since (x;,y;) € M and M matches y;
only once; but this contradict our assumption that the path is the shortest M -crossing path.

We claim that M’ = (M AFE) U E is an X -saturated matching. Clearly, the degree of every node
that does not participate in the edges of E was unchanged. Moreover, excluding y and M (z), every
node participates in E twice: Once via an edge that belongs to M, and once via an edge that does
not; hence, the degree of such nodes in M’ is also 1. The degree of y is 1 as it is now matched, and
the degree of M (z) is now zero since M’ does not match it to any node.

Notice that « has at least two neighbors in G, y and M (z). Let W be an arbitrary subset of X such
that z € W. It holds that

(W= M W) < |M'(W)|+ [{M(x)} < [Na(W)|.

Rearranging, we see that |W| < |Ng(W)|; thus, W is not saturated. Since we selected W arbitrarily,
we proved that z does not participate in any saturated set.

Direction <: Assume that there is no M -crossing path from any node in Y to 2. We need to show
that o participates in a saturated set.

Let W C X denote the set of nodes reachable via M-crossing paths from Y, and EW be its
complementary to X, i.e., W = X \ W. In particular, our assumption implies that 2z € W. Observe
that Y, M (W) and M (W) is a partition of Y.

We aim to show that Ng(W) = M(W). Indeed, that suffices as by definition of matching,
|M(W)| = |W|. We claim that every node y € N¢ (W) must be matched to a node in . To see
way this is true, assume the converse. Let z,, denote a neighbor of y in W. If y € Y, then z,, € W
by the way we defined V. Otherwise, y € M (W) (or equivalently, M (y) € W). By definition of
W, there exists a node § € Y for which the path
Z}7x17y17 s T yle(y)
is an M -crossing path. Since (M (y),y) € M,
ngla Y, s Tk Yk, M(y)7yax’q

is an M -crossing path too; however, this is impossible since it would imply that z,, € W. O
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Proposition 13. Ler G = (X UY, E) be a bipartite graph. For every W1, Wo C X it holds that
Ne (Wi NW3) € Ng(Wi) N Ng(Wa).

Proof of Proposition 13. For every v € Ng(W; N Ws) there exists « € Wy N Wy such that
v € Ng({u}). Since u € Wy N Wo, it follows that v € Ng(W7) and v € Ng(Ws); hence,
v EN(;(Wl)ﬁN(;(Wg). O]

D.5 Proof of Corollary 1

Recall the Lemma 1 finds a maximum saturated set in O(/|V||E|), provided that the graph satisfies
the marriage condition.

Proposition 14. Throughout the course of Algorithm 1, every time Line 13 is executed G satisfies
the marriage condition.

Proof of Proposition 14. We prove the claim by induction on the iteration number. The marriage
condition holds for ¢ = 1. At the beginning of the for loop (Line 6), the graph G is empty; after 2! is
added to X (Line 11) the only non-empty subset is {x'}. Notice that according to the way we pick
k*1, 2" has at least one neighbor (a player in Aj.,, see Line 7); hence, {z1} < [Ng: ({z'})| = 1.

Assume the claim holds for iterations 1, ...,¢ — 1. We distinguish two cases:

1. If a maximum saturated set W = () was discovered in Line 13 of iteration ¢ — 1. Due to the
inductive step, when executing Line 13 G satisfies the marriage condition. Afterwards, in
Lines 15-19 we remove W and N¢ (W) altogether. As we show in Proposition 11, every
union of saturated sets is also saturated; therefore, by the end of the ¢t — 1 for every W' C X,
|[W'| < Ng(W").

From that moment on to the time we reach Line 13 in iteration ¢, X is added precisely one
node, z'. Asaresult [W U {z'} < |[W|+1 < |[Ng(W)|+1 < |[Ng(W U {z'})| + 1,
suggesting that |W U {z'}| < [Ng(W)|.

2. Otherwise, the algorithm stepped over the if block of Line 14 in the ¢ — 1’th iteration, and
continued to the ¢’th iteration. In particular, at the beginning of the ¢’th iteration, we have
|W| < Ng(W). From here on we use exactly the same arguments as in the second part of
the previous step.

This completes the proof of the proposition. O

Due to Proposition 14, we can use the run-time guarantees of Lemma 1 for finding the maximum
saturated set. The total run-time of Lines 7 and 8 is O(P1'5T, as we can sort every column in Q and
remove/add rows as we go. The other Lines, 1-5, 9-12, and 14-20 take at most O(P + T') in every
iteration. Finally, notice that for G it holds that \/|V'[|E| < v/P - T - P; hence, by multiplying it P
times (for every iteration of the for loop in Line 6) we get the desired result.
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