
Acceleration with a Ball Optimization Oracle

Yair Carmon∗† Arun Jambulapati∗ Qijia Jiang∗ Yujia Jin∗ Yin Tat Lee‡

Aaron Sidford∗ Kevin Tian∗

Abstract

Consider an oracle which takes a point x and returns the minimizer of a convex
function f in an `2 ball of radius r around x. It is straightforward to show that
roughly r−1 log 1

ε calls to the oracle suffice to find an ε-approximate minimizer of f
in an `2 unit ball. Perhaps surprisingly, this is not optimal: we design an accelerated
algorithm which attains an ε-approximate minimizer with roughly r−2/3 log 1

ε
oracle queries, and give a matching lower bound. Further, we implement ball
optimization oracles for functions with locally stable Hessians using a variant of
Newton’s method and, in certain cases, stochastic first-order methods. The resulting
algorithm applies to a number of problems of practical and theoretical import,
improving upon previous results for logistic and `∞ regression and achieving
guarantees comparable to the state-of-the-art for `p regression.

1 Introduction

We study unconstrained minimization of a smooth convex objective f : Rd → R, which we access
through a ball optimization oracle Oball, that when queried at any point x, returns the minimizer of f
restricted a ball of radius r around x, i.e.,1

Oball(x) = arg min
x′ s.t. ‖x′−x‖≤r

f(x′).

Such oracles underlie trust-region methods [15] and, as we demonstrate via applications, encapsulate
problems with local stability. Iterating xk+1 ← Oball(xk) minimizes f in Õ(R/r) iterations (see Ap-
pendix A), whereR is the initial distance to the minimizer, x∗, and Õ(·) hides polylogarithmic factors
in problem parameters, including the desired accuracy.

Given the fundamental geometric nature of the ball optimization abstraction, the central question
motivating our work is whether it is possible to improve upon this Õ(R/r) query complexity. It is
natural to conjecture that the answer is negative: we require R/r oracle calls to observe the entire line
from x0 to the optimum, and therefore finding a solution using less queries would require jumping
into completely unobserved regions. Nevertheless, we prove that the optimal query complexity scales
as (R/r)2/3. This result has positive implications for the complexity for several key regression tasks,
for which we can efficiently implement the ball optimization oracles.

1.1 Our contributions
We overview our main contributions: accelerating ball optimization oracles (with a matching lower
bound), implementing them under Hessian stability, and applying our results to regression problems.
∗Stanford University, {yairc,jmblpati,qjiang2,yujiajin,sidford,kjtian}@stanford.edu.
†Tel Aviv University, ycarmon@cs.tau.ac.il.
‡University of Washington, yintat@uw.edu.
1In the introduction we discuss exact oracles for simplicity, but our results account for inexactness. Our

results hold for any weighted Euclidean (semi)norm, i.e., ‖x‖ =
√
x>Mx for M � 0, which we sometimes

write explicitly as ‖x‖M.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Monteiro-Svaiter (MS) oracles via ball optimization. Our starting point is an acceleration frame-
work due to Monteiro and Svaiter [25]. It relies on access to an oracle that when queried with
x, v ∈ Rd and A > 0, returns points x+, y ∈ Rd and λ > 0 such that

y =
A

A+ aλ
x+

aλ
A+ aλ

v, and (1)

x+ ≈ arg min
x′∈Rd

{
f(x′) +

1

2λ
‖x′ − y‖2

}
, (2)

where aλ = 1
2 (λ+

√
λ2 + 4Aλ). Basic calculus shows that for any z, the radius-r oracle response

Oball(z) solves the proximal point problem (2) for y = z and some λ = λ?r(z) ≥ 0 which depends
on r and z. Therefore, to implement the MS oracle with a ball optimization oracle, given query
(x, v,A) we need to find λ that solves the implicit equation λ = λ?r(y(λ)), with y(λ) as in (1). We
solve this equation to sufficient accuracy via binary search over λ, resulting in an accelerated scheme
that makes Õ(1) queries to Oball(·) per iteration (each iteration also requires a gradient evaluation).

The main challenge lies in proving that our MS oracle implementation guarantees rapid convergence.
We do so by a careful analysis which relates convergence to the distance between the MS oracle
outputs y and x+. Specifically, letting {yk, xk+1} be the sequence of these points, we prove that

f(xK)− f(x∗)

f(x0)− f(x∗)
≤ exp

{
−Ω(K) min

k<K

‖xk+1 − yk‖2/3

R2/3

}
.

Since Oball guarantees ‖xk+1 − yk‖ = r for all k except possibly the last, our result follows.

Matching lower bound. We give a distribution over functions with domain of size R for which any
algorithm interacting with a ball optimization oracle of radius r requires Ω((R/r)2/3) queries to find
an approximate solution with O(r1/3) additive error. Our lower bound in fact holds for an even more
powerful r-local oracle, which reveals all values of f in a ball of radius r around the query point. We
prove our lower bounds using well-established techniques and Nemirovski’s function, a canonical
hard instance in convex optimization [26, 30, 12, 17, 9]. Here, our primary contribution is to show
that appropriately scaling this construction makes it hard even against r-local oracles with a fixed
radius r, as opposed to the more standard notion of local oracles that reveal the instance only in an
arbitrarily small neighborhood around the query.

Ball optimization oracle implementation. Trust-region methods [15] solve a sequence of subprob-
lems of the form

minimize
δ∈Rd s.t. ‖δ‖≤r

{
δ>g +

1

2
δ>Hδ

}
.

When g = ∇f(x) and H = ∇2f(x), the trust-region subproblem minimizes a second-order Taylor
expansion of f around x, implementing an approximate ball optimization oracle. We show how to
implement a ball optimization oracle for f to high accuracy for functions satisfying a local Hessian
stability property. Specifically, we use a notion of Hessian stability similar to that of Karimireddy
et al. [22], requiring 1

c∇
2f(x) � ∇2f(y) � c∇2f(x) for every y in a ball of radius r around x for

some c > 1. We analyze Nesterov’s accelerated gradient method in a Euclidean norm weighted by
the Hessian at x, which we can also view as accelerated Newton steps, and show that it implements
the oracle in Õ(c) linear system solutions, improving upon the c2 dependence of more naive methods.
This improvement is not necessary for our applications where we take c to be a constant, but we
include it for completeness. For certain objectives (e.g., softmax), we show that a first-order oracle
implementation (e.g., computing the Newton steps with accelerated SVRG) allows us to further
exploit the problem structure, and improve state-of-the-art runtimes guarantees in some regimes.

Applications. We apply our implementation and acceleration of ball optimization oracles to
problems of the form f(Ax − b) for data matrix A ∈ Rn×d. For logistic regression, where
f(z) =

∑
i∈[n] log(1 + e−zi), Hessian stability implies [4] that our algorithm solves the problem

with Õ(‖x0 − x∗‖2/3
A>A

) linear system solves of the form A>DAx = z for diagonal D. This
improves upon the previous best linearly-convergent condition-free algorithm due to Karimireddy
et al. [22], which requires Õ(‖x0−x∗‖A>A) system solves. Our improvement is precisely the power
2/3 factor that comes from acceleration using the ball optimization oracle.

For `∞ regression, we take f to be the log-sum-exp (softmax) function and establish that it too
has a stable Hessian. By appropriately scaling softmax to approximate `∞ regression to ε additive

2

error and taking r = ε, our method solves `∞ to additive error ε in Õ(‖x0 − x∗‖2/3A>A
ε−2/3) linear

system solves of the same form as above. This improves upon the algorithm of Bullins and Peng
[11] in terms of ε scaling (from ε−4/5 to ε−2/3) and the algorithm of Ene and Vladu [18] in terms
of distance scaling (from n1/3‖A(x0 − x∗)‖2/3∞ to ‖A(x0 − x∗)‖2/32). We also give a runtime
guarantee improving over the state-of-the-art first-order method of Carmon et al. [13] whenever
n
d ≥ (maxi‖ai‖2R

ε)2/3 ≥ d where R is the `2 distance between an initial point and the optimizer, by
using a first-order oracle implementation based on [5].

Finally, we leverage our framework to obtain high accuracy solutions to `p norm regression, where
f(z) =

∑
i∈[n] |zi|p, via minimizing a sequence of proximal problems with geometrically shrinking

regularization. The result is an algorithm that solves Õ(poly(p)n1/3) linear systems. For p = ω(1),
this matches the state-of-the-art n dependence [1] but obtains worse dependence on p. Nevertheless,
we provide a straightforward alternative approach to prior work and our results leave room for further
refinements which we believe may result in stronger guarantees.

1.2 Related work
Our developments are rooted in three lines of work, which we now briefly survey.

Monteiro-Svaiter framework instantiations. Monteiro and Svaiter [25] propose a new accelera-
tion framework, which they specialize to recover the classic fast gradient method [27] and obtain an
optimal accelerated second-order method for convex problems with Lipschitz Hessian. Subsequent
work [19] extends this to functions with pth-order Lipschitz derivatives and a pth-order oracle. Gen-
eralizing further, Bubeck et al. [9] implement the MS oracle via a “Φ prox” oracle that given query x
returns roughly arg minx′{f(x) + Φ(‖x′ − x‖)}, for continuously differentiable Φ, and prove an
error bound scaling with the iterate number k as φ(R/k3/2)R2/k2, where φ(t) = Φ′(t)/t. Using
poly(d) parallel queries to a subgradient oracle for non-smooth f , they show how to implement the
Φ prox oracle for Φ(t) ∝ (t/r)p with arbitrarily large p, where r = ε/

√
d. Our notion of a ball

optimization corresponds to taking p =∞, i.e., letting Φ be the indicator of [0, r]. However, since
such Φ is not continuous, our result does not follow directly from [9]. Thus, our approach clarifies
the limiting behavior of MS acceleration of infinitely smooth functions.

Trust region methods. The idea of approximately minimizing the objective in a “trust region”
around the current iterate plays a central role in nonlinear optimization and machine learning [see,
e.g., 15, 23, 28]. Typically, the approximation takes the form of a second-order Taylor expansion,
where regularity of the Hessian is key for guaranteeing the approximation quality. Of particular
relevance to us is the work of Karimireddy et al. [22], which define a notion of Hessian stability
under which a trust-region method converges linearly with only logarithmic dependence on problem
conditioning. We observe that this stability condition in fact renders the second-order trust region
approximation highly effective, so that a few iterations suffice in order to implement an “ideal” ball
optimization oracle, thus enabling accelerated condition-free convergence.

Karimireddy et al. [22] also observe that quasi self-concordance (QSC) is a sufficient condition for
Hessian stability, and that the logistic regression objective is QSC. We use this observation for our
applications, and prove that the softmax objective is also QSC. Marteau-Ferey et al. [24] directly
leverage the QSC property using Newton method variants. For QSC functions with parameter M ,
they show complexity guarantees scaling linearly in MR. Under the same assumptions, we obtain
the improved scaling (MR)2/3. Both guarantees depend only weakly (polylogarithmically) on the
standard problem condition number.

Efficient `p regression algorithms. There has been rapid recent progress in linearly convergent
algorithms for minimizing the p-norm of the regression residual Ax− b or alternatively for finding a
minimum p-norm x satisfying linear constraints Ax = b. Bubeck et al. [8] give faster algorithms for
all p ∈ (1, 2) ∪ (2,∞), discovering and overcoming a limitation of classic interior point methods.
Their algorithm is based on considering a smooth interpolation between a quadratic and the original
objective. Bullins [10] applies accelerated tensor methods to develop a gradient descent method for
the case of p = 4 with linear-system solution complexity scaling as n1/5 (for A ∈ Rn×d). Adil
et al. [2] give an iterative refinement method for general p ∈ (1,∞) with complexity proportional
to n|p−2|/(2p+|p−2|) ≤ n1/3, matching [10] for p = 4 and improving on [8]. Adil and Sachdeva [1]
provide an alternative method with complexity scaling as p · n1/3 scaling, improving on the O(pO(p))
dependence in [2].

3

As mentioned in the previous section, a number of recent works [11, 18, 13] obtain ε-accurate
solutions for p =∞ with complexity scaling polynomially in ε−1. Bullins and Peng [11] leverage
accelerated tensor methods and fourth-order smoothness, Ene and Vladu [18] carefully analyze
re-weighted least squares, and Carmon et al. [13] develop a first-order stochastic variance reduction
technique for matrix saddle-point problems. We believe that our approach brings us closer to a unified
perspective on high-order smoothness and acceleration for regression problems.

1.3 Paper organization

In Section 2, we implement the MS oracle using a ball optimization oracle and prove its Õ((R/r)2/3)
convergence guarantee. In Section 3, we show how to use Hessian stability to efficiently implement
a ball optimization oracle, and also show that quasi-self-concordance implies Hessian stability. In
Section 4 we apply our developments to the aforementioned regression tasks. Finally, in Section 5 we
give a lower bound implying our oracle complexity is optimal (up to logarithmic terms).

Notation. Let M be a positive semidefinite matrix, and let M† be its pseudoinverse. We perform our
analysis in the Euclidean seminorm ‖x‖M

def
=
√
x>Mx; we will choose a specific M when discussing

applications. We denote the ‖·‖M ball of radius r around x̄ by Br(x̄)
def
=
{
x ∈ Rd | ‖x− x̄‖M ≤ r

}
.

We recall standard definitions of smoothness and strong-convexity in a quadratic norm: differentiable
f : Rd → R is L-smooth in ‖·‖M if its gradient is L-Lipschitz in ‖·‖M, and twice-differentiable f is
L-smooth and µ-strongly convex in ‖·‖M if µM � ∇2f(x) � LM for all x ∈ Rd.

2 Monteiro-Svaiter Acceleration with a Ball Optimization Oracle
In this section, we give an accelerated algorithm for optimization with the following oracle.
Definition 1 (Ball optimization oracle). We call Oball a (δ, r)-ball optimization oracle for f : Rd →
R if for any x̄ ∈ Rd, it outputs y = Oball(x̄) ∈ Br(x̄) such that ‖y − xx̄,r‖M ≤ δ for some
xx̄,r ∈ arg minx∈Br(x̄) f(x).

We use the Monteiro and Svaiter acceleration framework [25, 19, 9], relying on the following oracle.
Definition 2 (MS oracle). We call OMS a σ-MS oracle for differentiable f : Rd → R if given inputs
(A, x, v) ∈ R≥0 × Rd × Rd, OMS outputs (λ, aλ, ytλ , z) ∈ R≥0 × R≥0 × Rd × Rd such that

aλ =
λ+
√
λ2 + 4λA

2
, tλ =

A

A+ aλ
, ytλ = tλ · x+ (1− tλ) · v,

and we have the guarantee∥∥z − (ytλ − λM†∇f(z))
∥∥
M
≤ σ ‖z − ytλ‖M . (3)

We now state the acceleration framework and the main bound we use to analyze its convergence.

Algorithm 1 Monteiro-Svaiter acceleration

1: Input: Strictly convex and differentiable function f : Rd → R. Symmetric M � 0 with
∇f(x) ∈ Im(M) for all x ∈ Rd. Initialization A0 ≥ 0 and x0 = v0 ∈ Rd. Monteiro-Svaiter
oracle OMS with parameter σ ∈ [0, 1).

2: for k = 0, 1, 2, . . . do
3: (λk+1, ak+1, yk, xk+1)← OMS(Ak, xk, vk)
4: vk+1 ← vk − ak+1M

†∇f(xk+1), Ak+1 ← Ak + ak+1.
5: end for

Proposition 3. Let differentiable f be strictly convex, ‖x0 − x∗‖M ≤ R and f(x0)−f(x∗) ≤ ε0. Set
A0 = R2/(2ε0) and suppose that for some r > 0 the iterates of Algorithm 1 satisfy ‖xk+1 − yk‖M ≥
r for all k ≥ 0. Then, the iterates also satisfy f(xk)− f(x∗) ≤ 2ε0 exp(−(r(1−σ)

R)2/3(k − 1)).

Proposition 3 is one of our main technical results, obtained via applying a reverse Hölder’s inequality
on a variant of the performance guarantees of [25]; we defer the proof to Appendix B. Clearly,
Proposition 3 implies that the progress of Algorithm 1 is related to the amount of movement of the
iterates, i.e., the quantities {‖xk+1 − yk‖M}. We now show that by using a ball optimization oracle
of radius r, we are able to guarantee movement by roughly r, which implies rapid convergence. We
rely on the following characterization, whose proof we defer to Appendix C.

4

Lemma 4. Let f : Rd → R be continuously differentiable and strictly convex. For all y ∈
Rd, z = arg minz′∈Br(y) f(z′) either globally minimizes f , or ‖z − y‖M = r and ∇f(z) =

−‖∇f(z)‖
M†

r M(z − y).

Lemma 4 implies that a (0, r) ball optimization oracle either globally minimizes f , or yields z with

‖z − y‖M = r and
∥∥z − (y − λM†∇f(z)

)∥∥
M

= 0, for λ =
r

‖∇f(z)‖M†
. (4)

This is precisely the type of bound compatible with both Proposition 3 and requirement (3) of OMS.
The remaining difficulty lies in that λ also defines the point y = ytλ . Therefore, to implement an MS
oracle using a ball optimization oracle we perform binary search over λ, with the goal of solving

g(λ)
def
= λ‖∇f(ztλ)‖M† = r, where ztλ

def
= min

z∈Br(ytλ)
f(z), and tλ, ytλ as in Definition 2.

Algorithm 2 describes our binary search implementation. The algorithm takes the MS oracle input
(A, x, v) as well D bounding the distance of x and v from the optimum, and desired global solution
accuracy ε, outputting either a (global) ε-approximate minimizer or (λ, aλ, ytλ , z̃tλ) satisfying both (3)
(with σ = 1

2) and a lower bound on ‖z̃tλ − ytλ‖2. To bound our procedure’s complexity we leverage
L-smoothness of f (i.e. L-Lipschitz continuity of∇f), yielding a bound on the Lipschitz constant of
g(λ) defined above. Our analysis is somewhat intricate as it must account for inexactness in the ball
optimization oracle. It obtains the following performance guarantee, whose proof is in Appendix C.
Proposition 5 (Guarantees of Algorithm 2). Let L,D, δ, r > 0 and Oball satisfy the requirements in
Lines 1–3 of Algorithm 2, and ε < 2LD2. Then, Algorithm 2 either returns z̃tλ with f(z̃tλ)−f(x∗) <
ε, or implements a 1

2 -MS oracle with the additional guarantee ‖z̃tλ − ytλ‖M ≥
11r
12 . Moreover, the

number of calls to Oball is bounded by O(log(LD
2

ε)).

Algorithm 2 Monteiro-Svaiter oracle implementation

1: Input: Function f : Rd → R that is strictly convex, L-smooth in ‖·‖M.A ∈ R≥0 and x, v ∈
Rd satisfying ‖x− x∗‖M and ‖v − x∗‖M ≤ D where x∗ = arg minx f(x). A (δ, r)-ball
optimization oracle Oball, where δ = r

12(1+Lu) and u = 2(D+r)r
ε .

2: Set λ← u and `← r
2LD , let z̃tλ ← Oball(ytλ)

3: if u ‖∇f(z̃tλ)‖M† ≤ r + uLδ then
4: return (λ, aλ, ytλ , z̃tλ)
5: else
6: while

∣∣λ ‖∇f(z̃tλ)‖M† − r
∣∣ > r

6 do
7: λ← `+u

2 , z̃tλ ← Oball(ytλ)
8: if λ ‖∇f(z̃tλ)‖M† ≥ r then u← λ, else `← λ
9: end while

10: return (λ, aλ, ytλ , z̃tλ)
11: end if

Finally, we state our main acceleration result, whose proof we defer to Appendix C.
Theorem 6 (Acceleration with a ball optimization oracle). Let Oball be an (r

12+126LRr/ε , r)-ball
optimization oracle for strictly convex and L-smooth f : Rd → R with minimizer x∗, and initial
point x0 satisfying ‖x0 − x∗‖M ≤ R and f(x0)− f(x∗) ≤ ε0. Then, Algorithm 1 using Algorithm 2
as a Monteiro-Svaiter oracle with D =

√
18R produces an iterate xk with f(xk)− f(x∗) ≤ ε, in

O
(

(R/r))
2/3

log (ε0/ε) log
(
LR2/ε

))
calls to Oball.

3 Ball Optimization Oracle for Hessian Stable Functions
In this section we leverage standard techniques for solving the trust-region subproblem [15] in order
to implement a ball optimization oracle. The key structure enabling efficient implementation is the
the following notion of Hessian stability, a slightly stronger version of the condition in Karimireddy
et al. [22].2

2 A variant of the algorithm we develop also works under the weaker stability condition. We state the stronger
condition as it is simpler, and holds for all our applications.

5

Definition 7 (Hessian stability). Twice-differentiable f : Rd → R is (r, c)-Hessian stable for r, c ≥ 0
with respect to ‖·‖ if ∀x, y ∈ Rd with ‖x− y‖ ≤ r we have c−1∇2f(y) � ∇2f(x) � c∇2f(y).

We give a method implementing a (δ, r)-ball oracle (cf. Definition 1) for (r, c)-stable functions
in ‖·‖M, requiring Õ(c) linear system solutions. The method reduces the oracle to solving Õ(c)

trust-region subproblems of the form minx∈Br(x̄)Q(x)
def
= −g>x + 1

2x
>Hx, and we show each

requires Õ(1) linear system solves in H + λM for λ ≥ 0. In terms of total linear system solves, our
method has a (mild) polylogarithmic dependence on the condition number of f in ‖·‖M. The main
result of this section is Theorem 8, which guarantees correctness and complexity our ball optimization
oracle implementation; proofs are deferred to Appendices D.1 and D.2.
Theorem 8. Let f be L-smooth, µ-strongly convex, and (r, c)-Hessian stable in the seminorm ‖·‖M.
Then, Algorithm 7 (in Appendix D.2) implements a (δ, r)-ball optimization oracle for query point x̄
with ‖x̄− x∗‖M ≤ D for x∗ the minimizer of f , and requires

O

(
c log2

(
κ(D + r)c

δ

))
linear system solves in matrices of the form H + λM for nonnegative λ, where κ = L/µ.
Remark 9 (First-order implementation). The linear system solves required by Theorem 8 can be
carried out via Gaussian elimination, fast matrix multiplication, or a number of more scalable
algorithms, including first-order methods [e.g., 5]. In Section 4.3, we show that using first-order
methods that exploit the particular problem structure allows us to achieve state-of-the-art runtimes
for `∞ regression in certain regimes.

We state a sufficient condition for Hessian stability below. We use this result in Section 4 to establish
Hessian stability in several structured problems, and defer its proof to Appendix E for completeness.
Definition 10 (Quasi-self-concordance). We say that thrice-differentiable f : Rd → R is M -quasi-
self-concordant (QSC) with respect to some norm ‖·‖, for M ≥ 0, if for all u, h, x ∈ Rd,∣∣∇3f(x)[u, u, h]

∣∣ ≤M‖h‖‖u‖2∇2f(x),

i.e., restricting the third-derivative tensor of f to any direction is bounded by a multiple of its Hessian.

Lemma 11. If thrice-differentiable f : Rd → R is M -quasi-self-concordant with respect to norm
‖·‖, then it is (r, exp(Mr))-Hessian stable with respect to ‖·‖.

4 Applications

Algorithm 3 puts together the ingredients from previous sections to give a complete second-order
method for minimizing QSC functions. We now apply it to functions of the form f(x) = g(Ax) for
matrix A ∈ Rn×d and g : Rn → R. The logistic loss, softmax approximation of `∞ regression, and
variations of `p regression objectives all have this form. The following complexity guarantee for
Algorithm 3 follows directly from our previous developments and we defer a proof to Appendix F.

Algorithm 3 Monteiro-Svaiter accelerated BAll COnstrained Newton’s method (MS-BACON)

1: Input: Function f : Rd → R, desired accuracy ε, initial point x0, initial suboptimality ε0.
2: Input: Domain bound R, quasi-self-concordance M , smoothness L, norm ‖·‖M.
3: Define f̃(x) = f(x) + ε

55R2 ‖x− x0‖2M
4: Using Algorithm 7, implementOball, a (δ, 1

M)-ball optimization oracle for f̃ , where δ = Θ(ε
LR)

5: Using Algorithm 2 and Oball, implement OMS, a 1
2 -MS oracle for f̃

6: Using O((RM)2/3 log ε0
ε) iterations of Algorithm 1 withOMS and initial point x0 compute xout,

an ε/2-accurate minimizer of f̃
7: return xout

Corollary 12. Let f(x) = g(Ax), for g : Rn → R that is L-smooth, M -QSC in the `2 norm, and
A ∈ Rn×d. Let x∗ be a minimizer of f , and suppose that ‖x0 − x∗‖M ≤ R and f(x0)−f(x∗) ≤ ε0

6

for some x0 ∈ Rd, where M def
= A>A. Then, Algorithm 3 yields an ε-approximate minimizer to f in

O

(
(RM)

2/3
log
(ε0
ε

)
log3

(
LR2

ε
(1 +RM)

))
linear system solves in matrices of the form A>

(
∇2g(Ax) + λI

)
A for λ > 0 and x ∈ Rd.

Both the (unaccelerated) Newton method-based algorithm in Marteau-Ferey et al. [24] and our
method depend polylogarithmically on the (regularized) problem’s condition number. The method
proposed in Marteau-Ferey et al. [24] has a complexity of Õ(MR) for solving M -QSC functions
with domain size R, while our method gives an accelerated dependence of Õ((MR)2/3). We defer
proofs of claims in the following subsections to Appendix F.

4.1 Logistic regression

Consider logistic regression in matrix A ∈ Rn×d with n data points of dimension d, and correspond-
ing labels b ∈ {−1, 1}n. The objective is

f(x) =
∑
i∈[n]

log(1 + exp(−bi〈ai, x〉)) = g(Ax), (5)

where g(y) =
∑
i∈[n] log(1 + exp(−biyi)). It is known [6] that g is 1-QSC and 1-smooth in `2, with

a diagonal Hessian. Thus, we have the following convergence guarantee from Corollary 12.
Corollary 13. For the logistic regression objective (5), given x0 with initial function error ε0 with
distance R from a minimizer in ‖·‖A>A, Algorithm 3 obtains an ε-approximate minimizer using
O
(
R2/3 log (ε0/ε) log3

(
R2(1 +R)/ε

))
linear system solves in matrices A>DA for diagonal D.

Compared to Karimireddy et al. [22], which gives a trust-region Newton method using Õ(R) linear
system solves, we obtain an improved dependence on the domain size R.

4.2 `∞ regression

Consider `∞ regression in matrix A ∈ Rn×d and vector b ∈ Rn, which asks to minimize

f(x) = ‖Ax− b‖∞ = g(Ax), (6)

where g(y) = ‖y − b‖∞. Without loss of generality (by concatenating A, b with −A, −b), we may
replace the ‖·‖∞ in the objective with a maximum. It is well-known that g(y) is approximated within
additive ε/2 by lset(y − b) for t = ε/(2 log n) (see Lemma 42 for a proof), where we set

lse(x)
def
= log

∑
i∈[n]

exp(xi)

 , lset(x)
def
= tlse(x/t).

Our improvement stems from the fact that lset is QSC, which appears to be a new observation. The
proof carefully manipulates the third-derivative tensor of lset and is deferred to Appendix F.
Lemma 14. lset is 1/t-smooth and 2/t-QSC in `∞.

Lemma 14 immediately implies that lset is n/t-smooth and 2/t-QSC in `2. We thus obtain the
following by applying Corollary 12 to the lseε/(2 logn) objective, and solving to ε/2 additive accuracy.

Corollary 15. Given x0 with initial function error ε0 with distance R from a minimizer in ‖·‖A>A,

Algorithm 3 obtains an ε-approximate minimizer using O
(

(R log n/ε)
2/3

log (ε0/ε) log3 (nR/ε)
)

linear system solves in matrices Â>DÂ, where D is a positive definite diagonal matrix, and Â is
the vertical concatenation of A and −A.

The reduction from solving linear systems of the form described in Corollary 12 to linear systems of
the form in Corollary 15 (which is not immediate, since the Hessian of softmax is not diagonal) is
given in Appendix F.

Compared to Bullins and Peng [11], which find an ε-approximate solution to (6) in Õ((R/ε)4/5)
linear system solves using high-order acceleration, we obtain an improved dependence on R/ε. Ene

7

and Vladu [18] consider the equivalent problem minimizey:A>y=c‖y‖∞ (see Appendix F.2.1 for
explanation of this equivalence). They show how to solve this problem to δ multiplicatie error in
Õ(n1/3δ−2/3) linear system solutions in A>DA for positive diagonal D. Translated into our setting,
this implies a complexity of Õ(n1/3‖Ax∗‖2/3∞ ε−2/3) linear system solves in A>DA, which is never
better than our guarantee since ‖v‖2 ≤

√
n‖v‖∞ for all v ∈ Rn. Conversely, our result maps to the

setting of Ene and Vladu [18] to provide a complexity guarantee of Õ(‖x∗‖2/32 ε−2/3) appropriate
linear system solves to attain ε additive error.

Finally, we note that our unconstrained regression solver also solves constrained regression problems
which are sometimes considered in the literature, through a reduction.

4.3 First-order methods and improved norm dependence

For both logistic regression and `∞ regression, we can alternatively work in the standard `2 norm,
and obtain a different QSC parameter depending on maxi‖ai‖2; we defer all proofs to Appendix F.3.
Lemma 16. The logistic objective f(x) = g(Ax) in (5) is maxi∈[n]‖ai‖2-QSC in the `2 norm.

Lemma 17. The log-sum-exp function f(x) = lset(Ax) is 2
t maxi∈[n]‖ai‖2-QSC in the `2 norm.

With these alternative QSC bounds, we turn our attention to the cost of implementing a ball oracle. In
the previous sections we accomplish this by using a generic positive semidefinite linear system solver;
we now demonstrate how first-order methods can give improved runtimes in large-scale settings. We
focus on `∞ regression here, as the case of logistic regression is similar. Defining R = ‖x0 − x∗‖2,
we seek an ε/4-approximate minimizer to a smooth, strongly-convex approximation of the `∞-norm:
we pick

h(x) = lset(Ax) +
ε

4R2
‖x− x0‖22, where t =

ε

2 log n
.

By applying variance-reduced stochastic gradient methods to solve linear systems in ∇2h(x) and
combining with our framework, we obtain the following complexity bound in terms of runtime (as
opposed to linear system solves).
Corollary 18. With initial function error ε0 and R = ‖x0 − x∗‖2, Algorithm 3 using the first-order
linear system solver of Agarwal et al. [5] returns an ε-approximate minimizer within total runtime
Õ
((

maxi∈[n]‖ai‖2Rε
)2/3 (

nd+ d1.5 maxi∈[n]‖ai‖2Rε
))
.

Let L = maxi∈[n]‖ai‖2. In the regime d ≤ (LRε)2/3 ≤ n
d and when A is dense, we obtain a

speed-up compared to the state-of-the-art runtime Õ(nd+
√
nd(n+ d)LR

2

ε) of Carmon et al. [13].

4.4 `p regression

Consider `p regression in matrix A ∈ Rn×d and vector b ∈ Rn, which asks to minimize

f(x) = ‖Ax− b‖pp = g(Ax) with optimizer x∗. (7)

for some fixed p > 3,3 where g(x) =
∑
i|xi − bi|p. While this objective is not QSC, our method

iteratively considers a regularized QSC objective to halve the error, as summarized in Algorithm 8.

Algorithm 4 High accuracy `p regression

1: Input: A ∈ Rn×d, b ∈ Rn, multiplicative error tolerance δ ≥ 0.
2: Set x0 = A†b and ε0 = f(x0) = ‖Ax0 − b‖pp.
3: for k ≤ log2(n/δ1/p) do
4: εk ← 2−pεk−1

5: xk ← output of Algorithm 3 applied on f(x) = ‖Ax− b‖pp with initialization xk−1, desired

accuracy εk and parameters R = O(n(p−2)/2pε
1/p
k) and M = O(p

√
n/R) (see Lemma 52)

6: end for

Below we state the guarantee of Algorithm 8, and defer its proof to Appendix F.4.

3We assume p > 3 for ease of presentation; for p ≤ 4 our runtime is superseded by, e.g., the algorithm of [3].

8

Corollary 19. Algorithm 8 computes x ∈ Rd with ‖Ax − b‖pp ≤ (1 + δ)‖Ax∗ − b‖pp using
O(p14/3n1/3 log4(n/δ)) linear system solves in A>DA for diagonal matrix D � 0.

Compared to Adil and Sachdeva [1], Adil et al. [2], which minimize f to 1+δ multiplicative accuracy
by solving Õ

(
min

(
pn1/3, pO(p)n

p−2
3p−2

)
log(1/δ)

)
linear systems, our guarantee is slightly weaker

in its p dependence. Nonetheless, we believe our alternative, simple approach sheds further light on
the complexity of this problem, and that there is room for additional improvement.

5 Lower Bound

We establish a lower bound showing that all algorithms for minimizing a function via repeated calls
to a (0, r) ball optimization oracle, which we call r-BOO algorithms, require Ω((R/r)2/3) queries in
the worst case. Formally, the following lower bound matches Theorem 6 up to logarithmic factors.
Theorem 20. Let r

R , δ ∈ (0, 1) and d =
⌈
60(Rr)2 log R

δ·r
⌉
. There exists a distribution P over convex

and 1-Lipschitz functions from BR(0)→ R such that the following holds for any r-BOO algorithm:
with probability at least 1− δ over the draw of f ∼ P and the algorithm’s coin flips (i.e. randomness
used by the algorithm), its first

⌈
1
10 (Rr)2/3

⌉
queries are at least R2/3r1/3 suboptimal for f .

We prove Theorem 20 in Appendix G as a corollary of a stronger results stating the same lower
bound for r-local oracle algorithms, that for each query x receive the function f restricted to Br(x).
This information clearly suffices to compute the ball optimization oracle output as well as f(x)
and ∇f(x), implying that Algorithm 2 also operates within our oracle framework. Our proof is
essentially a careful reading of the classical information-based complexity lower-bound for convex
optimization [26, 20], where we strengthen the notion of local oracles—which return f restricted to a
neighborhood of the query—by quantifying the size of the neighborhood.

Using arguments from [20, 17] we may further strengthen the lower bound to hold for instances
which are smooth, strongly-convex and have unbounded domain, precisely matching the assumptions
of Theorem 6 (see Appendix G). However, the implementations of the ball optimization oracle we
consider in Section 3 require a Hessian stability assumption (Definition 7), and it is unclear if we
can make the hard instances underlying Theorem 20 Hessian-stable. Nevertheless, our lower bound
precludes further progress via the ball optimization oracle abstraction, up to logarithmic factors.

9

Broader Impact

This work does not present any foreseeable societal consequence.

Acknowledgments

We thank Sébastien Bubeck for helpful conversations.

Sources of funding

Researchers on this project were supported by NSF CAREER Award CCF-1844855 and CCF-
1749609, NSF Grant CCF-1955039, CCF-1740551, DMS-1839116 and DMS-2023166, two Sloan
Research Fellowships and Packard Fellowships, and two Stanford Graduate Fellowships. Additional
support was provided by PayPal and Microsoft, including two Microsoft Research Faculty Fellowships
and a PayPal research gift.

Competing interests

The authors declare no competing interests.

10

References

[1] Deeksha Adil and Sushant Sachdeva. Faster p-norm minimizing flows, via smoothed q-norm
problems. In Symposium on Discrete Algorithms, SODA, pages 892–910, 2020.

[2] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement for
`p-norm regression. In Symposium on Discrete Algorithms, SODA, pages 1405–1424, 2019.

[3] Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent IRLS algorithm
for p-norm linear regression. In Advances in Neural Information Processing Systems, NeurIPS,
pages 14166–14177, 2019.

[4] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for
machine learning in linear time. Journal of Machine Learning Research, 18(1):4148–4187,
2017.

[5] Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and Aaron
Sidford. Leverage score sampling for faster accelerated regression and erm. arXiv preprint
arXiv:1711.08426, 2017.

[6] Francis Bach et al. Self-concordant analysis for logistic regression. Electronic Journal of
Statistics, 4:384–414, 2010.

[7] Keith Ball et al. An elementary introduction to modern convex geometry. Flavors of geometry,
31:1–58, 1997.

[8] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for
`p regression provably beyond self-concordance and in input-sparsity time. In Symposium on
Theory of Computing, STOC, pages 1130–1137, 2018.

[9] Sébastien Bubeck, Qijia Jiang, Yin-Tat Lee, Yuanzhi Li, and Aaron Sidford. Complexity of
highly parallel non-smooth convex optimization. In Advances in Neural Information Processing
Systems, pages 13900–13909, 2019.

[10] Brian Bullins. Fast minimization of structured convex quartics. arXiv preprint arXiv:1812.10349,
2018.

[11] Brian Bullins and Richard Peng. Higher-order accelerated methods for faster non-smooth
optimization. arXiv preprint arXiv:1906.01621, 2019.

[12] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points I. Mathematical Programming, May 2019.

[13] Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Variance reduction for matrix games.
In Advances in Neural Information Processing Systems, pages 11377–11388, 2019.

[14] Michael Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. On acceleration with noise-
corrupted gradients. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 1018–1027, 2018.

[15] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region Methods. MOS-
SIAM Series on Optimization. SIAM, 2000.

[16] Olivier Devolder, François Glineur, and Yurii E. Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Math. Program., 146(1-2):37–75, 2014.

[17] Jelena Diakonikolas and Cristóbal Guzmán. Lower bounds for parallel and randomized convex
optimization. In Conference on Learning Theory, COLT, pages 1132–1157, 2019.

[18] Alina Ene and Adrian Vladu. Improved convergence for `1 and `∞ regression via iteratively
reweighted least squares. In International Conference on Machine Learning, pages 1794–1801,
2019.

11

[19] Alexander Gasnikov, Pavel E. Dvurechensky, Eduard A. Gorbunov, Evgeniya A. Vorontsova,
Daniil Selikhanovych, César A. Uribe, Bo Jiang, Haoyue Wang, Shuzhong Zhang, Sébastien
Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near optimal methods for
minimizing convex functions with Lipschitz p-th derivatives. In Conference on Learning Theory,
COLT 2019, pages 1392–1393, 2019.

[20] Cristóbal Guzmán and Arkadi Nemirovski. On lower complexity bounds for large-scale smooth
convex optimization. Journal of Complexity, 31(1):1–14, 2015.

[21] William W. Hager. Minimizing a quadratic over a sphere. SIAM Journal on Optimization, 12
(1):188–208, 2001.

[22] Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Global linear conver-
gence of Newton’s method without strong-convexity or Lipschitz gradients. arXiv preprint
arXiv:1806.00413, 2018.

[23] Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for large-
scale logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.

[24] Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Globally convergent newton meth-
ods for ill-conditioned generalized self-concordant losses. In Advances in Neural Information
Processing Systems, pages 7636–7646, 2019.

[25] Renato D. C. Monteiro and Benar Fux Svaiter. An accelerated hybrid proximal extragradient
method for convex optimization and its implications to second-order methods. SIAM Journal
on Optimization, 23(2):1092–1125, 2013.

[26] Arkadi Nemirovski and David Borisovich Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley, 1983.

[27] Yurii Nesterov. A method for solving a convex programming problem with convergence rate
o(1/k2). Doklady AN SSSR, 269:543–547, 1983.

[28] Mark Schmidt, Dongmin Kim, and Suvrit Sra. Projected Newton-type methods in machine
learning. In Suvrit Sra, Sebastian Nowozin, and Stephen J Wright, editors, Optimization for
Machine Learning, chapter 11. MIT Press, 2011.

[29] Blake Woodworth and Nathan Srebro. Tight complexity bounds for optimizing composite
objectives. In Advances in neural information processing systems, pages 3639–3647, 2016.

[30] Blake Woodworth and Nathan Srebro. Lower bound for randomized first order convex opti-
mization. arXiv preprint arXiv:1709.03594, 2017.

[31] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. In
18th Annual Symposium on Foundations of Computer Science, pages 222–227, 1977.

12

	Introduction
	Our contributions
	Related work
	Paper organization

	Monteiro-Svaiter Acceleration with a Ball Optimization Oracle
	Ball Optimization Oracle for Hessian Stable Functions
	Applications
	Logistic regression
	 regression
	First-order methods and improved norm dependence
	p regression

	Lower Bound

