A Proofs

Proof of Theorem[2} The Kantorovich Rubinstein (KR) distance is defined as follows.

KR(:U/7V) = min / C(l’,y)dﬂ'(l’,y) +)\||,u—proj17r||1 +>\||V—proj27rH1
meU ™ (m,v) Jxxx

where A € R is a parameter. When \.(z) = Ag(z) = A (Vx € X), the GKR distance recovers the
KR distance. The optimal partial transport distance is defined as follows.

OPT(u,v) = min / c(x,y)dr(z,y),
T€U (1,v) Jx x x

where £ < min(||p|l1,||¥||1) is a parameter and U, (u,v) = {7 € M(X x X) | proj;m <
i, projom < v, ||7||1 = K} is the set of partial couplings. We prove the theorem by reduction from
the following problem.

Problem 9 (Bichromatic Hamming Close Pair (BHCP) problem [2]). Input: Two sets A, B C
{0, 1} of n binary vectors. Output: The closest pair distance minge 4 pes ||@ — b1

Lemma 10 (Alman et al. [2l]). If there exists an algorithm that solves Problem@] in O(nQ_E) time
for d = w(logn) and some € > 0, SETH is false.

The KR distance: We prove the contraposition of Theorem [2] for the KR distance. Suppose there
exists an algorithm that computes the KR distance in O(n?~¢) time for some ¢ > 0 on d = w(logn)
dimensional L, metric space. We solve the BHCP problem using this algorithm. Let A, B C {0,1}¢
be any sets ofn binary vectors and 0 = minge apei [[@a—bll1. Let = 4 dgandv =, ;s b,
where d,, is a Dirac mass at z. For a € A, b € B, we use c(a, b) = [[a — ||} = [|a — b]|1 as a cost
function. We prove that KR (p, ) = 2An if A < §/2 and KR (p, v) < 2An otherwise. If A < §/2,

KR(p,v)
= mm ZZ xyﬂ'xy+)\z J Zﬂ'xy +)\Z<Vy Zﬁx7y)
U (V) zeAyeB z€A yeB yeB zeA
> mln ZZZ/\ny—i-/\Z J way —i—)\Z( Zﬂ'xy>
meu a:E.A yeB z€A yeB yeB zeA
=i DAY D My A AD e —AD D ATy AD 1y =AY D
mEU™ (1) rzeAyeB zeA reAyEB yeB yeBxecA
:/\Zuw—&—)\ZVy:Q/\n.
zeA yeB

Moreover, if A\ > /2, we take a* € A and b" € B such that ||a* — b*[|; < 2\. Let 7* be a
subcoupling such that 7(a*,b*) = 1 and 7(a, b) = 0if a # a* or b # b*. Then,

KR(p,v)

= Irlin ZZ xywmer)\Z Mo — Z’]Txy +)\Z<1/y Z’R’my>

u
meU (1) zeAyeB zeA yeB yeB z€EA

<Y clwmy, FAD ] e Yo, | A ( - w:;,y>

zeAyeB zEA yeB yeB z€A

=lla* = b"|hm(@® ")+ AD pa = AD D AT, AAD =AY >

zeA zeAyeB yeB yeBzec A
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<22+ An— A+ An— )\ =2\n.

Therefore, a binary search algorithm can determine § by calling an algorithm for the Kantorovich
Rubinstein distance in O(log n) time because 4 is an integer between 0 and n. This means that we
can solve the BHCP problem in O(n?~< logn) < O(n?~¢/?) time. From Lemma|10} this indicates
that SETH is false.

Optimal partial transport: We prove the contraposition of Theorem [2| for the optimal partial
transport distance. Suppose there exists an algorithm that computes the optimal partial transport
distance in O(n?~¢) time for some ¢ > 0 in d = w(logn) dimensional L, metric space. We solve
the BHCP problem using this algorithm. Let A, B C {0, 1} be any sets of n binary vectors and
6 = mingeapes |la —bll1. Let p = >, c 4 0q and v = ), 2 O, Where 6, is a Dirac mass at .

Fora € A,b € B, weuse c(a,b) = [la — b||b = ||a — bl|1 as a cost function. Then, if we set k = 1,
the optimal partial transport distance recovers the closest pair distance. Therefore, we can solve the
BHCP problem in O(n?~¢) time. From Lemma this indicates that SETH is false. O
Proof of Theorem 3]

Lemma 11 ([33]]). Let OT,,. be the OT distance with Euclidean cost co.c(x,y) = ||x — y||2. Let
OT e be the OT distance with quadtree cost Ciee(x,y) = dr(x,y), where T is a quadtree. There
exists a constant Cor such that for any measures pn and v, OT e (11, V) < Cor - OT oo (u, v) holds. If
we randomly translate measures when we construct a quadtree, there exists a constant Dor such that
E7[OT e (14, )] < Dor - OT (11, v) log A, where A is the spread.

Upper bound. We first prove that GKReye (11, ) < C' - GKRyee (12, V). Let C' = max(1, Cor) and
Teee D€ the optimal coupling of GKR e (14, V).

C : GKRtree(Ma V)

—C [ mednin 4 C / Aad(jt — projy i) + C / Aed(v — projymie)
XXX X X

= ' OT e (P10 Ml PrOfyTee) + C /X Mad(j — projy i) + C /X Aed(v — projymtee)
> COT : OTll‘ee(prOjlﬂtT‘eeﬂ prOjQthee) + ~/X )‘dd(lu’ - projlﬂ—tﬂ;ee) + /X )‘Cd(y - prOjQWLtee)

> OTBUC(prOjlﬂttewpr0j27T:;ee) + /X )‘dd(u - projlﬂ;ee) + /X )‘Cd(y - pr0j27r:;ee)

> GKReuc(ﬂv V)
Lower bound. We then prove that E7[GKRyee(pt, )] < D - GKReye(p, v) log A, Let D =
maux(ﬁ7 Dor) and 7%, be the optimal coupling of GKReye (1, /).

euc

D - GKRey(pt, v) log A

= DlogA CenedTy. + Dlog A/ Aad(p — proj, i) + D log A/ Acd(V — projomie)
XxX X X

=D IOg A OTCUC(prOjlﬂ-:uc’ pr0j27r:uc) + D 1Og A/ )‘dd(/-‘ - projl”:uc) + D log A/ )‘cd(l/ - projzﬂ-:uc)
X X
2 DOT IOgA : OTeuC (projlﬂ:uc’pronW:uc) + / )‘dd(:u - projlﬂ-:uc) + / /\Cd(V - prOjQﬂ-:uc)
X X
2 ET[OTU'ee(projlﬂ;ee?proj2ﬂ-;ee)} + / )‘dd(:u - pI'Ojlﬂ';uc) + / /\Cd(y - pronﬂ-:uc)
X X

= ET[OTUee(prOjlﬂ;ewprOjQﬂ-:;ee) + / /\dd(p’ - projlﬂ-:uc) + / )‘Cd(l/ - prOjQﬂ-;ucﬂ
X X

Z ET[GKRtree(N7 V)]
O

Proof of Lemma[3] In a leaf node v, t, is convex from Eq.(I). If ¢, is convex, e, is convex from
Eq. because both |z| - w(v,p(v)) and ¢, are convex. If e, and e, are convex, t, ., is convex
from Eq. . Therefore, ¢, and e, are convex by induction. Next, we prove that ¢, and e, are
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piece-wise constant with at most 3|, | segments. In a leaf node v, |B(t,)| = 2 < 3 from Eq.
and |B(e,)| < |B(t,)| +1 = 3 < 3 from Eq. (2). In an internal node p with children v and
u, |B(tp)| = |B(ty)| + |B(ts)|] < 3(]&,| — 1) from Eq. and the inductive hypothesis and
|B(ep)| < |B(tp)] + 1 < 3|X,| — 2 from Eq. @2). Therefore, ¢, and e, are piece-wise constant with
at most 3| X, | segments. O

Proof of Theorem[/] In each node, computing Eq. (i.e., Line 4 in Algorithm 1) requires O(1)
time. Computing Eq. (2) (i.e., Line 7 in Algorithm [I) requires O(log |X;|) < O(logn) time because
adding a constant to elements of a range of a balanced binary tree requires logarithmic time, and the
number of elements in the balanced binary tree is O(|X,|) from Lemmal[5] Therefore, computing
Eq. (2) require O(nlogn) time in total. Due to the weighted-union heuristics, there are O(n logn)
insertion operations to compute Eq. (3) (i.e., Line 11 in Algorithm([I)) in total. Because an insertion
operation of a balanced binary tree requires logarithmic time, computing Eq. (3 requires O(n log2 n)
time in total. Therefore, the total time complexity is O(n log2 n). O

B Triangle Inequality

We prove that the triangle inequality holds if the two conditions mentioned in the main text hold.
Intuitively, it is cheaper to transport/create/destruct mass directly than to transport them to intermediate
places or to create/destruct at intermediate places. We provide a proof for the discrete case. The
continuous case can be proved similarly.

Theorem 12. GKR(u,n) < GKR(u,v) + GKR(v,n) holds for any p = Y .y 0p0q v =
Yowex belz M = D cx a0z if (1) cost d is a metric and (2) Aa(x) < c(z,y)Na(y) and
Ac(y) < Ae(z) + c(z,y) hold for any z,y € X.

Proof. Let P and @ be the optimal transportation matrix for GKR (1, ) and GKR(v, 7). Thus,
ay > Z P,, =proj, P, (Vz € X),

yexXx
byZ ZPx,y:proj2Py (Vyeé’(),
zeX
GKR(p,v) = Y Pryd(z,y) + > Xa(@) [z — D Poy | + > Ae(®) (by -y Px,y> :
T,yeX rxeX yeX yeX rxeX
by Z Z Qy,z = proley (\V/y € X)a
zeEX
Cc; > Z Qy,z = pronQz (VZ € X)7
yeX
GKR(v,n) = Z Qy,-d(y, z) + Z Aa(y) <by - Z Qy,z) + Z Ae(2) | €2 = Z Qy,-
Y,z€X yeX zeX zeX yeX

Let P = {y € & | proj, P, > proj;Q, > 0} and Q = {y € X' | proj, Q, > proj, P, > 0}, and

P,
Ra:z = .x,y Ll . .
Z max(proj, Py, proj; Qy)

yeEPUQ
Then,
GKR(p,n) < Z R, .d(z,z) + Z Aa() (az - Z Rm,z> + Z Ae(2) <cz — Z Rx,z>
zr,z€X reX zeX zeX TeEX
Px z Pl‘ z
- Y S T 3 S T
vaex yep POty z,2E€X y€Q Proj; Qy
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- Z Z Pryd(z,y) + Z Z @y 2y, 2)

reX yeP zEX yeP
+ Z Z P:c,yd(l‘vy) + Z Z Qy72d(yv Z)
zEX yeQ 2EX yeQ
+ Z )\d(x) Qr — Z Pw,y + Z )\C(Z) Cy — Z Qy,z
reX yeX zEX yeX
proj; Qy
S S (1Y
U;{ y;) proj, Py )~ ™"
proj, Py
+ )‘C(y) <1 - . ) Q 2
zze;vyzeg proj; Qy Y
- Z Z Pz,yd(xa y) + Z Z Qy,zd(ya Z)
rzeEX yeX zEX yeX
+ Z )\d(x) Qp — Z Px,y + Z )\c(z) Cy — Z Qy,z
reX yeX zeX yekX
+ Z Aa(y)(projy Py — proj; Qy) + Z Ac(y)(proj; @y — proj, Py)
yeP yeQ
<N Pydlay)+ YD Qyd(y,2)
reX yex zEX yeX
+ Z Aa(z) | az — Z P,y |+ Z Ae(2) | e — Z Qy.-
zeX yeX zeX yeX
+ ) Xa(y)(by — proj; Qy) + > Ae(y)(by — proj, Py)
yeXx yex

= GKR(, V) + GKR(v, n).

C Identity of Indiscernibles

We prove that GKR(u, v) = 0 iff 1 = v under mild conditions in the discrete case.

Theorem 13. GKR(u,v) = 0 iff u = v holds for any i = 3y G200, V = Y beds if (1)
c(x,x) =0forallx € X and c(x,y) > 0ifx # yand (2) Ae(x) > 0 and Ag(x) > O0forall z € X.

Proof. Suppose p = v. Let P, = 0if x # y and P, = a,(= by). Then, P is a valid transportation
matrix and

Z nyc(x,y) + Z )\d(x) azx — Z Pﬂc,y + Z )‘c(y) (by - Z Px,ll)

T,ycX reX yekX yekX reX
= agc(@,2) + Y Aa(@)(az — az) + Y Ae(@)(bz — ba)
reEX reX reX
=0.

Suppose GKR(y, v) = 0 and let P be the optimal transportation matrix. Then,

g > Z P,, =proj, P, (VzeX),
yeX

by > Y Puy=proj,P, (Vy € X),
zeX
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GKR(y, v) = Z Py yc(z,y) + Z Aa(z) | az — Z Pry | + Z Ac(y) (by - Z Pw,y> =0.

T,yeX reX yeXx yekX reX

Each term is zero because each term must be non-negative. In particular,

Ay = Z P,y

yEX
by = Z Py,
rzeX
because Ag(x) > 0 and A.(z) > 0 for all z € X. Because c(x,y) > 0ifx #y, P, = 0if z # y.
Therefore,
Ay = ZPw,y:Pa:,w
yeX
by = Z Ppy=Pyy,
reX
which means that a, = b, for all x € X and that y = v. O]

D Preprocessing for Analysis

We discuss the validity of the assumption that the input is a binary tree with mass only in leaf nodes.
First, we attach dummy nodes with no mass to nodes so that all internal nodes have at least two
children. For each internal node v, we create a child v” with the same mass as v, connect v and v’ by
an edge with weight 0, and set the mass of v as 0. Then, for each internal node with more than two
children, we create a new child v’, connect v and v’ by an edge with weight 0, and change the parent
of two arbitrary children of v to v’ recursively. Obviously, this transformation blows up the input
size only linearly and does not change the GKR distance. Therefore, we can make the assumptions
without loss of generality.

E Scaling Quadtree

In the approximation error experiments, we scale the edge length of the quadtree using a training
dataset so that the relative error |GKReye — GKRyee|/GKRey is minimized. Specifically, we search
the scale parameter s such that GKR with cost ¢(z, y) = s - d7(z, y) minimizes the relative error. We
use the ternary search to determine the scale parameter. Although the relative error is not necessarily
unimodal, we found this was a good heuristic to determine the scale parameter efficiently.

We also conduct experiments without any training dataset. We determine the scale parameter by simple
heuristics instead of the ternary search. Specifically, we sample some pairs (z1,y1), .- -, (Tx, YK )

of nodes in the quadtree and use the average ratio s = + Zfi 1 ‘fi"f((ig)) of the Euclidean distance

to the tree distance as the scale parameter. Note that this value is independent of the parameters A
of the GKR distance, while the ternary search is dependent. In the Chicago crime dataset, the ratio
is s ~ 0.18. Figure[/|shows the Spearman’s rank correlation coefficient and the relative error of
the same set of 990 pairs of measures as in the main experiment. This shows that the relative error
is worse than that in Figure[5|because the scales of two distances are different, but the Spearman’s
rank correlation coefficient is comparable to that in Figure [5] When one classifies or visualizes
measures, the relative order is important. The high rank correlation indicates that this simple heuristic
is beneficial when no training data are available.

F Approximation Accuracy in high dimensions

The quadtree is NOT restricted to two dimensions [33] and can be constructed efficiently even in
high dimensional spaces [S]. However, the quadtree may degrade its empirical performance in high
dimensional cases [40]. In that case, clustering-based trees can be used [40]. We conduct additional
experiments in high dimensional cases. First, we compute GKR for the Chicago Crime dataset with
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Figure 7: (Top) Spearman’s p and (Bottom) Relative error with the scale parameter determined
without training data but with a simple heuristic.
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Figure 8: Accuracy in high dimensional cases.

the additional time axis, using the quadtree. Each mass represents a crime in the 3-dimensional
(longitude, latitude, time) space. We normalize each dimension so that each dimension has the same
scale. Next, we compute GKR for the (unbalanced) Word Mover’s Distance of the Twitter dataset
[40] using clustering-based trees. Each measure represents a sentence, and each mass represents a
word embedded in a 300-dimensional space computed by a pre-trained language model. We compare
our algorithm with the ground-truth GKR distance in the Euclidean space, as we did in Section [6]
Figure 8] shows that our algorithm can approximate high dimensional GKR accurately.

G Noise Robustness Experiments

We confirm the unbalanced OT distance is robust to noise using shape comparison experiments. We
use cluttered MNIST to this end, where the patch size is 4 with no translation operation. Figure[J]
illustrates the dataset. Foreach £ = 0,1, ..., 16, we generate 10 shapes with k clutters for each class.
The ground space is a 2-dimensional lattice {0, 1,...,27} x {0, 1,...,27}, and the amount of mass
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in each point corresponds to the normalized brightness of the pixel. We use two baseline methods: the
Sinkhorn algorithm and the tree sliced Wasserstein [40]. The tree sliced Wasserstein corresponds to
GKR with A, = Ay = oco. The Sinkhorn algorithm uses the Euclidean distance between two masses
as the cost matrix. We use quadtree for the tree sliced Wasserstein and GKR. We set A, = Ay = 8 for
the GKR distance. We classify each digit by 1-NN using each distance. Figure[T0|plots the accuracy
of each distance. The accuracies of all distances are comparable for £ = 0 (i.e., no noise), but the
GKR distance outperforms the other two methods for noisy shapes. This indicates that the GKR
distance is robust to noise compared to the standard optimal transport distance.

Comparison with Generalized Sinkhorn. We also compared our algorithm with the generalized
Sinkhorn algorithm [18]] using the same setting. We compute Euclidean UOT (i.e., without tree
approximation) using the generalized Sinkhorn algorithm and carry out 1-NN classification. We use
the KL divergence as the regularizer and set the hyperparameters to ¢ = 0.01 and A = 0.01. Figure
[[T]shows that the generalized Sinkhorn is also robust to noise compared to standard optimal transport
distances. Since the generalized Sinkhorn requires at least O(n?) time, its applicability is limited to
thousand-scale datasets. In contrast, our algorithm is applicable to million-scale datasets keeping its
performance.

H Document Classification Experiments

To show further use-cases of GKR, we conducted document classification, following [38|140]]. We use
the Twitter dataset [40]]. Each mass represents a word, and each measure represents a document (i.e.,
a tweet). We use word2vec embedding trained on the Google News corpus for the word embedding.
Thus, the ground space is a 300-dimensional Euclidean space. We compute the GKR distance
between pairs of documents exactly (without tree approximation), and carry out 1-NN classification.
Note that when A — 0o, GKR does not create nor delete mass due to high creation and destruction
costs, thus GKR is reduced to standard OT (i.e., word mover’s distance). We measure the accuracy
using documents with more than three words in our evaluation. Figure [I2]reports the performances
of our algorithm and the word mover’s distance. This result indicates that GKR performs well in
document classification. This is intuitively because GKR can ignore noisy words thanks to the mass
creation and destruction mechanism. We hypothesize that this tendency can be extended to other OT
applications. We will explore more applications in future work.
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Figure 10: 1-NN classification accuracy for the cluttered MNIST dataset.
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Figure 11: Comparison with the generalized Sinkhorn algorithm using the cluttered MNIST dataset.
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Figure 12: 1-NN classification accuracy for the twitter dataset.
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