Supplementary Material for “The Origins and Prevalence of
Texture Bias in Convolutional Neural Networks”

A Hyperparameters that maximize accuracy do not maximize shape bias

Previous work has found that in addition to model architecture, training procedure details are an
important determiner of the representations a model ends up learning 075367} 635 68} [102).
Extracting optimal performance from neural networks requires tuning hyperparameters for the specific
architecture and dataset. However, the hyperparameters that optimize performance on a held-out
validation set drawn from the same distribution do not necessarily optimize for either shape or
texture bias. In order to determine whether there were consistent patterns in the relationship between
hyperparameters and shape or texture match, we performed a hyperparameter sweep across a grid
of learning rate and weight decay settings. We trained ResNet-50 (2) networks on the 16 ImageNet
superclasses used by Geirhos et al. (36)), taking 1000 images from each superclass, and computed
mean per-class accuracy on the corresponding ImageNet validation subset. We trained networks for
40,000 steps at a batch size of 256 using SGD with momentum of 0.9 with a cosine decay learning
rate schedule and standard random-crop preprocessing, and averaged results across 3 runs.

16-Class ImageNet Accuracy

1003
100-0

Shape Bias

Shape Accuracy

Texture Accuracy

Learning Rate

Figure A.1: Higher learning rates produce greater shape bias. Plots show mean of 3 runs on
16-class ImageNet. Results for hyperparameter combinations achieving <70% accuracy are masked.
We plot weight decay X learning rate because it is more closely related to accuracy than weight

decay (56 [14).

As shown in Figure[AT] higher values of learning rate and weight decay were associated with greater
shape match and shape bias, whereas lower learning rates were associated with greater texture match.
We observed the highest shape match at the highest learning rate where the network could be reliably
trained and the highest texture match at the lowest learning rate tested. Mean per-class accuracy on
16-class ImageNet was sensitive to the value of the product of the weight decay and learning rate, but
relatively insensitive to the value of the learning rate itself.

We hypothesize that these hyperparameters may have a similar effect on training to the forms of
stochastic data augmentation investigated in Section[5] Training with higher learning rates introduces
more minibatch noise into the training process, which may have a similar effect to adding noise to
the input.

17

B Increasing random crop area reduces texture bias

We found that random-crop augmentation biases models towards texture (Section [5). To further
understand the relationship between random-crop augmentation and texture bias, we varied the
proportion of the image covered by the random crops taken at training time. In standard ImageNet
data augmentation, the area of the random crop is sampled uniformly from [0.08,1.0]. Here we
increased the minimum area to 0.16, 0.32, 0.48 and 0.64. With larger minimum area, the average crop
area increases. We did not change the aspect ratio or other data augmentation settings. We observed
that increasing the minimum crop area helps reduce texture bias but also reduces the ImageNet top-1

accuracy.

o
261
0 L
o
m 24
S
2 o
vy
221 Min. crop area
0.08
0.16
® 032
201 ® 048
® 064
74 75 76

ImageNet top-1

Figure B.1: Shape bias increases as a function of minimum crop area, while ImageNet top-1
accuracy decreases. Shape bias versus ImageNet top-1 for ResNet-50.

18

C Supplemental Figures

Geirhos Style Transfer Navon

== shape
=f= texture

100 100

80 80
60 60
40 40

20 20

o o
[} L)

% Accuracy (Max validation reached)

50 100
% Training Data

Geirhos Style Transfer ;4 Tavon ______

100
80 80
g
g 60 60
=
o
< 40 a0
2
20 20
- 0
oO 25 50 75
Epoch

Figure C.1: Networks with limited receptive fields learn texture more easily than shape. Data
efficiency (top row) and learning dynamics (bottom row) for BagNet-17, a model that makes classifica-
tions based on local (17 x 17 pixel) image patches without considering their spatial configuration (11)),
achieved higher texture than shape accuracy on both the GST and Navon datasets.

100 1 1 1 1

1 — ImageNet Top-1 (Baseline)
Texture Accuracy (Baseline)

—— Shape Bias (Baseline)

—— Shape Accuracy (Baseline)

—— Best on ImageNet (Baseline)

— - ImageNet Top-1 (No Crops)
Texture Accuracy (No Crops)

— - Shape Bias (No Crops)

— - Shape Accuracy (No Crops)

— - Best on ImageNet (No Crops)

Accuracy (%)

Epochs

Figure C.2: Random-crop preprocessing results in greater texture bias throughout training.
Plot shows ImageNet top-1 validation accuracy, as well as shape match, texture match, and shape bias
on the GST dataset, for Inception-ResNet v2 models trained with random-crop (solid) and center-crop
(dashed) preprocessing. Although the model trained with center crops achieved substantially lower
peak ImageNet top-1 validation accuracy compared to the model trained with random crops (77.3%
vs. 80.3%), it achieved higher shape match at all stages of training. For both models, texture match
reached its peak very early in training and dropped as training continued.

19

Shape Accuracy, Random-Crop Texture Accuracy, Random-Crop Shape Bias, Random-Crop

o o o+
S| = AlexNet = e
o | = VGG16 - ol
5'” W ResNet50 5” w®
o
o © — |
58 58 og
o o o
Q Q o
<< <g g3
EN ES n
& & &1
om-—mv*’w*—«*—sm"va:x oﬂ)“@'ﬂ“'ﬂ"‘“‘-&m"'ﬂﬂ:& °0“W'U“‘¢‘-"‘--im"'50:.¢
cE3o=8888Yoe5 5509 cE3o=8s888Yo5 5509 c3o=8s88Tc0oe55EE0¢
S285588°"58°E£8¢85¢ £83588°°59°E£8E3¢2 S285588°°58°88:2332
s “ g 2 °% ag=x°= 2“2 2 °% agxo°= s 2 2 S "ggx®°=
® < 3? © < 3? ® < T,%
3 x 3
Shape Label Texture Label Shape Label
Shape Accuracy, Center-Crop Texture Accuracy, Center-Crop Shape Bias, Center-Crop
o o o
= = e
8 =3 o
> =% °®
]] 8
£8 £s 0g
[*] [*]
Seo e So
<°V <°V o
R B n
g g &
o o o
0 EOTRLOEREXDE T O c X 0 EOTRHROEREXDETQ c X QSO T RHOERFREXDETDTO C X
E3o=888T8Ye55EE08 cE8oc=383=s88T 0055500 c 8388 c0o55E¢2e0
s 295385°°So03588cz23 8§ 2958¥°°£ 05 E88€E >3 8§ 2958¥°°£ o588 z3
B o 2 h] &éxo.‘: B o 2 h] g_é‘xo.‘: 2 o 2 S T g__gxob
s < T o ® < ° o ® < fo?
2 2 2
Shape Label Texture Label Shape Label

Figure C.3: Shape match, texture match, and shape bias by shape class (shape match, shape bias)
or texture class (texture match) label on the GST dataset for AlexNet (blue), VGG16 (orange), and
ResNet-50 (green) models trained on ImageNet with random-crop (top row) or center-crop (bottom
TOW) preprocessing.

100
—e— shape

—o— texture

80

60

40

Decoding Accuracy (%)

20

T 2 ¢ g % I 9 2 ¢ 5
c [c [£ c £ ° A &
o 13 o 8 o o] 2
v v v v v

Layer

Figure C.4: Shape is persistently more decodable through the convolutional layers of AlexNet
than is texture, which rises through them. In the fully connected layers, shape decodability
decreases, whereas texture increases. Performance of linear classifiers trained to classify the shape
or texture of GST stimuli given layer activations (including the ReLU for convolutional layers) from
the frozen ImageNet-trained AlexNet whose results also appear in Figure E[)

20

D Supplemental Tables

Table D.1: Color distortion, Gaussian blur, Gaussian noise, and Sobel filtering reduce texture
bias in center-crop models. ResNet-50 models were trained on ImageNet with center crops and
without random flips for 90 epochs. Augmentations were applied with 50% probability

Augmentation Shape Bias Shape Match Texture Match ImageNet Top-1 Acc.
Baseline 25.2% 15.2% 45.1% 69.7%
Rotate 90°, 180°, 270° 19.1% 11.3% 47.9% 70.7%
Cutout 20.3% 12.1% 47.4% 71.5%
Sobel filtering 25.1% 14.4% 42.9% 52.4%
Gaussian blur 29.6% 17.4% 41.5% 68.6%
Color distort. 33.3% 19.9% 39.9% 69.9%
Gaussian noise 42.2% 23.2% 31.7% 67.7%

Table D.2: Linear and nonlinear classifiers trained on self-supervised AlexNet representations
show similar shape bias. We trained multinomial logistic regression classifiers to classify ImageNet
based on the representation of the final AlexNet pooling layer (“pool3”). Although these classifiers
perform worse on ImageNet compared to freezing the convolutional layers and retraining the three
layer MLP at the end of the AlexNet architecture, performance on the GST dataset is similar.

Objective Shape Bias Shape Match Texture Match ~ ImageNet Top-1 Acc.
pool3 MLP pool3 MLP pool3 MLP pool3 MLP
Supervised 332% 29.8% 182% 17.5% 36.5% 412% 53.1% 57.0%
Rotation 51.1% 47.0% 20.6% 21.6% 19.7% 24.3% 36.6% 44.8%
Exemplar 31.7% 299% 12.7% 12.6% 27.4% 29.5% 32.5% 37.2%

Table D.3: k-nearest neighbors evaluation of self-supervised representations. Following the
same procedure as described in section [8] we trained k-Nearest Neighbors classifiers (k=5 with
Euclidean distance; Sklearn implementation) to classify GST images from the layer activations of
ImageNet-trained models, using layer pool3 for AlexNet and the penultimate layer for ResNet-50
v2. To classify a given item (e.g. a knife-elephant), we relabeled each other item in the dataset as a
“shape match” (e.g. shape = knife), “texture match” (texture = elephant), “both match” (other images
of elephant-texture knives), or “other” (e.g. a cat-bottle). We excluded from this set of options items
that had been generated through the neural style transfer process using the same content and/or style
target images as the test item. Table values indicate the percentage of the dataset assigned each label

type.

Objective Shape Match Texture Match Both Match Other
AlexNet ResNet-50 AlexNet ResNet-50 AlexNet ResNet-50 AlexNet ResNet-50
Supervised 10.2% 4.3% 12.6% 60.5% 1.4% 2.2% 75.8% 33.0%
Rotation 13.4% 33% 10.2% 42.7% 1.8% 1.0% 74.7% 53.0%
Exemplar 3.6% 0.3% 30.6% 40.8% 1.6% 0.3% 64.3% 58.6%
BigBiGAN - 15.9% - 34.9% - 4.6% - 44.6%

21

E Methods

E.1 Learning experiments

E.1.1 Dataset considerations

On their own, none of these datasets are unproblematic representations of texture. For the GST dataset,
for example, human subjects were unable to attain good performance on the style classification task
(mean accuracy = 14.2%, chance = 6.25%; analysis of data from (36) human experiment in which
subjects were given texture-biased instructions, originally presented in Fig 10b of (36)) plotted by
shape class; data obtained from (91)). Further, the performance of the style transfer algorithm on
individual images introduces another source of variability, and the fact that style transfer itself relies
on ImageNet-trained CNN features means that the data were not generated independently of the
models being evaluated. The Navon stimuli, meanwhile, strongly deviate from the statistics of natural
images. Finally, the noise textures from ImageNet-C arguably deviate the farthest from what people
generally mean by the term. We hope that presenting results for all three datasets will dilute any
idiosyncracies of the datasets individually. In future work, we hope to create new datasets that
combine the controllability of the Navon stimuli with the naturalism of the GST and ImageNet-C
datasets.

As shown in Figure [C.1] we found that BagNet-17, a model that makes classifications based on
local image patches without considering their spatial configuration (11}, was able to classify shape
less well than texture for both the GST and Navon datasets, suggesting it is necessary to use global
features to classify shape for this dataset.

E.1.2 Dataset splits

Geirhos Style-Transfer (GST) dataset. We created 5 cross-validation splits of the data, using each cv
split for both classification tasks. To create a given split, we held out a single shape exemplar and a
single texture exemplar, and confirmed that no whole shape or texture classes were held out. During
the texture task, then, a model was required to generalize a given texture across exemplars of that
texture; during the shape task, it had to generalize a given shape across exemplars of that shape. The
mean validation size over cv splits was 483 items (40.3% of the data). Although the dataset contains
80 images where shape and texture match, (36) excluded these when computing shape and texture
bias, and we exclude these from our experiments.

Navon dataset. For the Navon dataset, we created 5 cv splits independently for each task. For the
shape task, we held out 3 texture classes (e.g. the letters “T”, “U”, “E”), and for the texture task, we
held out 3 shape classes. The validation size was 375 items (11.5% of the data).

ImageNet-C dataset. We split each version of the dataset separately for the shape and texture tasks.
For the shape task, we held out 2 texture classes (e.g. “snow”, “fog”); for the texture task, we held
out two shape classes (e.g. wnid’s “n01632777”, “n03188531”). The validation size was 9,500 items
(10.5% of the data).

E.1.3 Training

We trained AlexNet models with the output layer modified to reflect the number of classes present in
the dataset at hand (GST: 16, Navon: 26, ImageNet-C: 19). We additionally reduced the widths of
the fully connected layers in proportion to the reduction in number of output classes vs. ImageNet.

We preprocessed training and validation images by normalizing the pixel values by the mean and
standard deviation of the subset of data used for training. For the GST and ImageNet-C datasets, we
randomly horizontally flipped each training image with p = 0.5 during training.

In subsampling the training data, we enforced the condition that an instance of each shape and texture
class appear at least once. For the GST dataset, we held out one texture and one shape exemplar in
each split; for other datasets, we held out shape classes when training on texture and texture classes
when training on shape. We trained all models for 90 epochs using Adam (53) with a learning rate of
3 x 1074, weight decay of 10~*, and batch size of 64.

22

E.2 Evaluation of shape bias, shape match, and texture match

To evaluate shape and texture match and shape bias in ImageNet-trained models, following (36)), we
presented models with full, uncropped images from the GST dataset, collected the class probabilities
returned by the model, and mapped these to the 16 superclasses defined by (36)) by summing over the
probabilities for the ImageNet classes belonging to each superclass. Shape match was the percentage
of the time a model correctly predicted probe items’ shapes, texture match was the percentage of the
time the model correctly predicted probe items’ textures, and shape bias was the percentage of the
time the model predicted shape for trials on which either shape or texture prediction was correct.

E.3 Data augmentation experiments

E.3.1 Models

AlexNet, VGG16. We used implementations available through torchvision (https://github,
com/pytorch/vision). We trained these models for 90 epochs using SGD with a momentum
of 0.9, an initial learning rate of 0.0025, and a batch size of 64, and with weight decay of 10~%. We
decayed the learning rate by a factor of 10 at epochs 30 and 60. We evaluated shape bias and shape
and texture match at the point over the training period corresponding to maximum classification
accuracy on the validation set.

ResNet-50. We used the ResNet-50 implementation available as part of the SimCLR (13) opensource
code (85). We trained the model for 90 epochs using SGD with a momentum of 0.9 at a batch size of
4096. A cosine learning rate decay was used similar to (13)).

Inception-ResNet v2. We used the implementation from TensorFlow-Slim (https://githubl
com/tensorflow/models/tree/master/research/slim), trained as described in Sec-
tion To evaluate shape and texture match, we used the checkpoint that achieved the highest
accuracy on the ImageNet validation set, at 122 epochs with random crops and 58 epochs without
random crops.

Our results for AlexNet and VGG16 differ slightly from those in Geirhos et al. (36), which reported
shape biases of AlexNet (42.9%) and VGG16 (17.2%) models implemented in Caffe. Since pub-
lication of their paper, they have reported the shape biases for PyTorch implementations of these
models, with the random-crop preprocessing we have described, obtaining 25.3% for AlexNet, 9.2%
for VGG16, 22.1% for ResNet-50 (91). Using the pretrained models available through PyTorch’s
model zoo, which uses random-crop preprocessing, we obtained comparable results to theirs: 26.9%
for AlexNet, 10% for VGG16, and 22.1% for ResNet-50; slight differences may be due differences in
random initialization. These models were trained with a batch size of 256, but the results we report in
Table[T]and Figure [C.3]for our models trained at batch size 64 are within a few percentage-points of
the larger-batch-size models.

E.3.2 Augmentation operators

For all experiments presented in Section [5] (Tables Figure[3), we used random-flip augmenta-
tion. In addition, we tested the effects of color distortion (color jitter with probability of 80% and
color drop with probability of 20%), rotation, cutout, Gaussian noise, Gaussian blur (kernel size was
10% of the image width/height), Gaussian noise, and Sobel filtering, all as specified by (13). Unless
otherwise noted, we applied augmentations to each example with a probability of 50% (which is
equivalent to randomly selected roughly 50% of the total examples in each mini-batch of 4096 items).
An illustration of these augmentations, reproduced by permission of (13), appears in Figure [E.1]

E.4 Self-supervised representation experiments
E.4.1 Self-supervised training

AlexNet. We trained AlexNet models from scratch using a modified version of the code provided
by Kolesnikov et al. (54). Unlike AlexNet models used for other experiments, these models were
trained using TensorFlow rather than PyTorch, and thus the shape and texture bias of the base-
line supervised model are slightly different. As the base network, we used the AlexNet imple-
mentation from TensorFlow-Slim (https://github.com/tensorflow/models/tree/

23

https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

(a) Original

(g) Gaussian noise (h) Gaussian blur (i) Sobel filtering

Figure E.1: Illustrations of the studied data augmentation operators. Each augmentation can transform
data stochastically with some internal parameters (e.g. rotation degree, noise level). Reproduced by
author permission from (13)), which contains detailed descriptions of augmentation operations.

master/research/slim). For consistency with the PyTorch AlexNet, we modified the first
convolutional layer of the TensorFlow-Slim network to use padding and trained at 224 x 224 pixel
resolution. Unlike Gidaris et al. (39)), we did not use batch normalization. We trained all AlexNet
models for 90 epochs using SGD with momentum of 0.9 at a batch size of 512 examples, with a
weight decay of 1e — 4 and an initial learning rate of 0.02. We decayed the learning rate by a factor of
10 at epochs 30 and 60. For all models, we used preprocessing consisting of random crops sampled
as random proportions of the original image size and random flips.

ResNet-50 v2. For rotation, exemplar, and supervised losses, we used ResNet-50 v2 models made
available as part of the Visual Task Adaptation Benchmark (104 [935). For BigBiGAN, we used the
public model 21).

SimCLR and ResNet-50 w/ SimCLR augmentation. For SImCLR and ResNet-50 w/ SimCLR aug-
mentation (Tabled), we used models made available as part of the SimCLR (13) open-source code

E.4.2 Training supervised classifiers on self-supervised representations

We trained all classifiers using SGD with momentum of 0.9 with data augmentation consisting of
random flips and random crops obtained by resizing the image to 256 pixels on its shortest side and
cropping 224 x 224 regions. This less aggressive form of cropping was used for training classifiers

24

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

on top of self-supervised representations in previous work (39;154;[25), and we found it to be essential
to produce their results.

For fair comparison between supervised and self-supervised models, Table [presents supervised
AlexNet results where the network was first trained with aggressive random crops sampled as random
proportions of the original size and random flips, and then the convolutional layers were frozen and
the fully connected layers were retrained with the less aggressive cropping strategy described above,
thus replicating the training procedure for the self-supervised AlexNet models. However, the model
obtained by retraining the fully connected layers performed very similarly to the original model. Both
obtained ImageNet top-1 accuracies of 57.0%, and shape bias was also nearly identical (original
model: 30.6%; model with retrained fully connected layers: 29.9%).

Logistic regression on ResNet representations. We trained for 520 epochs at a batch size of 2048 and
an initial learning rate of 0.8 without weight decay, decaying the learning rate by a factor of 10 at 480
and 500 epochs.

AlexNet MLP training. When retraining the MLP at the end of AlexNet networks, we trained for 90
epochs at a batch size of 512 with an initial learning rate of 0.02. decayed by a factor of 10 at 30 and
90 epochs. We optimized weight decay by choosing the best value out of {1072,107%,107°, 1076}
on a held-out set of 50,046 examples, and then trained on the full ImageNet dataset. Optimal values
for weight decay were 10~ for the supervised model, 10~ for rotation, and 10~ for the exemplar
loss.

Logistic regression on AlexNet pool3 layer. We trained for 600 epochs, decaying the learning rate by
a factor of 10 at 300, 400, and 500 epochs. As for AlexNet MLP training, we optimized weight decay
on a held out validation set. The optimal values did not change.

E.4.3 Statistical modeling

We performed statistical modeling of the effects of self-supervised loss and architecture using logistic
regression. We modeled the logit of the probability of correct shape/texture classification of each
example with each network as a linear combination of effects of architecture, loss, the individual
example, and an intercept term. This model is a generalization of repeated measures ANOVA where
the dependent variable is binary. We fit the model using iteratively reweighted least squares using
statsmodels (82)). We excluded examples that all networks classified correctly or incorrectly; these
do not affect the values of parameters corresponding to architecture or loss, but cause per-example
parameters to diverge during model fitting. Coefficients provided in the paper are maximum likelihood
estimates with Wald confidence intervals computed based on the corresponding standard errors from
the Fisher information matrix.

E.5 Architecture experiments

E.5.1 Training settings for comparison of ImageNet architectures

We trained at a batch size of 4096 using SGD with Nesterov momentum of 0.9 and weight decay
of 8 x 107° and performed evaluation using an exponential moving average of the training weights
computed with decay factor 0.9999. The learning rate schedule consisted of 10 epochs of linear
warmup to a maximum learning rate of 1.6, followed by exponential decay at a rate of 0.975 per epoch.
For all conditions we randomly horizontally flipped images and performed standard Inception-style
color augmentation.

E.6 Decoding experiments

We decoded from the center-crop AlexNet that appears in Table|l} and from a center-crop ResNet-50
model implemented in torchvision (https://github.com/pytorch/vision) and trained
for 90 epochs using SGD with momentum of 0.9 at a batch size of 64 and with weight decay of 10~%,
The initial learning rate was 0.025, which we decayed by a factor of 10 at epochs 30 and 60. We
randomly horizontally flipped training images. This model had a shape bias of 25.9%, shape match
of 15.7%, texture match of 44.9%, and ImageNet top-1 accuracy of 70.6%.

We trained linear classifiers to classify either the shape or texture of the GST images given activations
from some model layer. For each model layer-task pair, we first found a learning rate that effectively

25

https://github.com/pytorch/vision

optimized the classifier, then searched over weight decay settings. We evaluated the mean classifica-
tion accuracy for classifiers trained separately on each of the 5 splits of the data described in[E.1.2]
We trained each classifier for 90 epochs using Adam (53)) at batch size 64.

26

