
A Proofs

Proof of Theorem 2. The Kantorovich Rubinstein (KR) distance is defined as follows.

KR(µ, ν) = min
π∈U−(µ,ν)

∫
X×X

c(x, y)dπ(x, y) + λ‖µ− proj1π‖1 + λ‖ν − proj2π‖1

where λ ∈ R+ is a parameter. When λc(x) = λd(x) = λ (∀x ∈ X), the GKR distance recovers the
KR distance. The optimal partial transport distance is defined as follows.

OPT(µ, ν) = min
π∈Uκ(µ,ν)

∫
X×X

c(x, y)dπ(x, y),

where κ ≤ min(‖µ‖1, ‖ν‖1) is a parameter and Uκ(µ, ν) = {π ∈ M(X × X) | proj1π ≤
µ, proj2π ≤ ν, ‖π‖1 = κ} is the set of partial couplings. We prove the theorem by reduction from
the following problem.

Problem 9 (Bichromatic Hamming Close Pair (BHCP) problem [2]). Input: Two sets A,B ⊂
{0, 1}d of n binary vectors. Output: The closest pair distance mina∈A,b∈B ‖a− b‖1.

Lemma 10 (Alman et al. [2]). If there exists an algorithm that solves Problem 9 in O(n2−ε) time
for d = ω(log n) and some ε > 0, SETH is false.

The KR distance: We prove the contraposition of Theorem 2 for the KR distance. Suppose there
exists an algorithm that computes the KR distance in O(n2−ε) time for some ε > 0 on d = ω(log n)
dimensional Lp metric space. We solve the BHCP problem using this algorithm. Let A,B ⊂ {0, 1}d
be any sets of n binary vectors and δ = mina∈A,b∈B ‖a−b‖1. Let µ =

∑
a∈A δa and ν =

∑
b∈B δb,

where δx is a Dirac mass at x. For a ∈ A, b ∈ B, we use c(a, b) = ‖a− b‖pp = ‖a− b‖1 as a cost
function. We prove that KR(µ, ν) = 2λn if λ ≤ δ/2 and KR(µ, ν) < 2λn otherwise. If λ ≤ δ/2,

KR(µ, ν)

= min
π∈U−(µ,ν)

∑
x∈A

∑
y∈B

c(x, y)πx,y + λ
∑
x∈A

µx −∑
y∈B

πx,y

+ λ
∑
y∈B

(
νy −

∑
x∈A

πx,y

)

≥ min
π∈U−(µ,ν)

∑
x∈A

∑
y∈B

2λπx,y + λ
∑
x∈A

µx −∑
y∈B

πx,y

+ λ
∑
y∈B

(
νy −

∑
x∈A

πx,y

)

= min
π∈U−(µ,ν)

2λ
∑
x∈A

∑
y∈B

2λπx,y + λ
∑
x∈A

µx − λ
∑
x∈A

∑
y∈B

λπx,y + λ
∑
y∈B

νy − λ
∑
y∈B

∑
x∈A

πx,y

= λ
∑
x∈A

µx + λ
∑
y∈B

νy = 2λn.

Moreover, if λ > δ/2, we take a∗ ∈ A and b∗ ∈ B such that ‖a∗ − b∗‖1 < 2λ. Let π∗ be a
subcoupling such that π(a∗, b∗) = 1 and π(a, b) = 0 if a 6= a∗ or b 6= b∗. Then,

KR(µ, ν)

= min
π∈U−(µ,ν)

∑
x∈A

∑
y∈B

c(x, y)πx,y + λ
∑
x∈A

µx −∑
y∈B

πx,y

+ λ
∑
y∈B

(
νy −

∑
x∈A

πx,y

)

≤
∑
x∈A

∑
y∈B

c(x, y)π∗x,y + λ
∑
x∈A

µx −∑
y∈B

π∗x,y

+ λ
∑
y∈B

(
νy −

∑
x∈A

π∗x,y

)

= ‖a∗ − b∗‖1π(a∗, b∗) + λ
∑
x∈A

µx − λ
∑
x∈A

∑
y∈B

λπ∗x,y + λ
∑
y∈B

νy − λ
∑
y∈B

∑
x∈A

π∗x,y

14

< 2λ+ λn− λ+ λn− λ = 2λn.

Therefore, a binary search algorithm can determine δ by calling an algorithm for the Kantorovich
Rubinstein distance in O(log n) time because δ is an integer between 0 and n. This means that we
can solve the BHCP problem in O(n2−ε log n) . O(n2−ε/2) time. From Lemma 10, this indicates
that SETH is false.

Optimal partial transport: We prove the contraposition of Theorem 2 for the optimal partial
transport distance. Suppose there exists an algorithm that computes the optimal partial transport
distance in O(n2−ε) time for some ε > 0 in d = ω(log n) dimensional Lp metric space. We solve
the BHCP problem using this algorithm. Let A,B ⊂ {0, 1}d be any sets of n binary vectors and
δ = mina∈A,b∈B ‖a − b‖1. Let µ =

∑
a∈A δa and ν =

∑
b∈B δb, where δx is a Dirac mass at x.

For a ∈ A, b ∈ B, we use c(a, b) = ‖a− b‖pp = ‖a− b‖1 as a cost function. Then, if we set κ = 1,
the optimal partial transport distance recovers the closest pair distance. Therefore, we can solve the
BHCP problem in O(n2−ε) time. From Lemma 10, this indicates that SETH is false.

Proof of Theorem 3.

Lemma 11 ([33]). Let OTeuc be the OT distance with Euclidean cost ceuc(x, y) = ‖x − y‖2. Let
OTtree be the OT distance with quadtree cost ctree(x, y) = dT (x, y), where T is a quadtree. There
exists a constant COT such that for any measures µ and ν, OTeuc(µ, ν) ≤ COT · OTtree(µ, ν) holds. If
we randomly translate measures when we construct a quadtree, there exists a constant DOT such that
ET [OTtree(µ, ν)] ≤ DOT · OTeuc(µ, ν) log ∆, where ∆ is the spread.

Upper bound. We first prove that GKReuc(µ, ν) ≤ C · GKRtree(µ, ν). Let C = max(1, COT) and
π∗tree be the optimal coupling of GKRtree(µ, ν).

C · GKRtree(µ, ν)

= C

∫
X×X

ctreedπ
∗
tree + C

∫
X
λdd(µ− proj1π

∗
tree) + C

∫
X
λcd(ν − proj2π

∗
tree)

= C · OTtree(proj1π
∗
tree, proj2π

∗
tree) + C

∫
X
λdd(µ− proj1π

∗
tree) + C

∫
X
λcd(ν − proj2π

∗
tree)

≥ COT · OTtree(proj1π
∗
tree, proj2π

∗
tree) +

∫
X
λdd(µ− proj1π

∗
tree) +

∫
X
λcd(ν − proj2π

∗
tree)

≥ OTeuc(proj1π
∗
tree, proj2π

∗
tree) +

∫
X
λdd(µ− proj1π

∗
tree) +

∫
X
λcd(ν − proj2π

∗
tree)

≥ GKReuc(µ, ν)
Lower bound. We then prove that ET [GKRtree(µ, ν)] ≤ D · GKReuc(µ, ν) log ∆. Let D =
max(1

log ∆ , DOT) and π∗euc be the optimal coupling of GKReuc(µ, ν).
D · GKReuc(µ, ν) log ∆

= D log ∆

∫
X×X

ceucdπ
∗
euc +D log ∆

∫
X
λdd(µ− proj1π

∗
euc) +D log ∆

∫
X
λcd(ν − proj2π

∗
euc)

= D log ∆ · OTeuc(proj1π
∗
euc, proj2π

∗
euc) +D log ∆

∫
X
λdd(µ− proj1π

∗
euc) +D log ∆

∫
X
λcd(ν − proj2π

∗
euc)

≥ DOT log ∆ · OTeuc(proj1π
∗
euc, proj2π

∗
euc) +

∫
X
λdd(µ− proj1π

∗
euc) +

∫
X
λcd(ν − proj2π

∗
euc)

≥ ET [OTtree(proj1π
∗
tree, proj2π

∗
tree)] +

∫
X
λdd(µ− proj1π

∗
euc) +

∫
X
λcd(ν − proj2π

∗
euc)

= ET [OTtree(proj1π
∗
tree, proj2π

∗
tree) +

∫
X
λdd(µ− proj1π

∗
euc) +

∫
X
λcd(ν − proj2π

∗
euc)]

≥ ET [GKRtree(µ, ν)]

Proof of Lemma 5. In a leaf node v, tv is convex from Eq.(1). If tx is convex, ex is convex from
Eq. (2) because both |x| · w(v, p(v)) and tx are convex. If ev and eu are convex, tp,x is convex
from Eq. (3). Therefore, tv and ev are convex by induction. Next, we prove that tv and ev are

15

piece-wise constant with at most 3|Xv| segments. In a leaf node v, |B(tv)| = 2 ≤ 3 from Eq. (1)
and |B(ev)| ≤ |B(tv)| + 1 = 3 ≤ 3 from Eq. (2). In an internal node p with children v and
u, |B(tp)| = |B(tv)| + |B(tu)| ≤ 3(|Xp| − 1) from Eq. (1) and the inductive hypothesis and
|B(ep)| ≤ |B(tp)|+ 1 ≤ 3|Xp| − 2 from Eq. (2). Therefore, tv and ev are piece-wise constant with
at most 3|Xv| segments.

Proof of Theorem 7. In each node, computing Eq. (1) (i.e., Line 4 in Algorithm 1) requires O(1)
time. Computing Eq. (2) (i.e., Line 7 in Algorithm 1) requires O(log |Xx|) . O(log n) time because
adding a constant to elements of a range of a balanced binary tree requires logarithmic time, and the
number of elements in the balanced binary tree is O(|Xx|) from Lemma 5. Therefore, computing
Eq. (2) require O(n log n) time in total. Due to the weighted-union heuristics, there are O(n log n)
insertion operations to compute Eq. (3) (i.e., Line 11 in Algorithm 1) in total. Because an insertion
operation of a balanced binary tree requires logarithmic time, computing Eq. (3) requires O(n log2 n)
time in total. Therefore, the total time complexity is O(n log2 n).

B Triangle Inequality

We prove that the triangle inequality holds if the two conditions mentioned in the main text hold.
Intuitively, it is cheaper to transport/create/destruct mass directly than to transport them to intermediate
places or to create/destruct at intermediate places. We provide a proof for the discrete case. The
continuous case can be proved similarly.

Theorem 12. GKR(µ, η) ≤ GKR(µ, ν) + GKR(ν, η) holds for any µ =
∑
x∈X axδx, ν =∑

x∈X bxδx, η =
∑
x∈X cxδx if (1) cost d is a metric and (2) λd(x) ≤ c(x, y)λd(y) and

λc(y) ≤ λc(x) + c(x, y) hold for any x, y ∈ X .

Proof. Let P and Q be the optimal transportation matrix for GKR(µ, ν) and GKR(ν, η). Thus,

ax ≥
∑
y∈X

Px,y = proj1Px (∀x ∈ X),

by ≥
∑
x∈X

Px,y = proj2Py (∀y ∈ X),

GKR(µ, ν) =
∑
x,y∈X

Px,yd(x, y) +
∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
y∈X

λc(y)

(
by −

∑
x∈X

Px,y

)
,

by ≥
∑
z∈X

Qy,z = proj1Qy (∀y ∈ X),

cz ≥
∑
y∈X

Qy,z = proj2Qz (∀z ∈ X),

GKR(ν, η) =
∑
y,z∈X

Qy,zd(y, z) +
∑
y∈X

λd(y)

(
by −

∑
z∈X

Qy,z

)
+
∑
z∈X

λc(z)

cz −∑
y∈X

Qy,z

 .

Let P = {y ∈ X | proj2Py > proj1Qy > 0} and Q = {y ∈ X | proj1Qy > proj2Py > 0}, and

Rxz =
∑

y∈P∪Q

Px,yQy,z
max(proj2Py, proj1Qy)

.

Then,

GKR(µ, η) ≤
∑
x,z∈X

Rx,zd(x, z) +
∑
x∈X

λd(x)

(
ax −

∑
z∈X

Rx,z

)
+
∑
z∈X

λc(z)

(
cz −

∑
x∈X

Rx,z

)

=
∑
x,z∈X

∑
y∈P

Px,yQy,z
proj2Py

d(x, z) +
∑
x,z∈X

∑
y∈Q

Px,yQy,z
proj1Qy

d(x, z)

16

+
∑
x∈X

λd(x)

ax −∑
z∈X

∑
y∈P

Px,yQy,z
proj2Py

+
∑
y∈Q

Px,yQy,z
proj1Qy


+
∑
z∈X

λc(z)

cz −∑
x∈X

∑
y∈P

Px,yQy,z
proj2Py

+
∑
y∈Q

Px,yQy,z
proj1Qy


≤
∑
x,z∈X

∑
y∈P

Px,yQy,z
proj2Py

(d(x, y) + d(y, z)) +
∑
x,z∈X

∑
y∈Q

Px,yQy,z
proj1Qy

(d(x, y) + d(y, z))

+
∑
x∈X

λd(x)

ax −∑
z∈X

∑
y∈P

Px,yQy,z
proj2Py

+
∑
y∈Q

Px,yQy,z
proj1Qy


+
∑
z∈X

λc(z)

cz −∑
x∈X

∑
y∈P

Px,yQy,z
proj2Py

+
∑
y∈Q

Px,yQy,z
proj1Qy


=
∑
x∈X

∑
y∈P

proj1Qy
proj2Py

Px,yd(x, y) +
∑
z∈X

∑
y∈P

Qy,zd(y, z)

+
∑
x∈X

∑
y∈Q

Px,yd(x, y) +
∑
z∈X

∑
y∈Q

proj1Py
proj1Qy

Qy,zd(y, z)

+
∑
x∈X

λd(x)

ax −∑
y∈P

proj1Qy
proj2Py

Px,y −
∑
y∈Q

Px,y


+
∑
z∈X

λc(z)

cz −∑
y∈P

Qy,z −
∑
y∈Q

proj2Py
proj1Qy

Qy,z


=
∑
x∈X

∑
y∈P

proj1Qy
proj2Py

Px,yd(x, y) +
∑
z∈X

∑
y∈P

Qy,zd(y, z)

+
∑
x∈X

∑
y∈Q

Px,yd(x, y) +
∑
z∈X

∑
y∈Q

proj1Py
proj1Qy

Qy,zd(y, z)

+
∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
z∈X

λc(z)

cz −∑
y∈X

Qy,z


+
∑
x∈X

∑
y∈P

λd(x)

(
1− proj1Qy

proj2Py

)
Px,y +

∑
z∈X

∑
y∈Q

λc(z)

(
1− proj2Py

proj1Qy

)
Qy,z

≤
∑
x∈X

∑
y∈P

proj1Qy
proj2Py

Px,yd(x, y) +
∑
z∈X

∑
y∈P

Qy,zd(y, z)

+
∑
x∈X

∑
y∈Q

Px,yd(x, y) +
∑
z∈X

∑
y∈Q

proj1Py
proj1Qy

Qy,zd(y, z)

+
∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
z∈X

λc(z)

cz −∑
y∈X

Qy,z


+
∑
x∈X

∑
y∈P

(d(x, y) + λd(y))

(
1− proj1Qy

proj2Py

)
Px,y

+
∑
z∈X

∑
y∈Q

(λc(y) + d(y, z))

(
1− proj2Py

proj1Qy

)
Qy,z

17

=
∑
x∈X

∑
y∈P

Px,yd(x, y) +
∑
z∈X

∑
y∈P

Qy,zd(y, z)

+
∑
x∈X

∑
y∈Q

Px,yd(x, y) +
∑
z∈X

∑
y∈Q

Qy,zd(y, z)

+
∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
z∈X

λc(z)

cz −∑
y∈X

Qy,z


+
∑
x∈X

∑
y∈P

λd(y)

(
1− proj1Qy

proj2Py

)
Px,y

+
∑
z∈X

∑
y∈Q

λc(y)

(
1− proj2Py

proj1Qy

)
Qy,z

=
∑
x∈X

∑
y∈X

Px,yd(x, y) +
∑
z∈X

∑
y∈X

Qy,zd(y, z)

+
∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
z∈X

λc(z)

cz −∑
y∈X

Qy,z


+
∑
y∈P

λd(y)(proj2Py − proj1Qy) +
∑
y∈Q

λc(y)(proj1Qy − proj2Py)

≤
∑
x∈X

∑
y∈X

Px,yd(x, y) +
∑
z∈X

∑
y∈X

Qy,zd(y, z)

+
∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
z∈X

λc(z)

cz −∑
y∈X

Qy,z


+
∑
y∈X

λd(y)(by − proj1Qy) +
∑
y∈X

λc(y)(by − proj2Py)

= GKR(µ, ν) + GKR(ν, η).

C Identity of Indiscernibles

We prove that GKR(µ, ν) = 0 iff µ = ν under mild conditions in the discrete case.

Theorem 13. GKR(µ, ν) = 0 iff µ = ν holds for any µ =
∑
x∈X axδx, ν =

∑
x∈X bxδx if (1)

c(x, x) = 0 for all x ∈ X and c(x, y) > 0 if x 6= y and (2) λc(x) > 0 and λd(x) > 0 for all x ∈ X .

Proof. Suppose µ = ν. Let Pxy = 0 if x 6= y and Pxx = ax(= bx). Then, P is a valid transportation
matrix and∑

x,y∈X
Pxyc(x, y) +

∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
y∈X

λc(y)

(
by −

∑
x∈X

Px,y

)

=
∑
x∈X

axc(x, x) +
∑
x∈X

λd(x)(ax − ax) +
∑
x∈X

λc(x)(bx − bx)

= 0.

Suppose GKR(µ, ν) = 0 and let P be the optimal transportation matrix. Then,

ax ≥
∑
y∈X

Px,y = proj1Px (∀x ∈ X),

by ≥
∑
x∈X

Px,y = proj2Py (∀y ∈ X),

18

GKR(µ, ν) =
∑
x,y∈X

Px,yc(x, y) +
∑
x∈X

λd(x)

ax −∑
y∈X

Px,y

+
∑
y∈X

λc(y)

(
by −

∑
x∈X

Px,y

)
= 0.

Each term is zero because each term must be non-negative. In particular,

ax =
∑
y∈X

Px,y

by =
∑
x∈X

Px,y,

because λd(x) > 0 and λc(x) > 0 for all x ∈ X . Because c(x, y) > 0 if x 6= y, Px,y = 0 if x 6= y.
Therefore,

ax =
∑
y∈X

Px,y = Px,x

by =
∑
x∈X

Px,y = Py,y,

which means that ax = bx for all x ∈ X and that µ = ν.

D Preprocessing for Analysis

We discuss the validity of the assumption that the input is a binary tree with mass only in leaf nodes.
First, we attach dummy nodes with no mass to nodes so that all internal nodes have at least two
children. For each internal node v, we create a child v′ with the same mass as v, connect v and v′ by
an edge with weight 0, and set the mass of v as 0. Then, for each internal node with more than two
children, we create a new child v′, connect v and v′ by an edge with weight 0, and change the parent
of two arbitrary children of v to v′ recursively. Obviously, this transformation blows up the input
size only linearly and does not change the GKR distance. Therefore, we can make the assumptions
without loss of generality.

E Scaling Quadtree

In the approximation error experiments, we scale the edge length of the quadtree using a training
dataset so that the relative error |GKReuc − GKRtree|/GKReuc is minimized. Specifically, we search
the scale parameter s such that GKR with cost c(x, y) = s ·dT (x, y) minimizes the relative error. We
use the ternary search to determine the scale parameter. Although the relative error is not necessarily
unimodal, we found this was a good heuristic to determine the scale parameter efficiently.

We also conduct experiments without any training dataset. We determine the scale parameter by simple
heuristics instead of the ternary search. Specifically, we sample some pairs (x1, y1), . . . , (xK , yK)

of nodes in the quadtree and use the average ratio s = 1
K

∑K
i=1

deuc(x,y)
dT (x,y) of the Euclidean distance

to the tree distance as the scale parameter. Note that this value is independent of the parameters λ
of the GKR distance, while the ternary search is dependent. In the Chicago crime dataset, the ratio
is s ≈ 0.18. Figure 7 shows the Spearman’s rank correlation coefficient and the relative error of
the same set of 990 pairs of measures as in the main experiment. This shows that the relative error
is worse than that in Figure 5 because the scales of two distances are different, but the Spearman’s
rank correlation coefficient is comparable to that in Figure 5. When one classifies or visualizes
measures, the relative order is important. The high rank correlation indicates that this simple heuristic
is beneficial when no training data are available.

F Approximation Accuracy in high dimensions

The quadtree is NOT restricted to two dimensions [33] and can be constructed efficiently even in
high dimensional spaces [5]. However, the quadtree may degrade its empirical performance in high
dimensional cases [40]. In that case, clustering-based trees can be used [40]. We conduct additional
experiments in high dimensional cases. First, we compute GKR for the Chicago Crime dataset with

19

10−4 10−3 10−2 10−1 100 101

λ

0.90

0.95

1.00

M
ea

n
co

rr.
 c

oe
f.

10−4 10−3 10−2 10−1 100 101

λ

0.00

0.05

0.10

0.15

M
ea

n
re

la
tiv

e
er

ro
r

Figure 7: (Top) Spearman’s ρ and (Bottom) Relative error with the scale parameter determined
without training data but with a simple heuristic.

10−2 10−1 100 101 102

λ

0.00

0.05

M
ea

n
re

la
tiv

e
er

ro
r

Chicago
(3 dims)

100 102 104

λ

0.00

0.01

0.02

M
ea

n
re

la
tiv

e
er

ro
r

Twitter
(300 dims)

Figure 8: Accuracy in high dimensional cases.

the additional time axis, using the quadtree. Each mass represents a crime in the 3-dimensional
(longitude, latitude, time) space. We normalize each dimension so that each dimension has the same
scale. Next, we compute GKR for the (unbalanced) Word Mover’s Distance of the Twitter dataset
[40] using clustering-based trees. Each measure represents a sentence, and each mass represents a
word embedded in a 300-dimensional space computed by a pre-trained language model. We compare
our algorithm with the ground-truth GKR distance in the Euclidean space, as we did in Section 6.
Figure 8 shows that our algorithm can approximate high dimensional GKR accurately.

G Noise Robustness Experiments

We confirm the unbalanced OT distance is robust to noise using shape comparison experiments. We
use cluttered MNIST [44] to this end, where the patch size is 4 with no translation operation. Figure 9
illustrates the dataset. For each k = 0, 1, . . . , 16, we generate 10 shapes with k clutters for each class.
The ground space is a 2-dimensional lattice {0, 1, . . . , 27} × {0, 1, . . . , 27}, and the amount of mass

20

in each point corresponds to the normalized brightness of the pixel. We use two baseline methods: the
Sinkhorn algorithm and the tree sliced Wasserstein [40]. The tree sliced Wasserstein corresponds to
GKR with λc = λd =∞. The Sinkhorn algorithm uses the Euclidean distance between two masses
as the cost matrix. We use quadtree for the tree sliced Wasserstein and GKR. We set λc = λd = 8 for
the GKR distance. We classify each digit by 1-NN using each distance. Figure 10 plots the accuracy
of each distance. The accuracies of all distances are comparable for k = 0 (i.e., no noise), but the
GKR distance outperforms the other two methods for noisy shapes. This indicates that the GKR
distance is robust to noise compared to the standard optimal transport distance.

Comparison with Generalized Sinkhorn. We also compared our algorithm with the generalized
Sinkhorn algorithm [18] using the same setting. We compute Euclidean UOT (i.e., without tree
approximation) using the generalized Sinkhorn algorithm and carry out 1-NN classification. We use
the KL divergence as the regularizer and set the hyperparameters to ε = 0.01 and λ = 0.01. Figure
11 shows that the generalized Sinkhorn is also robust to noise compared to standard optimal transport
distances. Since the generalized Sinkhorn requires at least O(n2) time, its applicability is limited to
thousand-scale datasets. In contrast, our algorithm is applicable to million-scale datasets keeping its
performance.

H Document Classification Experiments

To show further use-cases of GKR, we conducted document classification, following [38, 40]. We use
the Twitter dataset [40]. Each mass represents a word, and each measure represents a document (i.e.,
a tweet). We use word2vec embedding trained on the Google News corpus for the word embedding.
Thus, the ground space is a 300-dimensional Euclidean space. We compute the GKR distance
between pairs of documents exactly (without tree approximation), and carry out 1-NN classification.
Note that when λ→∞, GKR does not create nor delete mass due to high creation and destruction
costs, thus GKR is reduced to standard OT (i.e., word mover’s distance). We measure the accuracy
using documents with more than three words in our evaluation. Figure 12 reports the performances
of our algorithm and the word mover’s distance. This result indicates that GKR performs well in
document classification. This is intuitively because GKR can ignore noisy words thanks to the mass
creation and destruction mechanism. We hypothesize that this tendency can be extended to other OT
applications. We will explore more applications in future work.

21

k

Figure 9: Examples of the cluttered MNIST dataset.

0 2 4 6 8 10 12 14 16
clutters

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy Tree GKR

Tree-sliced
Wasserstein

Sinkhorn

.39

.22

.17

Figure 10: 1-NN classification accuracy for the cluttered MNIST dataset.

22

0 2 4 6 8 10 12 14 16
clutters

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy Tree GKR

Generalized Sinkhorn .39

.37

Figure 11: Comparison with the generalized Sinkhorn algorithm using the cluttered MNIST dataset.

23

Ta
bl

e
1:

1-
N

N
cl

as
si

fic
at

io
n

ac
cu

ra
cy

fo
rt

he
cl

ut
te

re
d

M
N

IS
T

da
ta

se
t.

k
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

Tr
ee

G
K

R
0.

84
0.

85
0.

81
0.

77
0.

75
0.

78
0.

73
0.

7
0.

67
0.

58
0.

59
0.

53
0.

54
0.

52
0.

55
0.

42
0.

39
Tr

ee
-s

lic
ed

W
as

se
rs

te
in

0.
78

0.
69

0.
71

0.
63

0.
61

0.
49

0.
46

0.
52

0.
55

0.
44

0.
43

0.
48

0.
32

0.
23

0.
45

0.
2

0.
22

Si
nk

ho
rn

0.
83

0.
74

0.
72

0.
64

0.
56

0.
47

0.
36

0.
41

0.
46

0.
35

0.
37

0.
3

0.
32

0.
18

0.
29

0.
17

0.
17

ge
ne

ra
liz

ed
Si

nk
ho

rn
0.

83
0.

76
0.

75
0.

78
0.

59
0.

63
0.

62
0.

63
0.

57
0.

47
0.

56
0.

41
0.

39
0.

40
0.

39
0.

36
0.

37

24

1.0 1.5 2.0 2.5 3.0 3.5 4.0
λ (hyperparameter)

0.718

0.720

0.722

0.724

0.726

Ac
cu

ra
cy

Word Mover's Distance

GKR

Figure 12: 1-NN classification accuracy for the twitter dataset.

25

