
We thank all three reviewers for their insightful feedback! We appreciate the positive comments regarding our main1

theoretical results (R2, R3, R4) and also our application case-study (R2, R3). We have addressed all reviewer comments2

in the following and will also incorporate the feedback in our paper. @R2, restating bound of Theorem 3.1: Yes.3

For instance, setting ε = min{ε1, ε2}, the bound can be further upper-bounded by (1 + 2
√

2k)/(8
√
k − 1) exactly,4

provided k ≥ 5. However, we think that doing so does not demonstrate the full potential of that theorem. In particular,5

we interpret ε as the desired recovery error level, and therefore not having ε in the RHS limits the error bound only6

in terms of problem parameter k as already noted by the reviewer. @R2, reference for the statement on line 119:7

Please see Theorem 2.2 in Mao et al. [2020]. We shall also include this reference in our submitted paper. @R2, matrix8

multiplication in step 5 of algorithm 2 in O(n2) time: The matrix product in step 5 is R − ps′p
T
s′R

‖ps′‖2 . Computing9

ps′p
T
s′R takes O(n2) time provided we first compute the matrix-vector product pT

s′R and then right-multiply the10

resulting vector to ps′ (which is a vector outer product). Then computing ‖ps′‖2 and ps′p
T
s′R

‖ps′‖2 take O(n) and O(n2)11

time respectively. Lastly, subtracting the matrix obtained in the previous sentence from R also takes O(n2) time since12

we perform exactly n2 subtractions. @R2, mildness of assumption cmin/cmax > 1/2 in Theorem 3.4: Corollary13

B.2 in the supplemental shows that this assumption is satisfied by a vast margin with very high probability when all14

k Dirichlet parameters are equal. In fact, an analogous result can also be shown using the same techniques when15

some Dirichlet parameters are not equal. We highlight that this is an improvement to the recovery guarantee of16

competing GeoNMF which works only in the equal Dirichlet parameter setting. @R2, broader impact: We shall add17

more discussion on the broader impact. @R3, comparison with modularity models for protein complex detection:18

Indeed modularity-based methods may potentially be applied to protein complex detection. However, these methods are19

mainly heuristics and they suffer from the lack of recovery guarantees. Our main objective in this work is to advance20

a general-purpose mathematical theory for overlapping community detection. @R3, LP in linear time claim (line21

134-135): The LP effectively requires x to be in the column range of P . However, since P = ΘBΘT (according to22

MMSB), it has rank k with high probability. Consequently, the column range of P is same as the column range of Q23

where Q is an n× k matrix whose columns denote the k eigenvectors of P corresponding to its nonzero eigenvalues.24

This implies that the LP in step 3 of algorithm 1 is equivalent to {min eT (Qy) subject to Qy ≥ 0, (Qy)J (i) ≥ 1}25

which contains n+ 1 constraints and whose dimension is k. Hence the Megiddo result implies that such LP can be26

solved in O(n) time. Moreover, computing the k largest eigenvectors is a step that appears in many algorithms in27

literature (including the competing GeoNMF) and can be achieved in O(n2) time using randomized SVD techniques28

(Halko et al. [2011]). We shall include these clarifying remarks and references in even more detail in our submitted paper.29

@R4, using different real-world network, and poor performance against state-of-the-art algorithms: To our best30

knowledge, there does not exist a real-world dataset of weighted graphs for which an independently derived ground-truth31

validation set also exists. If the R4 can point us to one, we would be very happy to use it in our future works. Regarding32

the performance against other methods, as mentioned in the paper, protein complex detection is a well-studied problem33

in computational biology for which many tailor-made heuristics exist. However, these heuristics do not come with any34

theoretical guarantees and as such the focus of our work is to advance a general-purpose mathematical theory which is35

not restricted to only protein complex detection. It may well be possible to tweak our algorithm so that better results36

for protein complex detection are obtained, but that is not the scope of this work. @R4, time complexity O(n2) of37

presented algorithm is prohibitive, and largest synthetic network has only 5000 nodes: We would like to clarify38

some factual misunderstandings: our largest synthetic network has 12000 nodes, and also, to our best knowledge, there39

does not exist a competing algorithm whose time complexity is under O(n2). We shall update our paper so that these40

aspects are more clear. Indeed in practice our algorithm runs slower compared to competing GeoNMF, and we mention41

improving this as a possible future direction. This increase in running time is traded-off with improved recovery42

guarantees; our recovery algorithm is effectively parameter-free, does not require pure nodes, allows for different43

community sizes and any general full-rank community interaction matrix B, and provides smaller recovery error.44

@R4, adding more experiments since algorithms behave differently on different datasets, and more discussion45

of algorithm and results: We shall update the paper as suggested to include a discussion of the algorithm and the46

results! While we agree that algorithms sometimes perform differently on different datasets, analyzing such patterns47

entails a much more comprehensive experimental comparison across diverse datasets and algorithms. Such a study48

is beyond the scope of this work since our main contribution is on the theoretical side. Therefore we compare our49

algorithm with a highly-cited domain-specific algorithm (ClusterONE). However this is a useful future work direction.50
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