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Abstract

Consider an oracle which takes a point x and returns the minimizer of a convex
function f in an `2 ball of radius r around x. It is straightforward to show that
roughly r−1 log 1

ε calls to the oracle suffice to find an ε-approximate minimizer of f
in an `2 unit ball. Perhaps surprisingly, this is not optimal: we design an accelerated
algorithm which attains an ε-approximate minimizer with roughly r−2/3 log 1

ε
oracle queries, and give a matching lower bound. Further, we implement ball
optimization oracles for functions with locally stable Hessians using a variant of
Newton’s method and, in certain cases, stochastic first-order methods. The resulting
algorithm applies to a number of problems of practical and theoretical import,
improving upon previous results for logistic and `∞ regression and achieving
guarantees comparable to the state-of-the-art for `p regression.

1 Introduction

We study unconstrained minimization of a smooth convex objective f : Rd → R, which we access
through a ball optimization oracle Oball, that when queried at any point x, returns the minimizer of f
restricted a ball of radius r around x, i.e.,1

Oball(x) = arg min
x′ s.t. ‖x′−x‖≤r

f(x′).

Such oracles underlie trust-region methods [15] and, as we demonstrate via applications, encapsulate
problems with local stability. Iterating xk+1 ← Oball(xk) minimizes f in Õ(R/r) iterations (see Ap-
pendix A), whereR is the initial distance to the minimizer, x∗, and Õ(·) hides polylogarithmic factors
in problem parameters, including the desired accuracy.

Given the fundamental geometric nature of the ball optimization abstraction, the central question
motivating our work is whether it is possible to improve upon this Õ(R/r) query complexity. It is
natural to conjecture that the answer is negative: we require R/r oracle calls to observe the entire line
from x0 to the optimum, and therefore finding a solution using less queries would require jumping
into completely unobserved regions. Nevertheless, we prove that the optimal query complexity scales
as (R/r)2/3. This result has positive implications for the complexity for several key regression tasks,
for which we can efficiently implement the ball optimization oracles.

1.1 Our contributions
We overview our main contributions: accelerating ball optimization oracles (with a matching lower
bound), implementing them under Hessian stability, and applying our results to regression problems.
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1In the introduction we discuss exact oracles for simplicity, but our results account for inexactness. Our

results hold for any weighted Euclidean (semi)norm, i.e., ‖x‖ =
√
x>Mx for M � 0, which we sometimes

write explicitly as ‖x‖M.
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Monteiro-Svaiter (MS) oracles via ball optimization. Our starting point is an acceleration frame-
work due to Monteiro and Svaiter [25]. It relies on access to an oracle that when queried with
x, v ∈ Rd and A > 0, returns points x+, y ∈ Rd and λ > 0 such that

y =
A

A+ aλ
x+

aλ
A+ aλ

v, and (1)

x+ ≈ arg min
x′∈Rd

{
f(x′) +

1

2λ
‖x′ − y‖2

}
, (2)

where aλ = 1
2 (λ+

√
λ2 + 4Aλ). Basic calculus shows that for any z, the radius-r oracle response

Oball(z) solves the proximal point problem (2) for y = z and some λ = λ?r(z) ≥ 0 which depends
on r and z. Therefore, to implement the MS oracle with a ball optimization oracle, given query
(x, v,A) we need to find λ that solves the implicit equation λ = λ?r(y(λ)), with y(λ) as in (1). We
solve this equation to sufficient accuracy via binary search over λ, resulting in an accelerated scheme
that makes Õ(1) queries to Oball(·) per iteration (each iteration also requires a gradient evaluation).

The main challenge lies in proving that our MS oracle implementation guarantees rapid convergence.
We do so by a careful analysis which relates convergence to the distance between the MS oracle
outputs y and x+. Specifically, letting {yk, xk+1} be the sequence of these points, we prove that

f(xK)− f(x∗)

f(x0)− f(x∗)
≤ exp

{
−Ω(K) min

k<K

‖xk+1 − yk‖2/3

R2/3

}
.

Since Oball guarantees ‖xk+1 − yk‖ = r for all k except possibly the last, our result follows.

Matching lower bound. We give a distribution over functions with domain of size R for which any
algorithm interacting with a ball optimization oracle of radius r requires Ω((R/r)2/3) queries to find
an approximate solution with O(r1/3) additive error. Our lower bound in fact holds for an even more
powerful r-local oracle, which reveals all values of f in a ball of radius r around the query point. We
prove our lower bounds using well-established techniques and Nemirovski’s function, a canonical
hard instance in convex optimization [26, 30, 12, 17, 9]. Here, our primary contribution is to show
that appropriately scaling this construction makes it hard even against r-local oracles with a fixed
radius r, as opposed to the more standard notion of local oracles that reveal the instance only in an
arbitrarily small neighborhood around the query.

Ball optimization oracle implementation. Trust-region methods [15] solve a sequence of subprob-
lems of the form

minimize
δ∈Rd s.t. ‖δ‖≤r

{
δ>g +

1

2
δ>Hδ

}
.

When g = ∇f(x) and H = ∇2f(x), the trust-region subproblem minimizes a second-order Taylor
expansion of f around x, implementing an approximate ball optimization oracle. We show how to
implement a ball optimization oracle for f to high accuracy for functions satisfying a local Hessian
stability property. Specifically, we use a notion of Hessian stability similar to that of Karimireddy
et al. [22], requiring 1

c∇
2f(x) � ∇2f(y) � c∇2f(x) for every y in a ball of radius r around x for

some c > 1. We analyze Nesterov’s accelerated gradient method in a Euclidean norm weighted by
the Hessian at x, which we can also view as accelerated Newton steps, and show that it implements
the oracle in Õ(c) linear system solutions, improving upon the c2 dependence of more naive methods.
This improvement is not necessary for our applications where we take c to be a constant, but we
include it for completeness. For certain objectives (e.g., softmax), we show that a first-order oracle
implementation (e.g., computing the Newton steps with accelerated SVRG) allows us to further
exploit the problem structure, and improve state-of-the-art runtimes guarantees in some regimes.

Applications. We apply our implementation and acceleration of ball optimization oracles to
problems of the form f(Ax − b) for data matrix A ∈ Rn×d. For logistic regression, where
f(z) =

∑
i∈[n] log(1 + e−zi), Hessian stability implies [4] that our algorithm solves the problem

with Õ(‖x0 − x∗‖2/3
A>A

) linear system solves of the form A>DAx = z for diagonal D. This
improves upon the previous best linearly-convergent condition-free algorithm due to Karimireddy
et al. [22], which requires Õ(‖x0−x∗‖A>A) system solves. Our improvement is precisely the power
2/3 factor that comes from acceleration using the ball optimization oracle.

For `∞ regression, we take f to be the log-sum-exp (softmax) function and establish that it too
has a stable Hessian. By appropriately scaling softmax to approximate `∞ regression to ε additive
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error and taking r = ε, our method solves `∞ to additive error ε in Õ(‖x0 − x∗‖2/3A>A
ε−2/3) linear

system solves of the same form as above. This improves upon the algorithm of Bullins and Peng
[11] in terms of ε scaling (from ε−4/5 to ε−2/3) and the algorithm of Ene and Vladu [18] in terms
of distance scaling (from n1/3‖A(x0 − x∗)‖2/3∞ to ‖A(x0 − x∗)‖2/32 ). We also give a runtime
guarantee improving over the state-of-the-art first-order method of Carmon et al. [13] whenever
n
d ≥ (maxi‖ai‖2R

ε )2/3 ≥ d where R is the `2 distance between an initial point and the optimizer, by
using a first-order oracle implementation based on [5].

Finally, we leverage our framework to obtain high accuracy solutions to `p norm regression, where
f(z) =

∑
i∈[n] |zi|p, via minimizing a sequence of proximal problems with geometrically shrinking

regularization. The result is an algorithm that solves Õ(poly(p)n1/3) linear systems. For p = ω(1),
this matches the state-of-the-art n dependence [1] but obtains worse dependence on p. Nevertheless,
we provide a straightforward alternative approach to prior work and our results leave room for further
refinements which we believe may result in stronger guarantees.

1.2 Related work
Our developments are rooted in three lines of work, which we now briefly survey.

Monteiro-Svaiter framework instantiations. Monteiro and Svaiter [25] propose a new accelera-
tion framework, which they specialize to recover the classic fast gradient method [27] and obtain an
optimal accelerated second-order method for convex problems with Lipschitz Hessian. Subsequent
work [19] extends this to functions with pth-order Lipschitz derivatives and a pth-order oracle. Gen-
eralizing further, Bubeck et al. [9] implement the MS oracle via a “Φ prox” oracle that given query x
returns roughly arg minx′{f(x) + Φ(‖x′ − x‖)}, for continuously differentiable Φ, and prove an
error bound scaling with the iterate number k as φ(R/k3/2)R2/k2, where φ(t) = Φ′(t)/t. Using
poly(d) parallel queries to a subgradient oracle for non-smooth f , they show how to implement the
Φ prox oracle for Φ(t) ∝ (t/r)p with arbitrarily large p, where r = ε/

√
d. Our notion of a ball

optimization corresponds to taking p =∞, i.e., letting Φ be the indicator of [0, r]. However, since
such Φ is not continuous, our result does not follow directly from [9]. Thus, our approach clarifies
the limiting behavior of MS acceleration of infinitely smooth functions.

Trust region methods. The idea of approximately minimizing the objective in a “trust region”
around the current iterate plays a central role in nonlinear optimization and machine learning [see,
e.g., 15, 23, 28]. Typically, the approximation takes the form of a second-order Taylor expansion,
where regularity of the Hessian is key for guaranteeing the approximation quality. Of particular
relevance to us is the work of Karimireddy et al. [22], which define a notion of Hessian stability
under which a trust-region method converges linearly with only logarithmic dependence on problem
conditioning. We observe that this stability condition in fact renders the second-order trust region
approximation highly effective, so that a few iterations suffice in order to implement an “ideal” ball
optimization oracle, thus enabling accelerated condition-free convergence.

Karimireddy et al. [22] also observe that quasi self-concordance (QSC) is a sufficient condition for
Hessian stability, and that the logistic regression objective is QSC. We use this observation for our
applications, and prove that the softmax objective is also QSC. Marteau-Ferey et al. [24] directly
leverage the QSC property using Newton method variants. For QSC functions with parameter M ,
they show complexity guarantees scaling linearly in MR. Under the same assumptions, we obtain
the improved scaling (MR)2/3. Both guarantees depend only weakly (polylogarithmically) on the
standard problem condition number.

Efficient `p regression algorithms. There has been rapid recent progress in linearly convergent
algorithms for minimizing the p-norm of the regression residual Ax− b or alternatively for finding a
minimum p-norm x satisfying linear constraints Ax = b. Bubeck et al. [8] give faster algorithms for
all p ∈ (1, 2) ∪ (2,∞), discovering and overcoming a limitation of classic interior point methods.
Their algorithm is based on considering a smooth interpolation between a quadratic and the original
objective. Bullins [10] applies accelerated tensor methods to develop a gradient descent method for
the case of p = 4 with linear-system solution complexity scaling as n1/5 (for A ∈ Rn×d). Adil
et al. [2] give an iterative refinement method for general p ∈ (1,∞) with complexity proportional
to n|p−2|/(2p+|p−2|) ≤ n1/3, matching [10] for p = 4 and improving on [8]. Adil and Sachdeva [1]
provide an alternative method with complexity scaling as p · n1/3 scaling, improving on the O(pO(p))
dependence in [2].
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As mentioned in the previous section, a number of recent works [11, 18, 13] obtain ε-accurate
solutions for p =∞ with complexity scaling polynomially in ε−1. Bullins and Peng [11] leverage
accelerated tensor methods and fourth-order smoothness, Ene and Vladu [18] carefully analyze
re-weighted least squares, and Carmon et al. [13] develop a first-order stochastic variance reduction
technique for matrix saddle-point problems. We believe that our approach brings us closer to a unified
perspective on high-order smoothness and acceleration for regression problems.

1.3 Paper organization

In Section 2, we implement the MS oracle using a ball optimization oracle and prove its Õ((R/r)2/3)
convergence guarantee. In Section 3, we show how to use Hessian stability to efficiently implement
a ball optimization oracle, and also show that quasi-self-concordance implies Hessian stability. In
Section 4 we apply our developments to the aforementioned regression tasks. Finally, in Section 5 we
give a lower bound implying our oracle complexity is optimal (up to logarithmic terms).

Notation. Let M be a positive semidefinite matrix, and let M† be its pseudoinverse. We perform our
analysis in the Euclidean seminorm ‖x‖M

def
=
√
x>Mx; we will choose a specific M when discussing

applications. We denote the ‖·‖M ball of radius r around x̄ by Br(x̄)
def
=
{
x ∈ Rd | ‖x− x̄‖M ≤ r

}
.

We recall standard definitions of smoothness and strong-convexity in a quadratic norm: differentiable
f : Rd → R is L-smooth in ‖·‖M if its gradient is L-Lipschitz in ‖·‖M, and twice-differentiable f is
L-smooth and µ-strongly convex in ‖·‖M if µM � ∇2f(x) � LM for all x ∈ Rd.

2 Monteiro-Svaiter Acceleration with a Ball Optimization Oracle
In this section, we give an accelerated algorithm for optimization with the following oracle.
Definition 1 (Ball optimization oracle). We call Oball a (δ, r)-ball optimization oracle for f : Rd →
R if for any x̄ ∈ Rd, it outputs y = Oball(x̄) ∈ Br(x̄) such that ‖y − xx̄,r‖M ≤ δ for some
xx̄,r ∈ arg minx∈Br(x̄) f(x).

We use the Monteiro and Svaiter acceleration framework [25, 19, 9], relying on the following oracle.
Definition 2 (MS oracle). We call OMS a σ-MS oracle for differentiable f : Rd → R if given inputs
(A, x, v) ∈ R≥0 × Rd × Rd, OMS outputs (λ, aλ, ytλ , z) ∈ R≥0 × R≥0 × Rd × Rd such that

aλ =
λ+
√
λ2 + 4λA

2
, tλ =

A

A+ aλ
, ytλ = tλ · x+ (1− tλ) · v,

and we have the guarantee∥∥z − (ytλ − λM†∇f(z))
∥∥
M
≤ σ ‖z − ytλ‖M . (3)

We now state the acceleration framework and the main bound we use to analyze its convergence.

Algorithm 1 Monteiro-Svaiter acceleration

1: Input: Strictly convex and differentiable function f : Rd → R. Symmetric M � 0 with
∇f(x) ∈ Im(M) for all x ∈ Rd. Initialization A0 ≥ 0 and x0 = v0 ∈ Rd. Monteiro-Svaiter
oracle OMS with parameter σ ∈ [0, 1).

2: for k = 0, 1, 2, . . . do
3: (λk+1, ak+1, yk, xk+1)← OMS(Ak, xk, vk)
4: vk+1 ← vk − ak+1M

†∇f(xk+1), Ak+1 ← Ak + ak+1.
5: end for

Proposition 3. Let differentiable f be strictly convex, ‖x0 − x∗‖M ≤ R and f(x0)−f(x∗) ≤ ε0. Set
A0 = R2/(2ε0) and suppose that for some r > 0 the iterates of Algorithm 1 satisfy ‖xk+1 − yk‖M ≥
r for all k ≥ 0. Then, the iterates also satisfy f(xk)− f(x∗) ≤ 2ε0 exp(−( r(1−σ)

R )2/3(k − 1)).

Proposition 3 is one of our main technical results, obtained via applying a reverse Hölder’s inequality
on a variant of the performance guarantees of [25]; we defer the proof to Appendix B. Clearly,
Proposition 3 implies that the progress of Algorithm 1 is related to the amount of movement of the
iterates, i.e., the quantities {‖xk+1 − yk‖M}. We now show that by using a ball optimization oracle
of radius r, we are able to guarantee movement by roughly r, which implies rapid convergence. We
rely on the following characterization, whose proof we defer to Appendix C.
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Lemma 4. Let f : Rd → R be continuously differentiable and strictly convex. For all y ∈
Rd, z = arg minz′∈Br(y) f(z′) either globally minimizes f , or ‖z − y‖M = r and ∇f(z) =

−‖∇f(z)‖
M†

r M(z − y).

Lemma 4 implies that a (0, r) ball optimization oracle either globally minimizes f , or yields z with

‖z − y‖M = r and
∥∥z − (y − λM†∇f(z)

)∥∥
M

= 0, for λ =
r

‖∇f(z)‖M†
. (4)

This is precisely the type of bound compatible with both Proposition 3 and requirement (3) of OMS.
The remaining difficulty lies in that λ also defines the point y = ytλ . Therefore, to implement an MS
oracle using a ball optimization oracle we perform binary search over λ, with the goal of solving

g(λ)
def
= λ‖∇f(ztλ)‖M† = r, where ztλ

def
= min

z∈Br(ytλ )
f(z), and tλ, ytλ as in Definition 2.

Algorithm 2 describes our binary search implementation. The algorithm takes the MS oracle input
(A, x, v) as well D bounding the distance of x and v from the optimum, and desired global solution
accuracy ε, outputting either a (global) ε-approximate minimizer or (λ, aλ, ytλ , z̃tλ) satisfying both (3)
(with σ = 1

2 ) and a lower bound on ‖z̃tλ − ytλ‖2. To bound our procedure’s complexity we leverage
L-smoothness of f (i.e. L-Lipschitz continuity of∇f ), yielding a bound on the Lipschitz constant of
g(λ) defined above. Our analysis is somewhat intricate as it must account for inexactness in the ball
optimization oracle. It obtains the following performance guarantee, whose proof is in Appendix C.
Proposition 5 (Guarantees of Algorithm 2). Let L,D, δ, r > 0 and Oball satisfy the requirements in
Lines 1–3 of Algorithm 2, and ε < 2LD2. Then, Algorithm 2 either returns z̃tλ with f(z̃tλ)−f(x∗) <
ε, or implements a 1

2 -MS oracle with the additional guarantee ‖z̃tλ − ytλ‖M ≥
11r
12 . Moreover, the

number of calls to Oball is bounded by O(log(LD
2

ε )).

Algorithm 2 Monteiro-Svaiter oracle implementation

1: Input: Function f : Rd → R that is strictly convex, L-smooth in ‖·‖M.A ∈ R≥0 and x, v ∈
Rd satisfying ‖x− x∗‖M and ‖v − x∗‖M ≤ D where x∗ = arg minx f(x). A (δ, r)-ball
optimization oracle Oball, where δ = r

12(1+Lu) and u = 2(D+r)r
ε .

2: Set λ← u and `← r
2LD , let z̃tλ ← Oball(ytλ)

3: if u ‖∇f(z̃tλ)‖M† ≤ r + uLδ then
4: return (λ, aλ, ytλ , z̃tλ)
5: else
6: while

∣∣λ ‖∇f(z̃tλ)‖M† − r
∣∣ > r

6 do
7: λ← `+u

2 , z̃tλ ← Oball(ytλ)
8: if λ ‖∇f(z̃tλ)‖M† ≥ r then u← λ, else `← λ
9: end while

10: return (λ, aλ, ytλ , z̃tλ)
11: end if

Finally, we state our main acceleration result, whose proof we defer to Appendix C.
Theorem 6 (Acceleration with a ball optimization oracle). Let Oball be an ( r

12+126LRr/ε , r)-ball
optimization oracle for strictly convex and L-smooth f : Rd → R with minimizer x∗, and initial
point x0 satisfying ‖x0 − x∗‖M ≤ R and f(x0)− f(x∗) ≤ ε0. Then, Algorithm 1 using Algorithm 2
as a Monteiro-Svaiter oracle with D =

√
18R produces an iterate xk with f(xk)− f(x∗) ≤ ε, in

O
(

(R/r))
2/3

log (ε0/ε) log
(
LR2/ε

))
calls to Oball.

3 Ball Optimization Oracle for Hessian Stable Functions
In this section we leverage standard techniques for solving the trust-region subproblem [15] in order
to implement a ball optimization oracle. The key structure enabling efficient implementation is the
the following notion of Hessian stability, a slightly stronger version of the condition in Karimireddy
et al. [22].2

2 A variant of the algorithm we develop also works under the weaker stability condition. We state the stronger
condition as it is simpler, and holds for all our applications.
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Definition 7 (Hessian stability). Twice-differentiable f : Rd → R is (r, c)-Hessian stable for r, c ≥ 0
with respect to ‖·‖ if ∀x, y ∈ Rd with ‖x− y‖ ≤ r we have c−1∇2f(y) � ∇2f(x) � c∇2f(y).

We give a method implementing a (δ, r)-ball oracle (cf. Definition 1) for (r, c)-stable functions
in ‖·‖M, requiring Õ(c) linear system solutions. The method reduces the oracle to solving Õ(c)

trust-region subproblems of the form minx∈Br(x̄)Q(x)
def
= −g>x + 1

2x
>Hx, and we show each

requires Õ(1) linear system solves in H + λM for λ ≥ 0. In terms of total linear system solves, our
method has a (mild) polylogarithmic dependence on the condition number of f in ‖·‖M. The main
result of this section is Theorem 8, which guarantees correctness and complexity our ball optimization
oracle implementation; proofs are deferred to Appendices D.1 and D.2.
Theorem 8. Let f be L-smooth, µ-strongly convex, and (r, c)-Hessian stable in the seminorm ‖·‖M.
Then, Algorithm 7 (in Appendix D.2) implements a (δ, r)-ball optimization oracle for query point x̄
with ‖x̄− x∗‖M ≤ D for x∗ the minimizer of f , and requires

O

(
c log2

(
κ(D + r)c

δ

))
linear system solves in matrices of the form H + λM for nonnegative λ, where κ = L/µ.
Remark 9 (First-order implementation). The linear system solves required by Theorem 8 can be
carried out via Gaussian elimination, fast matrix multiplication, or a number of more scalable
algorithms, including first-order methods [e.g., 5]. In Section 4.3, we show that using first-order
methods that exploit the particular problem structure allows us to achieve state-of-the-art runtimes
for `∞ regression in certain regimes.

We state a sufficient condition for Hessian stability below. We use this result in Section 4 to establish
Hessian stability in several structured problems, and defer its proof to Appendix E for completeness.
Definition 10 (Quasi-self-concordance). We say that thrice-differentiable f : Rd → R is M -quasi-
self-concordant (QSC) with respect to some norm ‖·‖, for M ≥ 0, if for all u, h, x ∈ Rd,∣∣∇3f(x)[u, u, h]

∣∣ ≤M‖h‖‖u‖2∇2f(x),

i.e., restricting the third-derivative tensor of f to any direction is bounded by a multiple of its Hessian.

Lemma 11. If thrice-differentiable f : Rd → R is M -quasi-self-concordant with respect to norm
‖·‖, then it is (r, exp(Mr))-Hessian stable with respect to ‖·‖.

4 Applications

Algorithm 3 puts together the ingredients from previous sections to give a complete second-order
method for minimizing QSC functions. We now apply it to functions of the form f(x) = g(Ax) for
matrix A ∈ Rn×d and g : Rn → R. The logistic loss, softmax approximation of `∞ regression, and
variations of `p regression objectives all have this form. The following complexity guarantee for
Algorithm 3 follows directly from our previous developments and we defer a proof to Appendix F.

Algorithm 3 Monteiro-Svaiter accelerated BAll COnstrained Newton’s method (MS-BACON)

1: Input: Function f : Rd → R, desired accuracy ε, initial point x0, initial suboptimality ε0.
2: Input: Domain bound R, quasi-self-concordance M , smoothness L, norm ‖·‖M.
3: Define f̃(x) = f(x) + ε

55R2 ‖x− x0‖2M
4: Using Algorithm 7, implementOball, a (δ, 1

M )-ball optimization oracle for f̃ , where δ = Θ( ε
LR )

5: Using Algorithm 2 and Oball, implement OMS, a 1
2 -MS oracle for f̃

6: Using O((RM)2/3 log ε0
ε ) iterations of Algorithm 1 withOMS and initial point x0 compute xout,

an ε/2-accurate minimizer of f̃
7: return xout

Corollary 12. Let f(x) = g(Ax), for g : Rn → R that is L-smooth, M -QSC in the `2 norm, and
A ∈ Rn×d. Let x∗ be a minimizer of f , and suppose that ‖x0 − x∗‖M ≤ R and f(x0)−f(x∗) ≤ ε0
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for some x0 ∈ Rd, where M def
= A>A. Then, Algorithm 3 yields an ε-approximate minimizer to f in

O

(
(RM)

2/3
log
(ε0
ε

)
log3

(
LR2

ε
(1 +RM)

))
linear system solves in matrices of the form A>

(
∇2g(Ax) + λI

)
A for λ > 0 and x ∈ Rd.

Both the (unaccelerated) Newton method-based algorithm in Marteau-Ferey et al. [24] and our
method depend polylogarithmically on the (regularized) problem’s condition number. The method
proposed in Marteau-Ferey et al. [24] has a complexity of Õ(MR) for solving M -QSC functions
with domain size R, while our method gives an accelerated dependence of Õ((MR)2/3). We defer
proofs of claims in the following subsections to Appendix F.

4.1 Logistic regression

Consider logistic regression in matrix A ∈ Rn×d with n data points of dimension d, and correspond-
ing labels b ∈ {−1, 1}n. The objective is

f(x) =
∑
i∈[n]

log(1 + exp(−bi〈ai, x〉)) = g(Ax), (5)

where g(y) =
∑
i∈[n] log(1 + exp(−biyi)). It is known [6] that g is 1-QSC and 1-smooth in `2, with

a diagonal Hessian. Thus, we have the following convergence guarantee from Corollary 12.
Corollary 13. For the logistic regression objective (5), given x0 with initial function error ε0 with
distance R from a minimizer in ‖·‖A>A, Algorithm 3 obtains an ε-approximate minimizer using
O
(
R2/3 log (ε0/ε) log3

(
R2(1 +R)/ε

))
linear system solves in matrices A>DA for diagonal D.

Compared to Karimireddy et al. [22], which gives a trust-region Newton method using Õ(R) linear
system solves, we obtain an improved dependence on the domain size R.

4.2 `∞ regression

Consider `∞ regression in matrix A ∈ Rn×d and vector b ∈ Rn, which asks to minimize

f(x) = ‖Ax− b‖∞ = g(Ax), (6)

where g(y) = ‖y − b‖∞. Without loss of generality (by concatenating A, b with −A, −b), we may
replace the ‖·‖∞ in the objective with a maximum. It is well-known that g(y) is approximated within
additive ε/2 by lset(y − b) for t = ε/(2 log n) (see Lemma 42 for a proof), where we set

lse(x)
def
= log

∑
i∈[n]

exp(xi)

 , lset(x)
def
= tlse(x/t).

Our improvement stems from the fact that lset is QSC, which appears to be a new observation. The
proof carefully manipulates the third-derivative tensor of lset and is deferred to Appendix F.
Lemma 14. lset is 1/t-smooth and 2/t-QSC in `∞.

Lemma 14 immediately implies that lset is n/t-smooth and 2/t-QSC in `2. We thus obtain the
following by applying Corollary 12 to the lseε/(2 logn) objective, and solving to ε/2 additive accuracy.

Corollary 15. Given x0 with initial function error ε0 with distance R from a minimizer in ‖·‖A>A,

Algorithm 3 obtains an ε-approximate minimizer using O
(

(R log n/ε)
2/3

log (ε0/ε) log3 (nR/ε)
)

linear system solves in matrices Â>DÂ, where D is a positive definite diagonal matrix, and Â is
the vertical concatenation of A and −A.

The reduction from solving linear systems of the form described in Corollary 12 to linear systems of
the form in Corollary 15 (which is not immediate, since the Hessian of softmax is not diagonal) is
given in Appendix F.

Compared to Bullins and Peng [11], which find an ε-approximate solution to (6) in Õ((R/ε)4/5)
linear system solves using high-order acceleration, we obtain an improved dependence on R/ε. Ene
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and Vladu [18] consider the equivalent problem minimizey:A>y=c‖y‖∞ (see Appendix F.2.1 for
explanation of this equivalence). They show how to solve this problem to δ multiplicatie error in
Õ(n1/3δ−2/3) linear system solutions in A>DA for positive diagonal D. Translated into our setting,
this implies a complexity of Õ(n1/3‖Ax∗‖2/3∞ ε−2/3) linear system solves in A>DA, which is never
better than our guarantee since ‖v‖2 ≤

√
n‖v‖∞ for all v ∈ Rn. Conversely, our result maps to the

setting of Ene and Vladu [18] to provide a complexity guarantee of Õ(‖x∗‖2/32 ε−2/3) appropriate
linear system solves to attain ε additive error.

Finally, we note that our unconstrained regression solver also solves constrained regression problems
which are sometimes considered in the literature, through a reduction.

4.3 First-order methods and improved norm dependence

For both logistic regression and `∞ regression, we can alternatively work in the standard `2 norm,
and obtain a different QSC parameter depending on maxi‖ai‖2; we defer all proofs to Appendix F.3.
Lemma 16. The logistic objective f(x) = g(Ax) in (5) is maxi∈[n]‖ai‖2-QSC in the `2 norm.

Lemma 17. The log-sum-exp function f(x) = lset(Ax) is 2
t maxi∈[n]‖ai‖2-QSC in the `2 norm.

With these alternative QSC bounds, we turn our attention to the cost of implementing a ball oracle. In
the previous sections we accomplish this by using a generic positive semidefinite linear system solver;
we now demonstrate how first-order methods can give improved runtimes in large-scale settings. We
focus on `∞ regression here, as the case of logistic regression is similar. Defining R = ‖x0 − x∗‖2,
we seek an ε/4-approximate minimizer to a smooth, strongly-convex approximation of the `∞-norm:
we pick

h(x) = lset(Ax) +
ε

4R2
‖x− x0‖22, where t =

ε

2 log n
.

By applying variance-reduced stochastic gradient methods to solve linear systems in ∇2h(x) and
combining with our framework, we obtain the following complexity bound in terms of runtime (as
opposed to linear system solves).
Corollary 18. With initial function error ε0 and R = ‖x0 − x∗‖2, Algorithm 3 using the first-order
linear system solver of Agarwal et al. [5] returns an ε-approximate minimizer within total runtime
Õ
((

maxi∈[n]‖ai‖2Rε
)2/3 (

nd+ d1.5 maxi∈[n]‖ai‖2Rε
))
.

Let L = maxi∈[n]‖ai‖2. In the regime d ≤ (LRε )2/3 ≤ n
d and when A is dense, we obtain a

speed-up compared to the state-of-the-art runtime Õ(nd+
√
nd(n+ d)LR

2

ε ) of Carmon et al. [13].

4.4 `p regression

Consider `p regression in matrix A ∈ Rn×d and vector b ∈ Rn, which asks to minimize

f(x) = ‖Ax− b‖pp = g(Ax) with optimizer x∗. (7)

for some fixed p > 3,3 where g(x) =
∑
i|xi − bi|p. While this objective is not QSC, our method

iteratively considers a regularized QSC objective to halve the error, as summarized in Algorithm 8.

Algorithm 4 High accuracy `p regression

1: Input: A ∈ Rn×d, b ∈ Rn, multiplicative error tolerance δ ≥ 0.
2: Set x0 = A†b and ε0 = f(x0) = ‖Ax0 − b‖pp.
3: for k ≤ log2(n/δ1/p) do
4: εk ← 2−pεk−1

5: xk ← output of Algorithm 3 applied on f(x) = ‖Ax− b‖pp with initialization xk−1, desired

accuracy εk and parameters R = O(n(p−2)/2pε
1/p
k ) and M = O(p

√
n/R) (see Lemma 52)

6: end for

Below we state the guarantee of Algorithm 8, and defer its proof to Appendix F.4.

3We assume p > 3 for ease of presentation; for p ≤ 4 our runtime is superseded by, e.g., the algorithm of [3].
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Corollary 19. Algorithm 8 computes x ∈ Rd with ‖Ax − b‖pp ≤ (1 + δ)‖Ax∗ − b‖pp using
O(p14/3n1/3 log4(n/δ)) linear system solves in A>DA for diagonal matrix D � 0.

Compared to Adil and Sachdeva [1], Adil et al. [2], which minimize f to 1+δ multiplicative accuracy
by solving Õ

(
min

(
pn1/3, pO(p)n

p−2
3p−2

)
log(1/δ)

)
linear systems, our guarantee is slightly weaker

in its p dependence. Nonetheless, we believe our alternative, simple approach sheds further light on
the complexity of this problem, and that there is room for additional improvement.

5 Lower Bound

We establish a lower bound showing that all algorithms for minimizing a function via repeated calls
to a (0, r) ball optimization oracle, which we call r-BOO algorithms, require Ω((R/r)2/3) queries in
the worst case. Formally, the following lower bound matches Theorem 6 up to logarithmic factors.
Theorem 20. Let r

R , δ ∈ (0, 1) and d =
⌈
60(Rr )2 log R

δ·r
⌉
. There exists a distribution P over convex

and 1-Lipschitz functions from BR(0)→ R such that the following holds for any r-BOO algorithm:
with probability at least 1− δ over the draw of f ∼ P and the algorithm’s coin flips (i.e. randomness
used by the algorithm), its first

⌈
1
10 (Rr )2/3

⌉
queries are at least R2/3r1/3 suboptimal for f .

We prove Theorem 20 in Appendix G as a corollary of a stronger results stating the same lower
bound for r-local oracle algorithms, that for each query x receive the function f restricted to Br(x).
This information clearly suffices to compute the ball optimization oracle output as well as f(x)
and ∇f(x), implying that Algorithm 2 also operates within our oracle framework. Our proof is
essentially a careful reading of the classical information-based complexity lower-bound for convex
optimization [26, 20], where we strengthen the notion of local oracles—which return f restricted to a
neighborhood of the query—by quantifying the size of the neighborhood.

Using arguments from [20, 17] we may further strengthen the lower bound to hold for instances
which are smooth, strongly-convex and have unbounded domain, precisely matching the assumptions
of Theorem 6 (see Appendix G). However, the implementations of the ball optimization oracle we
consider in Section 3 require a Hessian stability assumption (Definition 7), and it is unclear if we
can make the hard instances underlying Theorem 20 Hessian-stable. Nevertheless, our lower bound
precludes further progress via the ball optimization oracle abstraction, up to logarithmic factors.
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Supplementary material

A Unaccelerated optimization with a ball optimization oracle

Here, we state and analyze the unaccelerated algorithm for optimization of convex function f with
access to a ball optimization oracle. For simplicity of exposition, we assume that the oracle Oball is
a (0, r)-oracle, i.e. is exact, and we perform our analysis in the `2 norm; for a general Euclidean
seminorm, a change of basis suffices to give the same guarantees.

Algorithm 5 Iterating ball optimization

1: Input: Function f : Rd → R and initial point x0 ∈ Rd.
2: for k = 1, 2, ... do
3: xk ← Oball(xk−1)
4: end for

We first note that the distance ‖xk − x∗‖2 is decreasing in k.

Lemma 21. For all x ∈ Rd, ‖Oball(x)− x∗‖2 ≤ ‖x− x∗‖2.

Proof. The claim is obvious if Oball(x) = x∗, so we assume this is not the case. Note that for any
x̃ with ‖x̃− x‖2 ≤ r, if there is any point x̂ on the line between x̃ and x∗, then by strict convexity
f(x̂) < f(x̃). Now, clearlyOball(x) lies on the boundary of the ball around x, and moreover the angle
between the vectors x−Oball(x) and x∗ −Oball(x) must be obtuse, else the line between Oball(x)

and x∗ intersects the ball twice. Thus, by law of cosines ‖Oball(x) − x∗‖2 ≤
√
‖x− x∗‖22 − r2,

yielding the conclusion.

Theorem 22. Suppose for some x0 ∈ Rd, f(x0)− f(x∗) ≤ ε0 and ‖x0 − x∗‖2 ≤ R, where x∗ is
the global minimizer of f . Algorithm 5 computes an ε-approximate minimizer in O

(
R
r log ε0

ε

)
calls

to Oball.

Proof. Define x̃k
def
=
(
1− r

R

)
xk−1 + r

Rx
∗, and note that because ‖xk−1 − x∗‖2 ≤ R, x̃k is in the

ball of radius r around xk−1. Thus, convexity yields

f(xk) ≤ f(x̃k) ≤
(

1− r

R

)
f(xk−1)+

r

R
f(x∗)⇒ f(xk)−f(x∗) ≤

(
1− r

R

)
(f(xk−1)− f(x∗)) .

Iteratively applying this inequality yields the conclusion.

B Analysis of Monteiro-Svaiter acceleration

In this section, we prove Proposition 3. We do so by first proving a sequence of lemmas demonstrating
properties of Algorithm 1. Throughout, we recall∇f(x) ∈ Im(M) for all x by assumption. We note
that these are variants of existing bounds in the literature [e.g. 25, 9].
Lemma 23. For all k ≥ 0,

λk+1Ak+1 = a2
k+1 and

√
Ak ≥

1

2

∑
i∈[k]

√
λi.

Proof. The first claim is from solving a quadratic in the definition of ak+1. The second follows from√
Ak ≥

√
Ak −

√
A0 =

∑
i∈[k]

(√
Ai −

√
Ai−1

)
=
∑
i∈[k]

ai√
Ai +

√
Ai−1

=
∑
i∈[k]

√
λiAi√

Ai +
√
Ai−1

≥ 1

2

∑
i∈[k]

√
λi

where we used that A0 ≥ 0 and {Ai} are increasing.
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Lemma 24. For all k ≥ 0, if ‖xk+1 − yk‖M > 0, we have for σ ∈ [0, 1),

‖∇f(xk+1)‖M† > 0 and λk+1 ≥
‖xk+1 − yk‖M
‖∇f(xk+1)‖M†

(1− σ) > 0 .

Proof. For the first claim, by (3),

‖xk+1−yk‖M−λk+1‖∇f(xk+1)‖M† ≤ ‖xk+1−(yk−λk+1M
†∇f(xk+1))‖M ≤ σ‖xk+1−yk‖M,

since by assumption, for some σ ∈ [0, 1), ‖xk+1 − yk‖M > 0, therefore ‖∇f(xk+1)‖M† = 0 would
contradict this assumption.

For the second claim, Cauchy-Schwarz gives

σ2 ‖xk+1 − yk‖2M ≥
∥∥xk+1 −

(
yk − λk+1M

†∇f(xk+1)
)∥∥2

M

≥ ‖xk+1 − yk‖2M − 2λk+1‖∇f(xk+1)‖M†‖xk+1 − yk‖M + λ2
k+1‖∇f(xk+1)‖2M† .

Solving the quadratic in λk+1 implies, for P def
= ‖∇f(xk+1)‖M†‖xk+1 − yk‖M,

λk+1 ≥
2P −

√
4P 2 − 4(1− σ2)P 2

2‖∇f(xk+1)‖2
M†

=
P (1− σ)

‖∇f(xk+1)‖2
M†

=
‖xk+1 − yk‖M
‖∇f(xk+1)‖M†

(1− σ) .

Next, we provide the following lemma which gives a recursive bound for the potential, pk, which we
define as follows:

pk
def
= Akεk + rk, where εk

def
= f(xk)− f(x∗), rk

def
=

1

2
‖vk − x∗‖2M .

We remark that the proof does not use (3) beyond using the property that ak+1 > 0 (regardless of
how they are induced by λk+1).
Lemma 25. For all k ≥ 0,

pk+1 ≤ pk +
A2
k+1

2a2
k+1

(∥∥∥∥xk+1 −
(
yk −

a2
k+1

Ak+1
M†∇f(xk+1)

)∥∥∥∥2

M

− ‖xk+1 − yk‖2M

)
.

Proof. By Lemma 24 we have that λk+1 > 0, so that ak+1 > 0. Then,

vk =
1

ak+1
(Ak+1yk −Akxk) = xk+1 +

Ak+1

ak+1
(yk − xk+1) +

Ak
ak+1

(xk+1 − xk).

Consequently, convexity of f , i.e., 〈∇f(b), a− b〉 ≤ f(a)− f(b) for all a, b ∈ Rn, yields

ak+1 〈∇f(xk+1), x∗ − vk〉 ≤ Akεk −Ak+1εk+1 +Ak+1 〈∇f(xk+1), xk+1 − yk〉 .

Further, expanding rk+1 = 1
2 ‖vk+1 − x∗‖2M, where we recall vk+1 = vk − ak+1M

†∇f(xk+1),
gives

1

2
‖vk+1 − x∗‖2M = rk +

a2
k+1

2
‖∇f(xk+1)‖2M† + ak+1

〈
MM†∇f(xk+1), x∗ − vk

〉
.

Combining these inequalities, and recalling MM†∇f(xk+1) = ∇f(xk+1), then yields that

Ak+1εk+1 + rk+1 ≤ Akεk + rk +
a2
k+1

2
‖∇f(xk+1)‖2M† +Ak+1 〈∇f(xk+1), xk+1 − yk〉 .

The result then follows from pk = Akεk + rk and the fact that

A2
k+1

2a2
k+1

∥∥∥∥xk+1 −
(
yk −

a2
k+1

Ak+1
M†∇f(xk+1)

)∥∥∥∥2

M

=
A2
k+1

2a2
k+1

‖xk+1 − yk‖2M +Ak+1 〈∇f(xk+1), xk+1 − yk〉+
a2
k+1

2
‖∇f(xk+1)‖2M† .
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Next, we use (3) and the choice of ak+1 in the algorithm to improve the bound in Lemma 25.
Lemma 26. For all k ≥ 0,

pk +
∑
i∈[k]

(1− σ2)Ai
2λi

‖xi+1 − yi‖2M ≤ p0 .

Proof. Lemma 23 gives that for our choice of parameters, λk+1Ak+1 = a2
k+1 for all k ≥ 0.

Lemma 25 then implies that

Ak+1εk+1 + rk+1 ≤ Akεk + rk +
Ak+1

2λk+1

(∥∥xk+1 −
(
yk − λk+1M

†∇f(xk+1)
)∥∥2

M
− ‖xk+1 − yk‖2M

)
≤ Akεk + rk +

(σ2 − 1)Ak+1

2λk+1
‖xk+1 − yk‖2M

where we used (3) and the claim now follows from inductively applying the resulting bound.

Below we give a diameter bound on the iterates from the algorithm.
Lemma 27. If x0 = v0, then for all k ≥ 0 we have

‖xk − x∗‖M ≤
2− σ
1− σ

√
2p0, ‖vk − x∗‖M ≤

√
2p0.

Proof. Since pk = Akεk + rk, the second claim follows immediately from Lemma 26 implying that
1
2 ‖vk − x

∗‖2M = rk ≤ p0 for all k ≥ 0. Further, convexity and the triangle inequality imply that

‖xk+1 − x∗‖M ≤ ‖yk − x
∗‖M + ‖xk+1 − yk‖M

≤ Ak
Ak+1

‖xk − x∗‖M +
ak+1

Ak+1
‖vk − x∗‖M + ‖xk+1 − yk‖M .

Rearranging and applying recursively yields that

Ak+1 ‖xk+1 − x∗‖M ≤ Ak ‖xk − x
∗‖M + ak+1 ‖vk − x∗‖M +Ak+1 ‖xk+1 − yk‖M

≤ A0 ‖x0 − x∗‖M +

k∑
i=0

ai+1 ‖vi − x∗‖M +

k∑
i=0

Ai+1 ‖xi+1 − yi‖M .

Now, using Ak+1 = A0 +
∑k
i=0 ai+1, x0 = v0, the previously-derived ‖vi − x∗‖M ≤

√
2p0, and

Cauchy-Schwarz,

‖xk+1 − x∗‖M ≤
√

2p0 +
1

Ak+1

√√√√( k∑
i=0

λi+1Ai+1

)(
k∑
i=0

Ai+1

λi+1
‖xi+1 − yi‖2M

)
.

Now, since λk+1Ak+1 = a2
k+1 and

√
a+ b ≤

√
a+
√
b for nonnegative a, b we have√√√√ k∑

i=0

λi+1Ai+1 ≤
k∑
i=0

√
λi+1Ai+1 =

k∑
i=0

ai+1 = Ak+1,

and the result follows from
k∑
i=0

Ai+1

λi+1
‖xi+1 − yi‖2M ≤ (1− σ2)−12p0

(due to Lemma 26), and
√

(1− σ2)−1 ≤ (1− σ)−1.

We next give a basic helper lemma which will be useful in the proof of Proposition 3.
Lemma 28. Let {Bk}k∈N be a nonnegative, nondecreasing sequence such that Bk ≥

∑
i∈[k] αBi

for some α ∈ [0, 1) and all k. Then for all k, Bk ≥ exp(α(k − 1))B1.
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Proof. Extend C(t)
def
= Bdte for all t ≥ 1, and let C(t)

def
= exp(α(t− 1))B1 for t ∈ [0, 1]. Then for

all t ≥ 1,

C(t) = Bdte ≥ α
∑
i∈[dte]

Bi ≥ α
∫ t

0

C(s)ds,

and it is easy to check that this inequality holds with equality for t ∈ [0, 1] as well. Letting L(t) solve
this integral inequality, i.e., L(t) = C(t) for t ∈ [0, 1] and

L(t) = α

∫ t

0

L(s)ds,

L(t) = exp(α(t− 1))C(1), and inequality C(t) ≥ L(t) yields the claim, recalling Bk = C(k) for
k ∈ N.

Now we are ready to put everything together and prove the main result of this section.
Proposition 3. Let differentiable f be strictly convex, ‖x0 − x∗‖M ≤ R and f(x0)−f(x∗) ≤ ε0. Set
A0 = R2/(2ε0) and suppose that for some r > 0 the iterates of Algorithm 1 satisfy ‖xk+1 − yk‖M ≥
r for all k ≥ 0. Then, the iterates also satisfy f(xk)− f(x∗) ≤ 2ε0 exp(−( r(1−σ)

R )2/3(k − 1)).

Proof. First, we will show the bound

f(xk)− f(x∗) ≤ p0

A1
exp

(
−3

2

(
r(1− σ)
√
p0

)2/3

(k − 1)

)
. (8)

The reverse Hölder inequality with p = 3/2 states that for all u, v ∈ Rk>0,

〈u, v〉 ≥

∑
i∈[k]

u
2/3
i

3/2

·

∑
i∈[k]

v−2
i

−1/2

. (9)

Lemma 23 gives
√
Ak ≥ 1

2

∑
i∈[k]

√
λi. Moreover, ‖xi − yi−1‖M > 0 by the assumptions of this

proposition, which implies by Lemma 24 that Ai ≥ λi > 0 as well. Thus, we can apply (9) with
ui =

√
Ai‖xi − yi−1‖M and vi =

√
λi/ui, yielding

√
Ak ≥

1

2

∑
i∈[k]

√
λi ≥

1

2

∑
i∈[k]

(√
Ai‖xi − yi−1‖M

)2/3

3/2∑
i∈[k]

( √
λi√

Ai‖xi − yi−1‖M

)−2
−1/2

.

(10)
Applying Lemma 26 yields that∑

i∈[k]

( √
λi√

Ai‖xi − yi−1‖M

)−2

=
∑
i∈[k]

Ai‖xi − yi−1‖2M
λi

≤
(

2

1− σ2

)
p0. (11)

Now, since ‖xi − yi−1‖M ≥ r by assumption, combining (10) and (11) gives

A
1/3
k ≥

(
1

2

)2/3
∑
i∈[k]

A
1/3
i r2/3

(( 2

1− σ2

)
p0

)−1/3

=
∑
i∈[k]

A
1/3
i

(
r2(1− σ2)

8p0

)1/3

.

Finally, applying Lemma 28 implies that for all k ≥ 0

Ak ≥ exp

(
3

2

(
r2(1− σ2)

p0

)1/3

(k − 1)

)
A1.

Now, (8) follows from εk ≤ pk/Ak ≤ p0/Ak (we have pk ≤ p0 from Lemma 26) and (1− σ2) ≤
(1− σ)2. Now, by our choice of A0 = R2/2ε0, we have p0 = R2. As A1 ≥ A0,

p0

A1
≤ R2

A0
= 2ε0.

Combining these bounds in the context of (8), and using 3/2 > 1, yields the result.
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C MS oracle implementation proofs
First, we prove our characterization of the optimizer of a ball-constrained problem.
Lemma 4. Let f : Rd → R be continuously differentiable and strictly convex. For all y ∈
Rd, z = arg minz′∈Br(y) f(z′) either globally minimizes f , or ‖z − y‖M = r and ∇f(z) =

−‖∇f(z)‖
M†

r M(z − y).

Proof. By considering the optimality conditions of the Lagrange dual problem

min
z

max
λ≥0

f(z) +
λ

2

(
‖z − y‖2M − r

2
)
,

we see there is some λ ≥ 0 such that

∇f(z) = −λ∇z
(

1

2
‖z − y‖2M −

r2

2

)
= −λM(z − y) .

If λ = 0 then ∇f(z) = 0 and z is a minimizer of f . On the other hand, if λ > 0, then ‖z −
y‖M = r and∇f(z) = −λM(z − y). By taking the M† seminorm of both sides of this condition,
‖∇f(z)‖M† = λ ‖z − y‖M = λr; solving for λ and substituting yields the result.

Next, on the path to proving Proposition 5, we give a helper result which bounds the change in the
solution to a ball-constrained problem as we move the center.
Lemma 29. For strictly convex, twice differentiable f : Rd → R, let M be a positive semidefinite
matrix where ∇f(u) ∈ Im(M) for all u ∈ Rd. Let x, v ∈ Rd be arbitrary vectors, and for all
t ∈ [0, 1], let

yt
def
= tx+ (1− t)v, zt

def
= arg min

z∈Br(yt)

f(z).

Then, for all t ∈ [0, 1] we have∥∥∥∥ ddtzt
∥∥∥∥
∇2f(zt)

=

∥∥∥∥ ddt∇f(zt)

∥∥∥∥
(∇2f(zt))−1

≤ ‖x− v‖∇2f(zt).

Proof. Let t ∈ [0, 1] be arbitrary. If ‖zt − yt‖M < r, then zt is the minimizer of f , i.e. ∇f(zt) = 0
and d

dtzt = 0 yielding the result (as in this case the minimizer stays in the interior for small
perturbations of yt). For the remainder of the proof assume that ‖zt − yt‖M = r, in which case
Lemma 4 yields that

∇f(zt) = −‖∇f(zt)‖M†
r

M(zt − yt) . (12)

Now, differentiating both sides with respect to t yields that

d

dt
(∇f(zt)) = −

〈
∇f(zt),M

† d
dt (∇f(zt))

〉
r‖∇f(zt)‖M†

M(zt − yt)−
1

r
‖∇f(zt)‖M†M

(
d

dt
zt − (x− v)

)
.

(13)

Combining (12) and (13) and taking an inner product of both sides with M† ddt (∇f(zt)) yields that∥∥∥∥ ddt (∇f(zt))

∥∥∥∥2

M†
=

〈
∇f(zt),M

† d
dt (∇f(zt))

〉2
‖∇f(zt)‖2M†

− 1

r
‖∇f(zt)‖M†

〈
d

dt
zt − (x− v),MM†

d

dt
(∇f(zt))

〉
.

Next, Cauchy-Schwarz implies
〈
∇f(zt),M

† d
dt (∇f(zt))

〉2 ≤ ‖∇f(zt)‖2M† · ‖
d
dt (∇f(zt))‖2M† , so

the first two terms in the above display cancel. Rearranging the last term yields〈
d

dt
zt,MM†

d

dt
(∇f(zt))

〉
≤
〈
x− v,MM†

d

dt
(∇f(zt))

〉
.

Since ∇f(zt) is in the image of M for all t, d
dt (∇f(zt)) must also be in the image of M. Thus, we

can drop the MM† matrices from the above expression. Also as d
dt (∇f(zt)) = ∇2f(zt)

d
dtzt , this

simplifies to∥∥∥∥ ddtzt
∥∥∥∥2

∇2f(zt)

≤
〈
x− v,∇2f(zt)

d

dt
zt

〉
≤
∥∥∥∥ ddtzt

∥∥∥∥
∇2f(zt)

· ‖x− v‖∇2f(zt).
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Dividing both sides by ‖ ddtzt‖∇2f(zt) and applying d
dt∇f(zt) = ∇2f(zt)

d
dtzt then yields the

result.

We now bound the Lipschitz constant of the function g(λ) = λ ‖∇f(ztλ)‖M† , where we recall the
definitions

aλ
def
=
λ+
√
λ2 + 4λA

2
, tλ

def
=

A

A+ aλ
, ytλ

def
= tλx+ (1− tλ)v, ztλ

def
= min

z∈Br(ytλ )
f(z). (14)

Lemma 30. Let f be L-smooth in ‖·‖M. Assume that in (14), ‖x− x∗‖M ≤ D and ‖v − x∗‖M ≤
D. For all λ ≥ 0, ∣∣∣∣ ddλg(λ)

∣∣∣∣ ≤ L(2D + r).

Proof. We compute

d

dλ
g(λ) = ‖∇f(ztλ)‖M† + λ

〈
∇f(ztλ),M†∇2f(ztλ)

(
d
dtλ

ztλ

)〉
‖∇f(ztλ)‖M†

d

dλ
tλ. (15)

First, direct calculation yields

d

dλ
tλ = − A

(A+ aλ)2

d

dλ
aλ = − A

(A+ aλ)2
· 1

2

(
1 +

(
λ2 + 4Aλ

)−1/2
(λ+ 2A)

)
.

Consequently, recalling the definition of aλ,∣∣∣∣λ d

dλ
tλ

∣∣∣∣ =

∣∣∣∣ 2Aλ

(2A+ λ+
√
λ2 + 4Aλ)2

(
1 +

λ+ 2A√
λ2 + 4Aλ

)∣∣∣∣
=

∣∣∣∣ 2Aλ

(2A+ λ+
√
λ2 + 4Aλ)

√
λ2 + 4Aλ

∣∣∣∣ ≤ 2Aλ

λ2 + 4Aλ
≤ 1

2
.

(16)

where we used that A, λ > 0. Next, by triangle inequality and smoothness in the M-norm,

‖∇f(ztλ)‖M† ≤ L‖ztλ − x∗‖M ≤ L (‖ztλ − ytλ‖M + ‖ytλ − x∗‖M) ≤ L(r +D). (17)

In the last inequality, we used convexity of norms and ‖x − x∗‖M, ‖v − x∗‖M ≤ D. The final
bound we require is due to Lemma 29: observe〈
∇f(ztλ)M†,∇2f(ztλ)

(
d

dtλ
ztλ

)〉
≤ ‖∇f(ztλ)‖M†∇2f(ztλ )M†

∥∥∥∥ d

dtλ
ztλ

∥∥∥∥
∇2f(ztλ )

≤
√
L‖∇f(ztλ)‖M†‖x− v‖∇2f(ztλ ) ≤ L‖∇f(ztλ)‖M† ‖x− v‖M ≤ 2LD‖∇f(ztλ)‖M† .

(18)

The first inequality is by Cauchy-Schwarz, the second is due to Lemma 29 and M†∇2f(ztλ)M† �
LM† by smoothness, and the third is again from smoothness with ∇2f(ztλ) � LM. Combining
(15), (16), (17), and (18) yields the claim.

We now prove Proposition 5.
Proposition 5 (Guarantees of Algorithm 2). Let L,D, δ, r > 0 and Oball satisfy the requirements in
Lines 1–3 of Algorithm 2, and ε < 2LD2. Then, Algorithm 2 either returns z̃tλ with f(z̃tλ)−f(x∗) <
ε, or implements a 1

2 -MS oracle with the additional guarantee ‖z̃tλ − ytλ‖M ≥
11r
12 . Moreover, the

number of calls to Oball is bounded by O(log(LD
2

ε )).

Proof. This proof will require three bounds on the size of the parameter δ used in the ball optimization
oracle. We state them here, and show that the third implies the other two. We require

δ ≤ min

 ε

2L(D + r)
,

√
2ε

L
,

r

12
(

1 + 2L(D+r)r
ε

)
 . (19)
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The fact that the third bound implies the first is clear, and the second is implied by the assumption
2LD2 > ε.

Our goal is to first show that if g(u) > r, then we have an ε-approximate minimizer; otherwise, we
construct a range [`, u] which contains some λ with g(λ) = r, and we apply the Lipschitz condition
Lemma 30 to prove correctness of our binary search. Recall that for every λ, the guarantees of Oball
imply that ‖ztλ − z̃tλ‖M ≤ δ, and moreover

‖z̃tλ − x∗‖M ≤ ‖z̃tλ − ytλ‖M + ‖ytλ − x∗‖M ≤ D + r

by convexity. Thus, if it holds that ‖∇f(z̃tu)‖M† ≤ r/u+ Lδ in Line 7, then

f(z̃tu)− f(x∗) ≤ 〈∇f(z̃tu), z̃tu − x∗〉 ≤ ‖∇f(z̃tu)‖M† (D + r) ≤ ε,

for our choice of u = 2(D + r)r/ε and δ ≤ ε/(2L(D + r)) (19). On the other hand, if
‖∇f(z̃tu)‖M† ≥ r/u+ Lδ, by Lipschitzness of the gradient and the guarantee ‖z̃tλ − ztλ‖M ≤ δ,
we have g(u) = u ‖∇f(ztu)‖M† ≥ r. Moreover, for ` = r/L(D + r), by Lipschitzness of the
gradient from x∗,

g(`) = ` ‖∇f(zt`)‖M† ≤
r

L(D + r)
(L(D + r)) ≤ r.

By continuity, it is clear that for some value λ ∈ [`, u], g(λ) = r; we note the assumption 2LD2 > ε
guarantees that ` < u, so the search range is valid. Next, if for some value of λ, ztλ = x∗, as long as
δ ≤

√
2ε/L, we have by smoothness

f(z̃tλ)− f(x∗) = f(z̃tλ)− f(ztλ) ≤ Lδ2

2
≤ ε.

Otherwise, ztλ is on the boundary of the ball around ytλ , so that we have the desired

‖z̃tλ − ytλ‖M ≥ r − δ ≥
11r

12
.

Moreover, (4) implies∥∥z̃tλ − (ytλ − λM†∇f(z̃tλ))
∥∥
M
≤ (1 + Lλ)δ +

∥∥ztλ − (ytλ − λM†∇f(ztλ))
∥∥
M

= (1 + Lλ)δ +

∥∥∥∥(λ− r

‖∇f(ztλ)‖M†

)
M†∇f(ztλ)

∥∥∥∥
M

= (1 + Lλ)δ +

∥∥∥∥( g(λ)− r
‖∇f(ztλ)‖M†

)
M†∇f(ztλ)

∥∥∥∥
M

≤ (1 + Lu)δ + |g(λ)− r| .

So, as long as δ ≤ r/(12(1+Lu)) and |g(λ)−r| ≤ r/4, we have the desired 1
2 -MS oracle guarantee∥∥z̃tλ − (ytλ − λM†∇f(z̃tλ))

∥∥
M
≤ r

12
+
r

4
≤ 1

2
(r − δ)

≤ 1

2
‖z̃tλ − ytλ‖M .

Thus, the algorithm can terminate whenever we can guarantee |g(λ)− r| ≤ r/4. We can certify the
value of g(λ) via λ ‖∇f(z̃tλ)‖M† up to additive error Lλδ ≤ r/12, so that |λ ‖∇f(z̃tλ)‖M† − r| ≤
r/6 implies |g(λ)− r| ≤ r/4. Finally, let λ∗ be any value in [`, u] where g(λ∗) = r. By Lemma 30,

|λ− λ∗| ≤ r

12(L(2D + r))
=⇒ |g(λ)− r| ≤ r

12

=⇒ |λ ‖∇f(z̃tλ)‖M† − r| ≤ r/6, i.e. search terminates.

In conclusion, we can bound the number of calls required by Algorithm 2 in executions of Lines 16
and 20 to Oball by

log

(
(u− `) ·

(
r

12(L(2D + r))

)−1
)
≤ log

(
4Dr

ε
· 36LD

r

)
.
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Theorem 6 (Acceleration with a ball optimization oracle). Let Oball be an ( r
12+126LRr/ε , r)-ball

optimization oracle for strictly convex and L-smooth f : Rd → R with minimizer x∗, and initial
point x0 satisfying ‖x0 − x∗‖M ≤ R and f(x0)− f(x∗) ≤ ε0. Then, Algorithm 1 using Algorithm 2
as a Monteiro-Svaiter oracle with D =

√
18R produces an iterate xk with f(xk)− f(x∗) ≤ ε, in

O
(

(R/r))
2/3

log (ε0/ε) log
(
LR2/ε

))
calls to Oball.

Proof. More specifically, we will return the point encountered in Algorithm 1 with the smallest
function value, in the case Proposition 5 ever guarantees a point is an ε-approximate minimizer. Note
that Lemma 27 implies that in each run of Algorithm 2, it suffices to set D = 3

√
2R, where we recall

(in its context)
√

2p0 =
√

2R, via the proof of Proposition 3. Recalling R > r, this implies that
setting

δ =
r

12(1 + 2L(D+r)r
ε )

≥ r

12 + 126LRr
ε

suffices in the guarantees of Oball. Moreover, if the assumption ε < 2LD2 in Proposition 5 does
not hold, smoothness implies we may return any xk. The oracle complexity follows by combining
Proposition 5 with Proposition 3.

D Algorithm and Proofs for Theorem 8
We prove Theorem 8 in two parts. First, we provide a convergence guarantee for trust region
subproblems, and then use it as a primitive in Algorithm 7, an accelerated ball-constrained Newton’s
method. Finally, we describe a sufficient condition for Hessian stability to hold.

D.1 Trust region subproblems
We describe a procedure for solving the convex trust region problem

min
x∈Br(x̄)

Q(x)
def
= −g>x+

1

2
x>Hx.

While trust region problems of this form are well-studied [15, 21], we could not find a concrete bound
on the number of linear system solutions required to solve them approximately. Here we describe the
procedure SOLVETR(x̄, r, g,H,M,∆) (Algorithm 6) that uses a well-known binary search strategy
to solve the trust-region problem to accuracy ∆. The procedure enjoys the convergence guarantee as
stated in Proposition 34.

Algorithm 6 SOLVETR(x̄, r, g,H,M,∆)

1: Let 0 < µ ≤ L so µM � H � LM, and let ∆ > 0.
2: ĝ ← g −Hx̄

3: `← 0, u← ‖ĝ‖
M†
r , ι← ∆µ2

‖ĝ‖
M†

4: if ‖H†ĝ‖M ≤ r then
5: return H†ĝ
6: else
7: λ← `+u

2 , λ− ← λ− ι
8: while not (‖ (H + λM)

†
ĝ‖M ≤ r) and (r < ‖ (H + λ−M)

†
ĝ‖M) do

9: if ‖ (H + λM)
†
ĝ‖M ≤ r then

10: u← λ, λ← `+u
2 , λ− ← λ− ι

11: else
12: `← λ, λ← `+u

2 , λ− ← λ− ι
13: end if
14: end while
15: return (H + λM)

†
ĝ

16: end if

For simplicity, we first focus on developing technical results for the trust region problem of the
following form (below 0 is the origin)

min
x∈Br(0)

Q(x)
def
= −g>x+

1

2
x>Hx; (20)
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our final guarantees will be obtained by an appropriate linear shift. All results in this section assume
µM � H � LM for some 0 < µ ≤ L, which in particular implies that H and M share a kernel. We
first state a helpful monotonicity property which will be used throughout.
Lemma 31.

∥∥(H + λM)†g
∥∥
M

is monotonically decreasing in λ, for any vector g.

Proof. We will refer to the projection onto the column space of M, i.e. MM†, by Ĩ. To show the
lemma, it suffices to prove that

(H + λM)†M(H + λM)†

is monotone in the Loewner order. Denoting H̃
def
= M†/2HM†/2,

(H + λM)
†

=
(
M1/2

(
H̃ + λĨ

)
M1/2

)†
= M†/2

(
H̃ + λĨ

)†
M†/2. (21)

Therefore, it suffices to show that

M†/2
(
H̃ + λĨ

)† (
H̃ + λĨ

)†
M†/2

is monotone in the Lowener order, which follows as H̃ and Ĩ commute.

Next, we characterize the minimizer to (20).
Lemma 32. A solution to (20) is given by xg,H = (H+ λM)†g for a unique value of λ ≥ 0. Unless
λ = 0, ‖xg,H‖M = r.

Proof. By considering the optimality conditions of the Lagrange dual problem

min
x

max
λ≥0
−g>x+

1

2
x>Hx+

λ

2

(
x>Mx− r2

)
,

either λ = 0 and the minimizer H†g is in Br(0), or there is xg,H = (H + λM)†g on the region
boundary (linear shifts in the kernel of M do not affect the M norm constraint or the objective, so
we may restrict to the column space without loss of generality). Uniqueness of λ then follows from
Lemma 31.

Next, we bound how tightly we must approximate the value λ in order to obtain an approximate
minimizer to (D.1).
Lemma 33. Suppose g ∈ Im(M), and

∥∥H†g∥∥
M

> r. Then, for λ∗ > 0 such that∥∥(H + λ∗M)†g
∥∥
M

= r, and any λ > 0 such that |λ− λ∗| ≤ ∆µ2

‖g‖
M†

, we have∥∥∥(H + λM)
†
g − xg,H

∥∥∥
M
≤ ∆. (22)

Proof. We follow the notation of Lemma 31. Recalling (21), we expand∥∥∥(H + λM)
†
g − xg,H

∥∥∥2

M
= g̃>

((
H̃ + λĨ

)†
−
(
H̃ + λ∗Ĩ

)†)2

g̃. (23)

Here, we defined g̃ = M†/2g. Note that ‖g̃‖22 = ‖g‖2M† , where we used g ∈ Im(M). Without loss
of generality, since H̃ + λĨ commute for all λ therefore simultaneously diagonalizable, suppose we
are in the basis where H̃ is diagonal and has diagonal entries {hi}i∈[d]. Expanding the right hand
side of (23), we have∑

i∈[d]

g̃2
i

(
1

hi + λ
− 1

hi + λ∗

)2

=
∑
i∈[d]

g̃2
i

(
(λ∗ − λ)2

(hi + λ)2(hi + λ∗)2

)

≤
∑
i∈[d]

g̃2
i

µ4

(
∆µ2

‖g̃‖M†

)2

≤ ∆2.

In the last inequality, note that whenever hi 6= 0, it is at least µ by strong convexity in ‖ · ‖M, and
whenever hi is zero, so is g̃i, by the assumption on g and the fact that M and H share a kernel.
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Finally, by combining these building blocks, we obtain a procedure for solving (D.1) to high accuracy.
Proposition 34. Let M and H share a kernel, µM � H for µ > 0, and let ∆ > 0. The procedure
SOLVETR(x̄, r, g,H,M,∆) solves

O

(
log

(
‖Hx̄− g‖2M†

rµ2∆

))
linear systems in matrices of the form H + λM for λ ≥ 0, and returns x̃ ∈ Br(x̄) with
‖x̃− xg,H‖M ≤ ∆, where

xg,H ∈ arg min
x∈Br(x̄)

−g>x+
1

2
x>Hx.

Proof. First, for ĝ def
= g −Hx̄, we have the equivalent problem

arg min
‖y‖M≤r

−g>(y + x̄) +
1

2
(y + x̄)>H(y + x̄) = arg min

y∈Br(0)

−ĝ>y +
1

2
y>Hy.

Following Lemma 32, in Line 4 we verify whether for the optimal solution, λ = 0, using one linear
system solve. If not, by monotonicity of

∥∥(H + λM)†ĝ
∥∥
M

in λ (Lemma 31), it is clear that the
value λ∗ corresponding to the solution lies in the range [`, u] = [0, ‖ĝ‖M† /r], by∥∥∥∥∥

(
H +

‖ĝ‖M†
r

M

)†
ĝ

∥∥∥∥∥
2

M

≤ r2.

This follows from e.g. the characterization (21). Therefore, Lemma 33 shows that it suffices to
perform a binary search over this region to find a value λ with additive error ι = ∆µ2

‖ĝ‖
M†

to output a
solution x̃ of the desired accuracy. We note that we may check feasibility in Br(0) by computing
the value of

∥∥(H + λM)†ĝ
∥∥
M

due to Lemma 32, and it suffices to output the larger value of λ
amongst the endpoint of the interval of length ι containing λ∗, reflecting our termination condition in
Line 8.

D.2 Accelerated Newton method

Theorem 8 follows from an analysis of Algorithm 7, which is essentially Nesterov’s accelerated
gradient method in the Euclidean seminorm ‖·‖H with H = ∇2f(x̄), or equivalently a sequence of
constrained Newton steps using the Hessian of the center point x̄. Other works [16, 14] consider
variants of Nesterov’s accelerated method in arbitrary norms and under various noise assumptions,
but do not give convergence guarantees compatible with the type of error incurred by our trust region
subproblem solver. We state the convergence guarantee below, and defer its proof to Appendix D.2 for
completeness; it is a simple adaptation of the standard acceleration analysis under inexact subproblem
solves.

Algorithm 7 Accelerated Newton’s method

1: Input: Radius r and accuracy δ such that r ≥ δ > 0.
2: Input: Function f : Rd → R that is L-smooth, µ-strongly convex, and (r, c)-Hessian stable in
‖·‖M with minimizer x∗.

3: Input: Center point x̄ ∈ Rd satisfying ‖x̄− x∗‖M ≤ D.
4: H← ∇2f(x̄), α← c−1, ∆← µδ2

4Lc(5r+D) , x0 ← x̄, z0 ← x̄

5: for k = 0, 1, 2, . . . do
6: yk ← 1

1+αxk + α
1+αzk, gk ← ∇f(yk)−H(αyk + (1− α)zk)

7: zk+1 ← SOLVETR(x̄, r, gk,H,M,∆)
8: xk+1 ← αzk+1 + (1− α)xk
9: end for

This section gives the guarantees of Algorithm 7, and in particular a proof of Theorem 8. Throughout,
assume µM � H � LM, where H = ∇2f(x̄). We note that Line 7 of Algorithm 7 is approximately
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implementing the step

zideal
k+1 ← arg min

z∈Br(x̄)

{
〈∇f(yk), z〉+

1− α
2
‖z − zk‖2H +

α

2
‖z − yk‖2H

}
= arg min

z∈Br(x̄)

{
〈∇f(yk)− (1− α)Hzk − αHyk, z〉+

1

2
z>Hz

}
,

(24)

with the guarantee
∥∥zideal
k+1 − zk+1

∥∥
M
≤ ∆. Throughout, we denote xx̄,r as the minimizer of f in

Br(x̄).
Lemma 35. Consider a single iteration of Algorithm 7 from a pair of points xk, zk. We have

f(yk) +
〈
∇f(yk), zideal

k+1 − yk
〉

+
α

2
‖yk − zideal

k+1‖2H +
1− α

2
‖zk − zideal

k+1‖2H

≤ f(xx̄,r) +
1− α

2
‖zk − xx̄,r‖2H −

1

2
‖zideal
k+1 − xx̄,r‖2H.

Proof. By the first-order optimality conditions of zideal
k+1 with respect to xx̄,r,〈

∇f(yk), zideal
k+1 − xx̄,r

〉
≤ 1− α

2

(
‖zk − xx̄,r‖2H − ‖zk − zideal

k+1‖2H
)

+
α

2

(
‖yk − xx̄,r‖2H − ‖yk − zideal

k+1‖2H
)
− 1

2
‖zideal
k+1 − xx̄,r‖2H.

Here, we twice-used the well-known identity
〈
H(zideal

k+1 − x), zideal
k+1 − xx̄,r

〉
= 1

2‖z
ideal
k+1 − xx̄,r‖2H +

1
2‖z

ideal
k+1 − x‖2H −

1
2‖x − xx̄,r‖

2
H. Rearranging this and using strong convexity, where we recall

α = c−1,

f(yk) +
〈
∇f(yk), zideal

k+1 − yk
〉

+
α

2
‖yk − zideal

k+1‖2H +
1− α

2
‖zk − zideal

k+1‖2H

≤
(
f(yk) + 〈∇f(yk), xx̄,r − yk〉+

α

2
‖yk − xx̄,r‖2H

)
+

1− α
2
‖zk − xx̄,r‖2H −

1

2
‖zideal
k+1 − xx̄,r‖2H

≤ f(xx̄,r) +
1− α

2
‖zk − xx̄,r‖2H −

1

2
‖zideal
k+1 − xx̄,r‖2H.

Next, we modify the guarantee of Lemma 35 to tolerate an inexact step on the point zk+1. We use the
following lemma.
Lemma 36. Suppose the convex function h is L-smooth in ‖·‖M in a region X with bounded ‖·‖M
diameter 2r, and xh is the minimizer of h over X . Then for x̂ with

‖x̂− xh‖M ≤ ∆, ‖∇h(x̂)‖M† ≤ G,
and ∇h(x̂),∇h(xh) ∈ Im(M), we have for all x ∈ X , 〈∇h(x̂), x̂− x〉 ≤ 2L∆r +G∆.

Proof. First-order optimality of xh against x ∈ X implies 〈∇h(xh), xh − x〉 ≤ 0. The conclusion
follows:

〈∇h(x̂), x̂− x〉 = 〈∇h(xh), xh − x〉+ 〈∇h(x̂)−∇h(xh), xh − x〉+ 〈∇h(x̂), x̂− xh〉
≤ 0 + 2L∆r +G∆.

Putting together Lemma 35 and Lemma 36 we have the following corollary.
Corollary 37. Consider a single iteration of Algorithm 7 from a pair of points xk, zk. Also, assume
that ‖x̄− x∗‖M ≤ D, where x∗ is the global optimizer of f . Then,

f(yk) + 〈∇f(yk), zk+1 − yk〉+
α

2
‖yk − zk+1‖2H +

1− α
2
‖zk − zk+1‖2H

≤ f(xx̄,r) +
1− α

2
‖zk − xx̄,r‖2H −

1

2
‖zk+1 − xx̄,r‖2H + L∆(5r +D).
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Proof. First, the Hessian of the objective being minimized in (24) is H, so the objective is L-smooth
w.r.t ‖ · ‖M over a region Br(x̄) of bounded diameter 2r. From Lemma 35 and 36 we have that
the first-order optimality condition is correct up to an additive 2L∆r + G∆, where G is a bound
on the gradient norm of the objective at zk+1. The conclusion follows from HM†H � L2M by
smoothness, so that

G = ‖∇f(yk) + (1− α)H(zk+1 − zk) + αH(zk+1 − yk)‖M†
≤ ‖∇f(yk)‖M† + 2(1− α)Lr + 2αLr ≤ L(D + r) + 2Lr.

In the final inequality, we used ‖yk − x∗‖M ≤ ‖x̄− x∗‖M+‖yk − x̄‖M ≤ D+r, and Lipschitzness
of∇f w.r.t ‖ · ‖M.

With this in hand, we can quantify how much progress is made in each iteration of the algorithm.
Lemma 38. Consider a single iteration of Algorithm 7 from a pair of points xk, zk. Also, assume
that ‖x̄− x∗‖M ≤ D, where x∗ is the global optimizer of f . Then,

f(xk+1)− f(xx̄,r) +
1

2c
‖zk+1 − xx̄,r‖2H

≤
(

1− 1

c

)(
f(xk)− f(xx̄,r) +

1

2c
‖zk − xx̄,r‖2H

)
+ Lc−1∆(5r +D).

Proof. By stability and xk+1 − yk = α(zk+1 − yk) + (1− α)(xk − yk) from the definition of the
algorithm,

f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+
c

2
‖xk+1 − yk‖2H

= (1− α) (f(yk) + 〈∇f(yk), xk − yk〉) + α (f(yk) + 〈∇f(yk), zk+1 − yk〉)

+
c

2
‖α(zk+1 − yk) + (1− α)(xk − yk)‖2H

≤ (1− α)f(xk) + α

(
f(yk) + 〈∇f(yk), zk+1 − yk〉+

1

2
‖zk+1 − (1− α)zk − αyk‖2H

)
≤ (1− α)f(xk)

+ α

(
f(yk) + 〈∇f(yk), zk+1 − yk〉+

α

2
‖yk − zk+1‖2H +

1− α
2
‖zk − zk+1‖2H

)
.

The second inequality used convexity and (1− α)(αzk + xk) = (1− α2)yk, which implies

α(zk+1 − yk) + (1− α)(xk − yk) = α(zk+1 − (1− α)zk − αyk),

and the third inequality used convexity of the norm squared. Substituting the earlier bound from
Corollary 37 yields the conclusion, recalling α = c−1.

Now we are ready to prove the main result for the implementation of the ball optimization oracle,
restated below.
Theorem 8. Let f be L-smooth, µ-strongly convex, and (r, c)-Hessian stable in the seminorm ‖·‖M.
Then, Algorithm 7 (in Appendix D.2) implements a (δ, r)-ball optimization oracle for query point x̄
with ‖x̄− x∗‖M ≤ D for x∗ the minimizer of f , and requires

O

(
c log2

(
κ(D + r)c

δ

))
linear system solves in matrices of the form H + λM for nonnegative λ, where κ = L/µ.

Proof. First, for each iteration k, define the potential function

Φk
def
= f(xk)− f(xx̄,r) +

1

2c
‖zk − xx̄,r‖2H.

By applying Lemma 38, and definingE def
= L∆(5r+D) = µδ2

4c by the definition of ∆ in Algorithm 7,
we have

Φk+1 ≤
(

1− 1

c

)
Φk +

E

c
.
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Telescoping this guarantee and bounding the resulting geometric series in E yields

Φk ≤
(

1− 1

c

)k
Φ0 + E. (25)

Now, recalling x0 = z0 = x̄, we can bound the initial potential by

Φ0 ≤ 〈∇f(xx̄,r), x̄− xx̄,r〉+
c

2
‖x̄− xx̄,r‖2H +

1

2c
‖x̄− xx̄,r‖2H ≤ LDr + Lcr2.

where we used H � LM. Next, note that whenever we have Φk ≤ µδ2/2c, we have

1

2c
‖zk − xx̄,r‖2H ≤

µδ2

2c
⇒ ‖zk − xx̄,r‖M ≤ δ,

where we used H � µM. Thus, as E = µδ2/4c, running for

k = O

(
c log

(
Lc(Dr + cr2)

µδ2

))
= O

(
c log

(
κ(D + r)c

δ

))
(26)

iterations suffices to guarantee Φk ≤ µδ2/2c via (25), and therefore implements a (δ, r)-ball op-
timization oracle at x̄. It remains to bound the complexity of each iteration. For this, we apply
Proposition 34 with the parameter ∆ = µδ2/(4Lc(5r +D)), and compute

‖H(x̄− (1− α)zk − αyk) +∇f(yk)‖M† ≤ L ‖x̄− (1− α)zk − αyk‖M+‖∇f(yk)‖M† ≤ 2Lr+LD.

Altogether, the number of linear system solves in the step is then bounded by

O

(
log

(
L2(D + r)2

µ2
· Lc(D + r)

µδ2r

))
= O

(
log

(
κ(D + r)c

δ

))
,

where the first term is due to the squared norm and µ−2, and the second is due to (r∆)−1, in the
bound of Proposition 34. The final bound follows from the assumption δ < r. Combining with (26)
yields the claim.

E Proof of Lemma 11

Here, we prove Lemma 11, which shows quasi-self-concordance implies Hessian stability.
Lemma 11. If thrice-differentiable f : Rd → R is M -quasi-self-concordant with respect to norm
‖·‖, then it is (r, exp(Mr))-Hessian stable with respect to ‖·‖.

Proof. Let x, y ∈ Rd be arbitrary and let xt
def
= x+ t(y − x) for all t ∈ [0, 1]. Then for all u ∈ Rd,

d

dt

(
‖u‖2∇2f(xt)

)
=

d

dt

(
u>∇2f(xt)u

)
= ∇3f(xt)[u, u, y − x].

The result follows from∣∣∣log
(
‖u‖2∇2f(y)

)
− log

(
‖u‖2∇2f(x)

)∣∣∣ =

∣∣∣∣∣
∫ 1

0

∇3f(xt)[u, u, y − x]

‖u‖2∇2f(xt)

dt

∣∣∣∣∣ ≤M‖y − x‖.

F Proofs for applications

Corollary 12. Let f(x) = g(Ax), for g : Rn → R that is L-smooth, M -QSC in the `2 norm, and
A ∈ Rn×d. Let x∗ be a minimizer of f , and suppose that ‖x0 − x∗‖M ≤ R and f(x0)−f(x∗) ≤ ε0
for some x0 ∈ Rd, where M def

= A>A. Then, Algorithm 3 yields an ε-approximate minimizer to f in

O

(
(RM)

2/3
log
(ε0
ε

)
log3

(
LR2

ε
(1 +RM)

))
linear system solves in matrices of the form A>

(
∇2g(Ax) + λI

)
A for λ > 0 and x ∈ Rd.
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Proof. Let the minimizer of f̃(x) be x̃: observe by Lemma 41 that ‖x0 − x̃‖M ≤ ‖x0 − x∗‖M ≤ R.
Note that f̃(x) is L+ ε/55R2-smooth and ε/55R2-strongly convex in ‖·‖M, and since the iterates
of Algorithm 1 never are more than D = 3

√
2R away from x̃ (Lemma 27), by the triangle inequality

and (1 + 3
√

2)2 ≤ 55/2, f̃ approximates f to an additive error ε/2 for all iterates. Next, letting
r = 1/M , it follows from Lemma 11 that g is (r, e)-Hessian stable in `2, so that f is (r, e)-Hessian
stable in ‖·‖M (see Lemma 39). It follows from the definition of Hessian stability that f̃ is also
(r, e)-Hessian stable in ‖·‖M (see Lemma 40). Finally, the conclusion follows from combining the
guarantees of Theorem 6 and Theorem 8, where it suffices to minimize f̃ to ε/2 additive error.

Lemma 39. Let g : Rn → R be M -QSC in `2. Then, f(x) = g(Ax) is M -QSC in ‖·‖A>A, for
A ∈ Rn×d, f : Rd → R.

Proof. Recall the condition on g implies for all u, h, x ∈ Rd,∣∣∇3g(Ax)[Au,Au,Ah]
∣∣ ≤M‖Ah‖2‖Au‖2∇2g(y).

Using this, and recalling ‖Ah‖2 = ‖h‖A>A,∇2f(x) = A>∇2g(Ax)A, the result follows:∣∣∇3f(x)[u, u, h]
∣∣ =

∣∣∇3g(Ax)[Au,Au,Ah]
∣∣ ≤M‖h‖A>A‖u‖2∇2f(x).

Lemma 40. Suppose f is (r, c)-stable in ‖·‖. Then for any matrix M and λ ≥ 0, f̃ defined by
f̃(x) = f(x) + λ

2x
>Mx is also (r, c)-stable in ‖·‖.

Proof. It suffices to show that for x, y ∈ Rd with ‖x− y‖ ≤ r,

c−1∇2f̃(y) � ∇2f̃(x) � c∇2f̃(y).

This immediately follows from∇2f̃(x) = ∇2f(x) + λM, and combining

c−1∇2f(y) � ∇2f(x) � c∇2f(y), c−1λM � λM � cλM.

Lemma 41. Let f be a convex function with minimizer x∗, and let M be a positive semidefinite matrix.
If ft(x) = f(x) + t

2‖x− y‖
2
M is minimized at xt, then for all u ≥ 0, ‖xu − y‖M ≤ ‖x∗ − y‖M.

Proof. By the KKT conditions for ft we observe
∇f(xt) = −tM(xt − y).

Taking derivatives of this with respect to t we obtain

∇2f(xt)
dxt
dt

= −M(xt − y)− tMdxt
dt

or
dxt
dt

= −
(
∇2f(xt) + tM

)†
M(xt − y).

Now we have

‖xu − y‖2M − ‖x∗ − y‖2M = 2

∫ u

0

(
d

dt
xt

)>
M(xt − y)dt

= −2

∫ u

0

‖xt − y‖2M(∇2f(xt)+tM)†Mdt ≤ 0

as desired.

Lemma 42 (Approximation of lset). For all y ∈ Rn,
|lset(y)−max

i∈[n]
yi| < t log n.

Proof. This follows from the facts that for z ∈ ∆n the probability simplex, the entropy function
h(z)

def
=
∑
i∈[n] zi log zi has range [− log n, 0], maxi∈[n] yi = maxz∈∆n z>y, and by computation

lset(y) = max
z∈∆n

z>y − th(z).
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F.1 Softmax calculus
Proof of Lemma 14. We will prove 1-smoothness and 2-QSC for lse, which implies the claims by
chain rule. Let S def

=
∑
i∈[n] exp(xi), and let g ∈ Rn with gi = exp(xi)/S, G def

= diag(g). Direct
calculation reveals that for all i, j, k ∈ [n]

∂

∂xi
lse(x) = gi,

∂2

∂xi∂xj
lse(x) = ~1i=jgi − gigj , and

∂3

∂xi∂xj∂xk
lse(x) = ~1i=j=kgi −~1i=jgigj −~1i=kgigk −~1j=kgjgk + 2gigjgk.

Therefore, we have that ∇2lse(x) = G− gg>. Now, note that gi ≥ 0 for all i ∈ [n] and ‖g‖1 = 1.
By Cauchy-Schwarz,

(
g>u

)2
=

∑
i∈[n]

giui

2

≤

∑
i∈[n]

gi

∑
i∈[n]

giu
2
i

 = u>Gu ≤ ‖g‖1‖u‖2∞ = ‖u‖2∞ .

This implies that 0 � ∇2lse(x) � G, and the first part follows. Further, letting H
def
= diag(h) and

U
def
= diag(u) we have from direct calculation

u>GUh− (g>u)(h>Gu) = u>∇2lse(x)Uh,

−(g>u)(h>Gu) + (g>u)2(g>h) = −(g>u)
(
u>∇2lse(x)h

)
−(u>Gu)(g>h) + (g>u)2(g>h) = −

(
u>∇2lse(x)u

)
(g>h).

Combining these equations and the previous derivation of∇3f(x),∣∣∇3lse(x)[u, u, h]
∣∣ =

∣∣u>GHu− 2(g>u)(h>Gu)− (u>Gu)(g>h) + 2(g>u)2(g>h)
∣∣

=
∣∣u>∇2lse(x)Uh− (g>u)

(
u>∇2lse(x)h

)
−
(
u>∇2lse(x)u

)
(g>h)

∣∣ (27)

≤
∣∣u>∇2lse(x)

(
Uh− (g>u)h

)∣∣+
∣∣g>h∣∣ ‖u‖2∇2lse(x).

Now, since∇2lse(x) � 0 we have∣∣u>∇2lse(x)
(
Uh− (g>u)h

)∣∣ ≤ ‖u‖∇2lse(x)‖
(
U− (g>u)I

)
h‖∇2lse(x). (28)

Further, recall∇2lse(x) � G and consequently

‖
(
U− (g>u)I

)
h‖2∇2lse(x) ≤ ‖

(
U− (g>u)I

)
h‖2G =

∑
i∈[n]

h2
i gi
(
ui − g>u

)2
≤ ‖h‖2∞

∑
i∈[n]

gi
(
u2
i − 2ui(g

>u) + (g>u)2
)

(29)

= ‖h‖2∞

∑
i∈[n]

giu
2
i

− 2(g>u)2 +
(
g>u

)2 ‖g‖1
 (30)

= ‖h‖2∞‖u‖2∇2lse(x).

Combining (27), (28), (29), and using |g>h| ≤ ‖g‖1‖h‖∞ ≤ ‖h‖∞ and ‖h‖∞ ≤ ‖h‖2, the result
follows.

F.2 Proofs for Section 4.2
We first show a lemma that dicusses the linear system solve in Algorithm 3 used in solving the `∞
regression problem, which helps prove the main result as stated in Corollary 15.

Lemma 43. Let Â be the vertical concatenation of A and −A, and let H be a Hessian of the lse
function. To solve a linear system in the form Â>(H + λI)Âx = Â>b for λ > 0, it suffices to solve
O(1) linear systems of the form Â>DÂv = c for some positive-definite diagonal D.
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Proof. Recall that the structure of the Hessian of softmax lets us write H+λI = D− gg>, for some
diagonal D = G + λI, where G = diag(g), and g ≥ 0 entrywise has ‖g‖1 = 1. One can verify a
solution of the linear system is

x = (Â>DÂ)†Â>b+
1

1− g>Â(Â>DÂ)†Â>g

(
(Â>DÂ)†Â>gg>Â(Â>DÂ)†

)
Â>b,

where we use U† to denote the Moore-Penrose psuedo-inverse of U. To show this is a valid formula,
we also need to further verify that g>Â(Â>DÂ)†Â>g < 1. This follows from

g>Â(Â>DÂ)†Â>g = 〈(Â>DÂ)†, Â>gg>Â〉 < 〈(Â>GÂ)†, Â>GÂ〉 ≤ 1.

It is thus straightforward from this formula that x can be computed explicitly through a constant
number of linear system solves in the form Â>DÂ for some positive-definite D � 0.

Proof of Corollary 15. This is a direct consequence of Corollary 12, where we note that the reduction
in Lemma 43 applies, because of the form of the Hessian of g.

F.2.1 Equivalent forms of `∞ regression

We first show the equivalence between the two formulations, i.e. minx∈Rd ‖Ax − b‖∞ and
miny:A>y=c ‖y‖∞. Note this is the `∞ regression formulation used in our paper and in Ene and
Vladu [18] respectively. To do this, for given A ∈ Rn×d we define the matrix

P⊥ = I−A(A>A)†A>

to be the orthogonal projection to the complement of the column space of A, so A>P⊥ = P⊥A = 0.

For one side, it holds that

min
y:A>y=c

‖y‖∞ ⇐⇒ min
x∈Rd

‖(A>A)†A>c+ P⊥x‖∞.

This is because one can parametrize the space of {y|A>y = c} by {(A>A)†A>c+ P⊥x|x ∈ Rd}
based on the orthogonal decomposition of y onto the column space of A and its complement. Thus,
the constraint must hold and the objective function can be written equivalently as on the right hand
side. For the other side, it holds that

min
x∈Rd

‖Ax− b‖∞ ⇐⇒ min
y:P⊥y=−P⊥b

‖y‖∞

by noticing the fact that y = Ax − b for some x ∈ Rd if and only if P⊥y = −P⊥b, and then
rewriting the constraints and objective function in terms of y respectively.

In particular, our method applied to minx∈Rd ‖(A>A)†A>c+ P⊥x‖∞ gives an alternative way
to solve the problem considered in [18]. We may therefore use Corollary 15 directly, where it suffices
to take the norm in the bound on domain size R to be Euclidean because the projection matrix P⊥ is
bounded by I. This gives the following claim as in Corollary 44.

Corollary 44. Let A ∈ Rn×d, c ∈ Rd, and ε > 0. Suppose that the minimizer y∗ of the optimization
problem minA>y=c‖y‖∞ satisfies ‖y∗ − y0‖2 ≤ R for an initial point y0. We can find y satisfying
A>y = c and ‖y‖∞ ≤ ‖y∗‖∞ + ε using

O

((
R log n

ε

)2/3

log4(nR/ε)

)

linear system solves in matrices of the form A>DA for some diagonal D � 0.

To complete the proof of Corollary 44, the only thing remaining to show is that solving systems
induced by matrices of the form P⊥DP⊥ (as Corollary 15 requires) can be reduced to solving
systems in matrices of the form AD′A> and D, for some positive definite diagonal D′. This is given
formally through the following lemma.
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Lemma 45. For projection matrix P⊥ = I−A(A>A)†A>, let D be a diagonal matrix and let g
be a vector where P⊥DP⊥x = P⊥g has a solution. Then

x = D−1
[
g −A(A>D−1A)†A>D−1g

]
is a solution to the linear system.

Proof. By directly expanding terms, we have

P⊥DP⊥x = P⊥D
(
I−A(A>A)†A>

)
D−1

[
g −A(A>D−1A)†A>D−1g

]
= P⊥

[
g −A(A>D−1A)†A>D−1g

]
= P⊥g,

where for the last equality we use the fact that P⊥A = 0.

F.3 Proofs for Section 4.3

We first introduce a more general result showing the result generically applies whenever the QSC-ness
of f(x) = g(Ax) is inherited from the QSC-ness of one-dimensional loss functions {gi(y)}i∈[n].

Lemma 46. Given a coordinate-separable objective function g(y) such that each coordinate gi(y)
is M -QSC w.r.t ‖ · ‖2, then f(x) = g(Ax) is (M ·max‖ai‖2)-QSC w.r.t ‖ · ‖2.

Proof of Lemma 46. By the definition of QSC, we have∣∣∇3gi(y)[ui, ui, hi]
∣∣ ≤M |hi|‖ui‖2∇2gi(y),∀i ∈ [n].

Setting ui = 〈ai, u〉, hi = 〈ai, h〉 and summing over i ∈ [n] gives

|∇3f(x)[u, u, h]| ≤
∑
i∈[n]

∣∣∇3gi(y)[a>i u, a
>
i u, a

>
i h]
∣∣ ≤ ∑

i∈[n]

M‖ai‖2‖h‖2‖〈ai, u〉‖2∇2gi(y)

≤M
(

max
i∈[n]
‖ai‖2

)
‖h‖2‖u‖2∇2f(x),

where for the first and last inequality we use chain rule and separability of g, and thus also f .

Proof of Lemma 16. Lemma 16 follows immediately from Lemma 46 as the logistic objective has
the desired property according to Section 4.1.

Proof of Lemma 17. Note that

|∇3f(x)[u, u, h]| ≤ 2

t
‖Ah‖∞‖u‖2∇2f(x) ≤

2

t
max
i∈[n]
‖ai‖2‖h‖2‖u‖2∇2f(x),

where the first inequality follows from Lemma 14 and the definition of QSC.

For a given x, let y = Ax, S def
=
∑
i∈[n] exp(yi), g ∈ Rn with gi = exp(xi)/S, and G

def
= diag(g),

one has ∇2(lset(Ax) + ε
4R2 ‖x − x0‖2) = 1

tA
>(G − gg>)A + ε

2R2 I. We provide the following
bound on the cost of solving a linear system in a Hessian of the objective in our procedure.

Lemma 47 (First-order method for linear system solve). Let U def
= 1

tA
>GA+λ̂I where λ̂ def

= ε
2R2 +λ

and v def
= 1√

t
A>g. We can solve linear systems of the form[

U− vv>
]
x = b

for vector b ∈ im(A) within runtime

Õ

(
nd+ d1.5 maxi∈[n]‖ai‖2R√

εt

)
.
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Proof. By the Sherman-Morrison formula, we can solve

x = [U− vv>]−1b = U−1b+
U−1vv>U−1

1− v>Uv
b,

which reduces the problem to solving to high precision linear systems of the form Ux = b̂ for b̂ = b

and b̂ = vv>U−1b. It is straightforward to see b̂ ∈ im(A) and thus, letting b̂ = A>ĉ, the problem is
equivalent to solving the linear regression problem

min
x

∥∥∥∥ 1√
t
G1/2Ax−

√
tG−1/2ĉ

∥∥∥∥2

2

+
λ̂

2
‖x‖22 = min

x

∥∥∥Âx− b∥∥∥2

2
,

where we define Â
def
= [1/

√
tG1/2A;

√
λ̂/2 · I] and use b to denote [

√
tG−1/2ĉ; 0] in an abuse of

notation. Using the accelerated regression solver of Agarwal et al. [5] (cf. Theorem 5), we can solve
this regression problem in time

Õ

(
nd+ d1.5

√
tr(Â>Â)

λmin(Â>Â)

)
. (31)

We now bound these terms. By definition of Â,

Â>Â =
1

t
A>GA +

λ̂

2
I � λ̂

2
I,

tr
(
Â>Â

)
= tr

(
1

t
A>GA

)
+
λ̂

2
d =

1

t

∑
i∈[n]

gi‖ai‖2 +
λ̂

2
d ≤ 1

t
max
i
‖ai‖2 +

λ̂

2
d,

where the last inequality follows from the fact that
∑
i∈[n] gi = 1. Plugging these bounds back into

the runtime (31) and combining with the Sherman-Morrison procedure gives an overall runtime of

Õ

(
nd+ d1.5 maxi∈[n]‖ai‖2R√

εt

)
for solving the linear system (note that the bound (31) is worst when λ = 0).

This further implies the following claim.
Lemma 48. Let h(x) = lset(Ax) + ε

4R2 ‖x − x0‖22 for R = ‖x0 − x∗‖2 and t = ε
2 logn . Given a

point z we can solve linear systems of the form(
∇2h(z)

)
x = b

in time

Õ

(
nd+ d1.5 maxi∈[n]‖ai‖2R√

εt

)
.

We thus obtain the following result for using the first-order method in linear system solves in
Algorithm 3 by combining the QSC condition in Lemma 17, and the efficient first-order method for
each linear system solve in Lemma 48.
Corollary 18. With initial function error ε0 and R = ‖x0 − x∗‖2, Algorithm 3 using the first-order
linear system solver of Agarwal et al. [5] returns an ε-approximate minimizer within total runtime
Õ
((

maxi∈[n]‖ai‖2Rε
)2/3 (

nd+ d1.5 maxi∈[n]‖ai‖2Rε
))
.

F.4 Proofs for `p regression
We refer to the optimal value of (7) by f∗, and its minimizer by x∗; we will solve (7) to 1 + δ
multiplicative accuracy. By taking pth roots and solving to an appropriate lower accuracy level, this
also recovers more standard formulations of minimizing ‖Ax− b‖p.

Prior work on this problem shows (7) can be minimized using fewer than the O(n1/2) lin-
ear system solves that an interior point method would require: the state of the art algorithms
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of Adil and Sachdeva [1], Adil et al. [2] minimize f to 1 + δ multiplicative accuracy by
solving Õ

(
min

(
pn1/3, pO(p)n

p−2
3p−2

)
log(1/δ)

)
linear systems in A>DA where D is a posi-

tive semidefinite diagonal matrix. In this section we provide an algorithm to minimize g in
Õ(p14/3n1/3 log4(n/δ)) such systems. While our techniques do not improve on the state of the art,
we believe our proof and algorithm are simpler than the previous work and of independent interest.

Algorithm 8 summarizes our approach. It consists iteratively applying Algorithm 3 to the objective (7)
with exponentially shrinking target additive error. We initialize the algorithm at x0 = arg minx‖Ax−
b‖2. Using the fact that ‖y‖2 ≤ n(p−2)/2p‖y‖p for all y and p, the initialization satisfies

ε0
def
= ‖Ax0 − b‖pp ≤ r‖Ax0 − b‖p2 ≤ ‖Ax∗ − b‖

p
2 ≤ n(p−2)/2f∗. (32)

The algorithm maintains the invariant

f(xk)− f∗ ≤ (2−p)kε0 ≤ (2−kn)p,

so that running k = log2
n
δ1/p

iterations guarantees multiplicative error of at most δ4.

Unlike the previous two applications, the function g is not QSC, as its Hessian is badly behaved
near zero. Nevertheless we argue that an `2 regularization of g is QSC (Lemma 49), and—because
Algorithm 3 includes such regularization—the conclusion of the corollary still holds (Lemma 52).
The key to our analysis is showing that with each iteration the distance to the optimum R shrinks
(due to convergence to x∗) by the same factor that the QSC constant M grows (due to diminishing
regularization), such that RM = O(p

√
n) throughout, leading to the overall poly(p)n1/3 complexity

guarantee.

Algorithm 8 High accuracy `p regression

1: Input: A ∈ Rn×d, b ∈ Rn, multiplicative error tolerance δ ≥ 0.
2: Set x0 = A†b and ε0 = f(x0) = ‖Ax0 − b‖pp.
3: for k ≤ log2(n/δ1/p) do
4: εk ← 2−pεk−1

5: xk ← output of Algorithm 3 applied on f(x) = ‖Ax− b‖pp with initialization xk−1, desired

accuracy εk and parameters R = O(n(p−2)/2pε
1/p
k ) and M = O(p

√
n/R) (see Lemma 52)

6: end for

We first bound the QSC of `2 regularization of g.

Lemma 49. For any b ∈ Rn, y ∈ Rd, p ≥ 3, µ ≥ 0, the function g(x)+µ‖x−y‖22 isO(pµ−1/(p−2))-
QSC with respect to `2.

Proof. Let g̃(x) = g(x) + µ‖x− y‖22. We observe that

|∇3g̃(x)[h, u, u]| = p(p− 1)(p− 2)

n∑
i=1

hiu
2
i |xi − bi|p−3

and

∇2g̃(x)[u, u] =

n∑
i=1

u2
i

(
p(p− 1)|x− b|p−2

i + 2µ
)
.

4We note that log(n/δ) iterations of our algorithm yield the stronger multiplicative accuracy guarantee of δp,
without an additional dependence on p.
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Now,

|∇3g̃(x)[h, u, u]| ≤ p(p− 1)(p− 2)‖h‖∞
n∑
i=1

u2
i |xi − bi|p−3

≤ ‖h‖2
n∑
i=1

(p(p− 1)(p− 2))
p

3p−6u2
i

(
(p(p− 1)(p− 2))

2
3 |xi − bi|p−2

) p−3
p−2

≤ O(pµ−1/(p−2))‖h‖2
n∑
i=1

u2
i

(
p(p− 1)|xi − bi|p−2

) p−3
p−2 µ

1
p−2

≤ O(pµ−1/(p−2))‖h‖2
n∑
i=1

u2
i

(
p(p− 1)|xi − bi|p−2 + 2µ

)
≤ O(pµ−1/(p−2))‖h‖2∇2g̃(x)[u, u]

where we used that u2
i |xi − bi|p−3 is nonnegative in the first line and ‖·‖∞ ≤ ‖·‖2 in the second. In

the third line we used that (p(p− 1)(p− 2))
p

3p−6 ≤ p
3p

3p−6 = pp
6

3p−6 = O(p) since p
6

3p−6 is at most
9 if p ≥ 3. Finally in the fourth line we applied the inequality xαy1−α ≤ max(x, y) ≤ x + y for
nonnegative x, y, and α ∈ [0, 1]. The claim follows.

We next show approximate minimizers of f are close to x∗.

Lemma 50. For x ∈ Rd with f(x)− f∗ ≤ ε, we have ‖x− x∗‖pM ≤ 2pn
p−2
2 ε.

To prove Lemma 50 we use the following lemma from [2], with notation modified to our setting.5

Lemma 51 (Adil et al. [2, Lemma 4.5]). Let p ∈ (1,∞). Then for any two vectors y,∆Rn,

‖y‖pp + v>∆ +
p− 1

p · 2p
‖∆‖pp ≤ ‖y + ∆‖pp

where vi = p|yi|p−2yi is the gradient of ‖y‖pp.

Proof. Substituting y = Ax∗ − b, ∆ = A(x− x∗) in Lemma 51, and simplifying gives

‖Ax∗ − b‖pp +∇f(x∗)>(x− x∗) +
p− 1

p2p
‖A(x− x∗)‖pp ≤ ‖Ax− b‖pp.

As∇f(x∗)>(x− x∗) = 0 by optimality of x∗, we obtain

p− 1

p2p
‖A(x− x∗)‖pp ≤ ‖Ax− b‖pp − ‖Ax∗ − b‖pp = f − f∗ ≤ ε.

Now using ‖·‖2 ≤ n
p−2
2p ‖·‖p this implies

‖x− x∗‖pM ≤ 2p+1n
p−2
2 ε.

as p
p−1 ≤ 2 for p ≥ 3.

Finally, we bound the complexity of executions of Line 5.
Lemma 52. Let εk−1 ≥ δf∗. Initialized at xk−1 satisfying f(xk−1) − f∗ ≤ εk−1, Algorithm 3
computes xk with f(xk)− f∗ ≤ 2−pεk−1 = εk in O(p14/3n1/3 log3(n/δ)) linear system solves in
A>DA for diagonal matrix D � 0.

Proof. We apply Algorithm 3 to compute an εk = 2−pεk−1 approximate minimizer of f in

O

(
(RM)2/3 log3

(
LR2

εk
(1 +MR)

)
log

(
εk−1

εk

))
5The function γp(|y|,∆) in their setting is at least ‖y‖pp.
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linear system solutions, with parameters R,M and L that we bound as follows.

By Lemma 50,
‖xk−1 − x∗‖pM ≤ 2p+1n

p−2
2 εk−1

def
= Rp

We add εk
55R2 ‖x− xk‖2M to f in obtaining f̃ , and observe that the proof of Corollary 12 only requires

us to show that f̃ is QSC. By Lemma 49, we see that f̃ is M = O
(
p
(
R2/εk

)1/(p−2)
)

-QSC.
Therefore, for any p ≥ 3 we have

RM = O

(
pR

p
p−2 ε

− 1
p−2

k

)
= O

(
p
√
n

(
2p+1εk−1

εk

) 1
p−2

)
= O(p

√
n),

so the polynomial term in the running time is at mostO
(
(RM)2/3

)
= O

(
p2/3n1/3

)
. We now bound

the logarithmic factors in the runtime. Observe that for any x output by our MS oracle implementation
we have that ‖x− x∗‖M ≤ 2

√
3R (Lemma 27 with σ = 1

2 ). As the Hessian of f is A>DA where
Dii = p(p − 1)|Ax − b|p−2

i we may upper bound the smoothness of f (w.r.t. ‖·‖M) at all points
encountered during the algorithm by

O

(
p2 max
‖x−x∗‖M≤2

√
3R
‖Ax− b‖p−2

∞

)
.

For any x such that ‖x−x∗‖M ≤ 2
√

3R we have ‖Ax− b‖∞ ≤ ‖Ax∗− b‖∞+ ‖A(x−x∗)‖∞ ≤
‖Ax∗−b‖p+‖x−x∗‖M ≤ (f∗)1/p+2

√
3R. Using the assumption f∗ ≤ εk−1/δ ≤ δ−1n−

p−2
2 Rp,

we may upper bound L as

L = O

(
4pp2

(
1 + δ−

1
pn−

p−2
2p

)p−2

Rp−2

)
.

Recalling that Rp = 22p+1n
p−2
2 εk, we obtain

LR2

εk
(1 +MR) = O

(
4pp2

(
1 + δ−

1
pn−

p−2
2p

)p−2 Rp

εk
(1 + p

√
n)

)
= O

(
16p

(√
n+ (n/δ)1/p

)p−2

p3
√
n

)
= O

(
17p

(√
n+ (n/δ)1/p

)p)
Taking a logarithm yields

log

(
LR2

ε
(1 +MR)

)
≤ O

(
p log n+ log

n

δ

)
= O

(
p log

n

δ

)
.

Finally since log(εk−1/εk) = p, combining the above bounds with the running time of Corollary 12
gives a bound of O(p14/3n1/3 log3(n/δ)) linear system solves as desired.

For proving Corollary 19, our final runtime follows from Lemma 52 and the fact that the loop in
Algorithm 8 repeats O(log n

δ ) times.

G Lower bound
We now provide a detailed derivation and discussion of our lower bound. For simplicity, we focus on
a setting where the functions are defined on a bounded domain of radius R > 0, and are 1-Lipschitz
but potentially non-smooth; afterwards, we explain how to extend the result to unconstrained,
differentiable and strictly convex functions. We assume throughout the section that M = I, i.e., that
we work in the standard `2 norm.

Following the literature on information-based complexity [26], we state and prove our lower bound
for the class of r-local oracles, which for every query point x̄ return a function fx̄ that is identical to
f in a neighborhood of x. However, we additionally require the radius of this neighborhood to be
at least r. Therefore, a query to an r-local oracle suffices to implement a ball optimization oracle
(as well as a gradient oracle), and consequently a lower bound on algorithms interacting with an
r-local oracles is also a lower bounds for algorithms a utilizing ball optimization oracle. The formal
definition of the oracle class follows.
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Definition 53 (Local oracles and algorithms). We call Olocal an r-local oracle for function f :
BR(0) → R if given query point x̄ ∈ Rd it returns fx̄ : BR(0) → R such that fx̄(x) = f(x) for
all x ∈ Br(x̄). We call (possibly randomized) algorithms that interact with r-local oracles r-local
algorithms.

We prove our lower bound using a small extension of the well-established machinery of high-
dimensional optimization lower bounds [26, 29, 12, 9]. To describe it, we start with the notion of
coordinate progress, denoting for any x ∈ Rd

i+r (x)
def
= min{i ∈ [d] | |xj | ≤ r for all j ≥ i}, (33)

where we let i+r (x)
def
= d+ 1 when |xd| > r, i.e. i+r (x) is the index following the last “large” entry of

x. With this notation, we define a key notion for proving our lower bound.
Definition 54 (Robust zero-chains). Function f : B1(0)→ R is an r-robust zero-chain if ∀x̄ ∈ Rd,
x ∈ Br(x̄),

f(x) = f(x1, . . . , xi+r (x̄), 0, . . . , 0).

The notion of r-robust zero-chain we use here is very close to the robust zero-chain defined in [12,
Definition 4], except here we require the equality to hold in a fixed ball rather than just a neighborhood
of x̄. The following lemma shows that r-local algorithms operating on a random rotation of an r-
robust zero-chain make slow progress with high probability.

Lemma 55. Let r
R , δ ∈ (0, 1), N ∈ N and d ≥

⌈
N + 20R2

r2 log 20NR2

δr2

⌉
. Let f : BR(0) → R

be an r-robust zero-chain and let U ∈ Rd×d be a random orthogonal matrix and fix an r-local
algorithm A. With probability at least 1− δ over the draw of U, there exists an r-local oracle O for
fU(x)

def
= f(U>x) such that the queries x1, x2, . . . of A interacting with O satisfy

i+r (U>xi) ≤ i for all i ≤ N.

We provide a concise proof of Lemma 55 in Section G.1 below, where we also compare it to existing
proofs in the literature.

With Lemma 55 in hand, to prove the lower bound we need to construct an r-robust zero-chain
function fN,r with the additional property that every x with i+r (x) ≤ N is significantly suboptimal.
Fortunately, Nemirovski’s function [26] satisfies these properties.
Lemma 56. Let r > 0 and N ∈ N. Define

fN,r(x)
def
= max

i∈[N ]
{xi − 4r · i} (34)

1. The function fN,r is an r-robust zero-chain.

2. For all x ∈ BR(0) such that i+r (x) ≤ N , we have fN,r(x) − infz∈BR(0) fN,r(z) ≥
R√
N
− 4Nr.

3. The function fN,r is convex and 1-Lipschitz.

Proof. To prove the first part, fix x̄, x ∈ Br(x̄) and j > i+r (x̄). We have for all x ∈ Br(x̄) that
|xk − x̄k| ≤ r for all k ∈ [d], and therefore

xj−4r · j
(i)

≤ x̄j + r−4r · j
(ii)

≤ x̄i+r (x̄) +3r−4r · j
(iii)

≤ xi+r (x̄) +4r−4r · j
(iv)

≤ xi+r (x̄)−4r · i+r (x̄).

Transitions (i) and (iii) above are due to ‖x− x̄‖ ≤ r; transition (ii) is due to the definition (33) of
i+r , which implies |x̄i+r (x̄)| ≤ r and |x̄j | ≤ r; and (iv) is due to j > i+r (x̄). Consequently, we have

fN,r(x) = max
i∈[i+r (x̄)]

{xi − 4r · i} for all x ∈ Br(x̄).

Similarly, we can use |x̄i+r (x̄)| ≤ r and j > i+r (x̄) to conclude that

0− 4r · j ≤ xi+r (x̄) + r − 4r · j ≤ xi+r (x̄) − 4r · i+r (x̄),
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which means that fN,r(x) = maxi∈[i+r (x̄)]{xi − 4r · i} = fN,r(x1, . . . , xi+r (x̄), 0, . . . , 0), giving the
robust zero-chain property.

The second property is well-known [see, e.g., 9], but we show it here for completeness. Consider
the point x̃ = − R√

N
1 ∈ BR(0). Clearly, infz∈BR(0) fN,r(z) ≤ fN,r(x̃) = − R√

N
− 4r. Moreover,

for any x with i+r (x) ≤ N we have fN,r(x) ≥ xN − 4Nr ≥ −(4N + 1)r. Combining these two
bounds yields fN,r(x)− infz∈BR(0) fN,r(z) ≥ R√

N
− (4N − 3)r ≥ R√

N
− 4Nr as required.

The final property follows from the fact that maximization preserves convexity and Lipschitz constants.

Lemma 56.1 is the main technical novelty of the section, while the other parts are known and stated
for completeness. Combining Lemmas 55 and 56 with appropriate choices of N and d immediately
gives the lower bound.
Proposition 57. Let r

R , δ ∈ (0, 1) and d =
⌈
60(Rr )2 log R

δ·r
⌉
. There exists a distribution P over

convex and 1-Lipschitz functions from BR(0)→ R and corresponding r-local oracles such that the
following holds for any r-local algorithm. With probability at least 1−δ over the draw of (f,O) ∼ P ,
when the algorithm interacts with O, its first

⌈
1
10 (Rr )2/3

⌉
queries are at least R2/3r1/3 suboptimal

for f .

Proof. Set N =
⌊

1
10 (Rr )2/3

⌋
and d ≥

⌈
60R2

r2 log R
δr

⌉
≥
⌈
N + 20R2

r2 log 20NR2

δr2

⌉
. Apply Lemma 55

with Lemma 56.1 to argue that for any algorithm, with probability at least 1− δ the first N queries
x1, . . . , xN satisfy i+r (U>xi) ≤ N , and substitute into Lemma 56.2 to conclude that the suboptimal-
ity of each query is at least (

√
10− 4

10 )(R2r)1/3 ≥ (R2r)1/3.

Proposition 57 shows that as long as we wish to solve the minimization problem to accuracy
ε = o(R2/3r1/3), for any r-local algorithm, there is a function requiring Ω((R/r)2/3) queries to an
r-local oracle, which gives strictly more information than a ball optimization oracle, proving our
desired lower bound, and consequently Theorem 20 follows as an immediate corollary. However, our
acceleration scheme (Theorem 6) assumes unconstrained, smooth and strictly convex problems. We
now outline modifications to the construction (34) extending it to this regime.

Unconstrained domain. Following the approach of Diakonikolas and Guzmán [17], we note that
the construction f(x) = max{ 1

2fN,r(x), ‖x‖ − R
2 } provides a hard instance for algorithms with

unbounded queries, because any query with norm larger than R/2 is uninformative about the rotation
of coordinates and has a positive function value, so that the minimizer is still constrained to a ball of
radius R.

Smooth functions. The smoothing argument of Guzmán and Nemirovski [20] shows that f(x) =
infx′∈Br(x){fN,2r(x′) + 1

r‖x
′ − x‖2} is an r-robust zero-chain that is also 2/r-smooth and satisfies

|f(x)− fN,2r(x)| ≤ r for all x. Consequently, the lower bound holds for O(1/r) smooth functions.

Strictly convex functions. The function f(x) = fN,r(x) + r1/3

2R4/3 ‖x‖2 provides an (r1/3R−4/3)-
strongly convex hard instance, since we can add the strongly convex regularizer directly in the local
oracle without revealing additional information, and the regularizer size is small enough so as not to
significantly affect the optimality gap.

G.1 Proof of Lemma 55
Recall the coordinate progress notation

i+r (x)
def
= min{i ∈ [d] | |xj | ≤ r for all j ≥ i}.

Before giving the proof of Lemma 55, we remark that a number of papers [30, 12, 17, 9] contain
proofs for variations of this claim featuring some differences between the types of oracles considered,
which do not materially affect the argument. The proofs in these papers are distinct, and vary in
the dimensionality they require. Our argument below uses a random orthogonal transformation
similarly to Woodworth and Srebro [30], Carmon et al. [12], but uses a more careful union bound
(35), similarly to that of Diakonikolas and Guzmán [17], which allows for a much shorter proof and
also obtains tighter dimension bounds as in Diakonikolas and Guzmán [17], Bubeck et al. [9].
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Lemma 55. Let r
R , δ ∈ (0, 1), N ∈ N and d ≥

⌈
N + 20R2

r2 log 20NR2

δr2

⌉
. Let f : BR(0) → R

be an r-robust zero-chain and let U ∈ Rd×d be a random orthogonal matrix and fix an r-local
algorithm A. With probability at least 1− δ over the draw of U, there exists an r-local oracle O for
fU(x)

def
= f(U>x) such that the queries x1, x2, . . . of A interacting with O satisfy

i+r (U>xi) ≤ i for all i ≤ N.

Proof. Let u1, . . . , ud be the columns of U. Definition 54 directly suggests an r-local oracle for
fU(x) = f(U>x): at query point x̄ the oracle returns f x̄U : Rd → R such that

f x̄U(x) = f(〈u1, x〉, . . . , 〈ui+r (U>x̄), x〉, 0, . . . , 0).

The r-robust zero-chain definition implies that O(x̄) = f x̄U is a valid response for an r-local oracle
for fU. Moreover, the oracle answer to query xi only depends on the first i+r (U>xi) columns of u.
Define

pi
def
= max

j≤i
i+r
(
U>xj

)
to be the highest progress attained up to query i. With this notation, we wish to show that

P

(⋂
i≤N

{pi ≤ i}

)
≥ 1− δ.

Note that at round i + 1 the algorithm could query xi+1 = R · upi which would satisfy pi+1 =
i+r (U>xi+1) = 1 + pi. Therefore, it is possible to choose queries so that i+r (U>xi) = pi = i.
However, any faster increase in pi is highly unlikely, because it would require attaining high inner
product with a direction uj for j > pi about which we have very little information when d is
sufficiently large.

To make this intuition rigorous, we apply the union bound to the failure probability, giving

P

(⋃
i≤N

{pi > i}

)
= P

(⋃
i≤N

{pi > i , pi−1 < i}

)
≤

N∑
i=1

P(pi > i , pi−1 < i), (35)

with p0 = 0. We further upper bound each summand as

P(pi > i, pi−1 < i) = P

(⋃
j≥i

{
|〈uj , xi〉| > r , pi−1 < i

})

≤ (d− i+ 1) · P
(
|〈ui, xi〉| > r , pi−1 < i

)
,

(36)

where the last step uses a union bound and the exchangeablility of ui, ui+1, . . . , ud under the event
pi−1 < i. Note that the event pi−1 < i implies that that xi depends on U only through U(<i) def

=
u1, . . . , ui−1, as these vectors allow us to compute the oracle responses to queries x1, . . . , xi−1.6
Formally, we may write

xi = ai(U
(<i))1{pi−1 < i}+ ãi(U)1{pi−1 ≥ i},

for two measurable functions ai : Rd×(i−1) → Rd and ãi : Rd×d → Rd. Consequently, we have

P
(
|〈ui, xi〉| > r , pi−1 < i

)
= P

(
|〈ui, ai(U(<i))〉| > r , pi−1 < i

)
≤ P

(
|〈ui, ai(U(<i))〉| > r

)
.

Conditional on U(<i), the vector ui is uniformly distributed in the (d− i+ 1)-dimensional space
span{ui, . . . , ud}. Therefore, standard concentration inequalities on the sphere [see 7, Lecture 8]
give

P
(
|〈ui, ai(U(<i))〉| > r

∣∣U(<i)
)
≤ 2 exp

{
− r2

2‖ai(U(<i))‖2
· (d− i+ 1)

}
≤ δ

d2
,

6Applying Yao’s minimax principle [31] we implicitly condition our proof on the random coin tosses of A,
which is tantamount to assuming without loss of generality that A is deterministic.
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where in the final step we substituted ‖ai(U(<i))‖ ≤ R, and our setting of d, which implies

d− i+ 1 ≥ d−N ≥ 20R2

r2
log

20NR2

δ · r2
≥ 2R2

r2
log

2d2

δ
.

Substituting P(|〈ui, xi〉| > r , pi−1 < i) ≤ δ
d2 into the bounds (35) and (36) concludes the proof.
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