
Improving Auto-Augment via Augmentation-Wise
Weight Sharing

Keyu Tian
SenseTime Research
Beihang University

tiankeyu.00@gmail.com

Chen Lin
SenseTime Research

linchen@sensetime.com

Ming Sun
SenseTime Research

sunming1@sensetime.com

Luping Zhou
University of Sydney

luping.zhou@sydney.edu.au

Junjie Yan
SenseTime Research

yanjunjie@sensetime.com

Wanli Ouyang
University of Sydney

wanli.ouyang@sydney.edu.au

Abstract

The recent progress on automatically searching augmentation policies has boosted
the performance substantially for various tasks. A key component of automatic
augmentation search is the evaluation process for a particular augmentation policy,
which is utilized to return reward and usually runs thousands of times. A plain
evaluation process, which includes full model training and validation, would be
time-consuming. To achieve efficiency, many choose to sacrifice evaluation relia-
bility for speed. In this paper, we dive into the dynamics of augmented training
of the model. This inspires us to design a powerful and efficient proxy task based
on the Augmentation-Wise Weight Sharing (AWS) to form a fast yet accurate
evaluation process in an elegant way. Comprehensive analysis verifies the superi-
ority of this approach in terms of effectiveness and efficiency. The augmentation
policies found by our method achieve superior accuracies compared with existing
auto-augmentation search methods. On CIFAR-10, we achieve a top-1 error rate of
1.24%, which is currently the best performing single model without extra training
data. On ImageNet, we get a top-1 error rate of 20.36% for ResNet-50, which leads
to 3.34% absolute error rate reduction over the baseline augmentation.

1 Introduction

Deep learning techniques have been heavily utilized in the computer vision area and made remarkable
progress in lots of tasks, such as image classification [16, 34, 40], object detection [23, 28, 18, 24],
segmentation [2, 11], image captioning [36], and human pose estimation [35]. Overfit is a commonly
acknowledged issue of deep learning algorithms. Various Regularization techniques are proposed in
different tasks to fight overfit. Data augmentation, which increases both the amount and the diversity
of the data by applying semantic invariant image transformations to training samples [34, 1], is
the most commonly used regularization due to its simplicity and effectiveness. There are various
frequently used augmentation operations for image data, including traditional image transformations
such as resizing, cropping, shearing, horizontal flipping, translation, and rotation. Recently, several
special operations, such as Cutout [7] and Sample Pairing [14], are also proposed. It has been widely

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: An investigation of the change of
rankings in augmented training. We train
ResNet-18 [12] on CIFAR-10 [15] for 300
epochs in total, utilizing different augmenta-
tion strategies ([4], [5], and ours).

0 100 200 300
augmented epochs (Naug)

95.5

96.0

96.5

fin
al

 to
p-

1
te

st
 a

cc
ur

ac
y

(%
)

aug stage
early
late

Figure 2: An investigation of the relation-
ship between the performance gains and
the augmented training periods. We apply
augmentation [4] in the start or the end Naug
epochs.

observed [17, 16, 37] that augmentation strategies influence the final performances of deep learning
models considerably.

However, choosing appropriate data augmentation strategies is time-consuming and requires extensive
efforts from experienced human experts. Hence automatic augmentation techniques [4, 5, 20, 13,
21, 41] are leveraged to search for performant augmentation strategy according to specific datasets
and models. Numerous experiments show that these searched policies are superior to hand-crafted
policies in many computer vision tasks. These techniques design different evaluation processes to
conduct searches.

The most straightforward approach [4] use a plain evaluation process which fully trains the model
with different augmentation policies repeatedly to obtain the reward for reinforcement learning agent.
Inevitably, this approach raises the time-consuming issue as it requires a tremendous amount of
computational resources to train thousands of child models to complete.

To alleviate the computational cost, most of the efficient works [13, 21, 41] utilize the joint optimiza-
tion approach to evaluate the strategies every few iterations, getting rid of training multiple networks
from scratch repeatedly. Although being efficient, most of these methods only have the performance
similar to that of [5] due to the compromised evaluation process. Specifically, the compromised
evaluation process would distort the ranking for augmentation strategies since the ranks of the models
trained with too few iterations are known to be inconsistent with the final modelss trained with
sufficient iterations. Fig. 1 shows this phenomenon, where the relative ranks change a lot during the
whole training process.

An ideal evaluation process should be efficient as well as highly reliable to produce accurate rewards
for augmentation strategies. In order to achieve this, we dive into the training dynamics with different
data augmentations. We observe that the augmentation operations in the later training period are
more influential. Based on this, we design a new evaluation process, which is a proxy task with
an Augmentation-wise Weight Sharing (AWS) strategy. Compared with [4], we improve efficiency
significantly via this weight sharing strategy and make it affordable to directly search on large scale
datasets. And the performance gains are also substantial. Compared with previous efficient methods,
our method produces more reliable evaluation shown in Sec. 4.4 with competitive computation
resources. Our main contribution can be summarized as follows: 1) We propose an efficient yet
reliable proxy task utilizing a novel augmentation-wise weight sharing strategy to be the evaluation
process for augmentation search methods. 2) We design a new search pipeline for auto-augmentation
search utilizing the proposed proxy task and achieved superior accuracy compared with existing
auto-augmentation search methods.

The augmentation policies found by our approach achieve outstanding performance. On CIFAR-10,
we achieve a top-1 error rate of 1.24%, which is the currently best-performing single model without
extra training data. On ImageNet, we get a top-1 error rate of 20.36% for ResNet-50, which leads to
3.34% improvement over the baseline augmentation. The augmentation policies we found on both
CIFAR and ImageNet benchmark will be released to the public as an off-the-shelf augmentation
policy to push the boundary of the state-of-the-art performance.

2

2 Related Work

2.1 Auto Machine Learning and Neural Architecture Search

Auto Machine Learning (AutoML) aims to free human practitioners and researchers from these
menial tasks. Recent advances focus on automatically searching neural network architectures. One
of the first attempts [43, 42] was utilizing reinforcement learning to train a controller representing
a policy to generate a sequence of symbols representing the network architecture. An alternative
to reinforcement learning is evolutionary algorithms, that evolved the topology of architectures by
mutating the best architectures found so far [27, 38, 30, 19, 9]. Recent efforts such as [22, 25, 26],
utilized several techniques trying to reduce the search cost. Note that [4] utilized a similar controller
inspired by [43], whose training is time-consuming, to guide the augmentation policy search. Our
auto-augmentation search strategy is much more efficient and economical compared to it.

2.2 Automatic Augmentation

Recently, some automatic augmentation approaches [4, 20, 13, 21, 5, 41] have been proposed. The
common purpose of them is to search for powerful augmentation policies automatically, by which the
performances of deep models can be enhanced further. [4] formulates the automatic augmentation
policy search as a discrete search problem and employs a reinforcement learning framework to search
the policy consisting of possible augmentation operations, which is most closely related to our work.
Our proposed method also optimizes the distribution of the discrete augmentation operations, but
it is much more computationally economical, benefiting from the weight sharing technique. Much
other previous work [13, 21, 41] takes the single-step approximation to reduce the computational cost
dramatically by getting rid of training multiple networks.

3 Method

3.1 Motivations

3.1.1 Key Observation

As a powerful regularization technique, data augmentation is applied to relief overfitting [32].
Another popular regularization method is early stopping [29], meaning to compute the validation
error periodically, and stop training when the validation error starts to go up. It shows the overfitting
phenomenon may mostly occur in the late stages of the training. Thus, a natural conjecture could
be raised: data augmentation improves the generalization of the model, mainly in the later training
process.

To investigate and verify this, we explore the relationship between the performance gains and the
augmented periods. We train ResNet-18 [12] on CIFAR-10 [15] for 300 epochs in total, some of
which are augmented by the searched policy of AutoAug [4]. Specifically, we apply augmentation
in the start or the end Naug epochs, where Naug denotes the number of epochs with augmentation.
We repeat each experiment eight times to ensure reliability. The result is shown in Fig. 2, which
indicates two main pieces of evidence as follows: 1) With the same number of the augmented epochs
Naug, applying data augmentation in the later stages can constantly get better model performance,
as the dashed curve is always above the solid one. 2) In order to train models to the same level of
performance, conducting data augmentation in the later stages requires fewer epochs of augmentation
compared with conducting it in the early stages, as the dashed curve is always on the left of the solid
one.

In sum, our empirical results show that data augmentation functions more in the late training stages,
which could be took advantage of to produce efficient and reliable reward estimation for different
augmentation strategies.

3.1.2 Augmentation-Wise Weight Sharing

Inspired by our observation, we propose a new proxy task for automatic augmentation. It consists of
two stages. In the first stage, we choose a shared augmentation strategy to train the shared weights,
namely, the augmentation-wise shared model weights. We borrow the weight sharing paradigm from

3

NAS that shares weights among different network architectures to speed up the search. Please note
that, to the best of our knowledge, this is the first work to investigate the weight sharing technique
for automatic augmentation search. In the second stage, we conduct the policy search efficiently.
Reliability remains as augmentation operations function more in the late stages. And experiments in
Sec. 4.4 also verify this.

3.2 Auto-Aug Formulation

Auto-Aug aims to find a set of augmentation operations for training data, which maximize the
performance of a deep model. In this work, we denote training set as Dtr , validation set as Dval. We
use x and y to denote the image and its label. Here we are searching data augmentation strategy for a
specific model denoted asMω , which is parameterized by ω. We regard our augmentation strategy as
a distribution pθ(O) over candidate image transformations, which is controlled by θ. O denotes the
set of operations. More detailed construction on the augmentation policy space would be introduced
in Sec. 3.4.

The objective of obtaining the best augmentation policy (solving for θ) could be described as a bilevel
optimization problem. The inner level is the model weight optimization, which is solving for the
optimal ω∗ given a fixed augmentation policy θ

ω∗ = arg min
ω

1

#Dtr

∑
(x,y)∈Dtr

EO∼pθL(Mω(O(x)), y) , (1)

where L denotes the loss function.

The outer level is the augmentation policy optimization, which is optimizing the policy parameter
θ given the result of the inner level problem. Notably, the objective for the optimization of θ is the
validation accuracy ACC

θ∗ = arg max
θ

ACC(ω∗,Dval) , (2)

where θ∗ denotes the parameter of the optimal policy and ACC(ω∗,Dval) denotes the validation
accuracy obtained by ω∗. This problem is a typical bilevel optimization problem [3]. Solving for the
inner loop is extremely time-consuming. Thus, it is almost impossible to generalize this approach
to a large scale dataset without compromise [4]. More recent works focusing on reducing the time
complexity for solving bilevel optimization problems [13, 21, 41] have been proposed. They take a
single-step approximation borrowing from NAS literature [22] to avoid training multiple networks
from scratch. Instead of solving the inner level problem, single-step approximation takes only one
step for ωt based on previous ωt−1, and utilizes ωt, which approximates the solution of the inner
level problem, to update θ. These approaches are empirically efficient, but [5] shows it is possible to
achieve compatible or even stronger performance using a random augmentation policy. Thus, a new
approach to perform an efficient auto-augmentation search is desirable.

3.3 Our Proxy Task

Inspired by our observation that the later augmentation operations are more influential than the early
ones, in this paper, we propose a new proxy task that substitutes the process of solving the inner level
optimization by a computational efficient evaluation process.

The basic idea of our proxy task is to partition the augmented training of the network parameters
ω (i.e., the inner level optimization) into two parts. In the first part (i.e., the early stage) a shared
augmentation policy is applied to training the network regardless of the current policy θ given by the
outer level optimization; and in the second part (i.e., the late stage), the network model is fine-tuned
from the augmentation-wise shared weights by the given policy θ so that it could be used to evaluate
the performance of this policy. Since the shared augmented training in the first part is independent of
the given policy θ, it only needs to be trained once for all candidate augmentation policies to search,
which significantly speeds up the optimization. We call this strategy the augmentation-wise weight
sharing.

Now our problem boils down to find a good shared augmentation policy θ̄ for the first part training.
In the following, we show that this could be trivially obtained via the following proposition.

4

Training
ACC ACC

Policy

Augmentation
Sampling

Weights
Loading

Reinforcement
Learning

ACC

Augmentation-Wise Shared Model Weights 𝝎𝒔𝒉𝒂𝒓𝒆

Policy Policy

Updating

ACC

Policy ...

...

Shared Policy ഥ𝜽

Initial Model Weights

Final Policy 𝜽∗

Figure 3: The overview of our method. Firstly, we train the model with the shared augmentation
policy θ̄ to get the augmentation-wise shared weights ωshare. Then we fine-tune it repeatedly and
use ACC(ω̄∗θ) to update the policy under the searching.

Proposition. Let τ = [τ1, τ2, · · · , τN] denote an arbitrary augmentation trajectory consist-
ing of N augmentation operations. Let pθθ and pθ̄θ be the trajectory distributions without
or with the augmentation-wise weight sharing, that is: pθθ(τ) = ΠN

i=1pθ(τi), and pθ̄θ(τ) =
ΠK
i=1pθ̄(τi) ΠN

i=K+1pθ(τi), where K denotes the numbers of augmentation operations in the early
training stage. Here θ̄ and θ indicate the shared and the given policy, respectively. The KL-divergence
between pθθ and pθ̄θ is minimized when θ̄ is uniform sampling, i.e., pθ̄(τ1) = pθ̄(τ2) = · · · = pθ̄(τK)
for all the possible τi. The detailed proof is provided in the supplementary materials.

The above proposition tells us that with a simple uniform sampling for augmentation-wise weight shar-
ing, the obtained augmentation trajectories would be similar to those without using the augmentation-
wise weight sharing. This is a favorable property because of the follows. To enhance the reliability of
the search algorithm, it is necessary to maintain a high correlation between ACC(ω̄∗θ) and ACC(ω∗),
where ω̄∗θ indicates the network parameters trained by our proxy task. So, it is desired to make
palone(ω) = Eτ∼pθθ [p(ω|τ)] and pshare(ω) = Eτ∼pθ̄θ [p(ω|τ)] as close as possible. We can achieve
this by producing similar augmentation trajectories via employing a uniform sampling for the shared
augmentation policy θ̄.

We use a uniform distribution U(O) sampling the augmentation transforms to train the shared
parameter checkpoint ωshare:

ωshare = arg min
ω

1

#Dtr

∑
(x,y)∈Dtr

EO∼UL(Mω(O(x)), y) . (3)

In the second part training, to get the performance estimation for particular augmentation policy which
has the parameter equals to θ we load ωshare and fine-tune the checkpoint with this augmentation
policy. We denote the parameter obtained by finetuning with augmentation θ as ω̄∗θ . Note that the
cost for obtaining ω̄∗θ is very cheap compared with training from scratch. Thus, we optimize the
augmentation policy parameters θ with

θ∗ = arg max
θ

ACC(ω̄∗θ ,Dval) . (4)

In other words, we obtain ωshare once, then repeat Tmax times to reuse it and conduct the late training
process for optimizing the policy parameter.

Moreover, by adjusting the number of epochs of finetuning, we can still maintain the reliability
of policy evaluation to a large extent, which is verified in the supplementary material. In Sec. 4.4
we study the superiority of this proxy task, as we empirically find that there is a strong correlation
between ACC(ω̄∗θ) and ACC(ω∗).

5

Algorithm 1 AWS Auto-Aug Search

Inputs: Dtr,Dval, Tmax
Obtain ωshare in Equ. 3;
while T ≤ Tmax do

Load ωshare;
Fine-tune ωshare to get ω̄∗

θ ;
Use ACC(ω̄∗

θ ,Dval) to update θ;
end while
θ∗ = θ;
return θ∗;

3.4 Augmentation Policy Space and Search Pipeline

Augmentation Policy Space In this paper, we regard the policy parameter θ as probability distribu-
tions on the possible augmentation operations. Let K be the number of available data augmentation
operations in the search space, and O = {O(k)(·)}Kk=1 be the set of candidates. Accordingly, each of
them has a probability of being selected denoted by pθ(O(k)). For each training image, we sample an
augmentation operation from the distribution of θ, then apply to it. Each augmentation operation is a
pair of augmentation elements. Following [4], we select the same augmentation elements, except
Cutout [7] and Sample Pairing [14]. There are 36 different augmentation elements in total. The
details are listed in the supplementary material.

More precisely, the augmentation distribution is a multinomial distribution which has K possible
outcomes. The probability of the k-th operation is a normalized sigmoid function of θk. As a
single augmentation operation is defined as a pair of two elements, resulting in K = 362 possible

combinations (the same augmentation choice may repeat), we have pθ(O(k)) =
1

1+e−θk∑K
i=1(1

1+e−θi
)
.

Search Pipeline As our proxy task is flexible, any heuristic search algorithm is applicable. In
practical implementation, we empirically find that Proximal Policy Optimization [31] is good enough
to find a good θ∗ in Equ. 4. In practice, we also utilize the baseline trick [33] to reduce the variance
of the gradient estimation. The baseline function is an exponential moving average of previous
rewards with a weight of 0.9. The complete task pipeline using the augmentation-wise weight sharing
technique is presented in Algorithm 1.

4 Experiments and Results

4.1 Datasets and Comparison Methods

Following the literature on automatic augmentation, we evaluate the performance of our proposed
method on three classification datasets: CIFAR-10 [15], CIFAR-100 [15], and ImageNet [6]. The
detailed description and splitting ways of these datasets are presented in the supplementary material.
To fully demonstrate the advantage of our proposed method, we make a comprehensive comparison
with the state-of-the-arts augmentation methods, includings Cutout [7], AutoAugment (AutoAug)
[4], Fast AutoAugment (Fast AA) [20], OHL-Auto-Aug (OHL) [21], PBA [13], Rand Augment
(RandAug) [5], and Adversarial AutoAugment (Adv. AA) [41].

4.2 Implementation Details

CIFAR On CIFAR-10 and CIFAR-100, following the literature, we use ResNet-18 [12] and Wide-
ResNet-28-10 [39], respectively, as the basic models to search the policies, and transfer the searched
policies to other models, including to Shake-Shake (26 2×32d) [8] and PyramidNet+ShakeDrop [10].
As mentioned, our training process is divided into two parts. The numbers of epochs of each part are
set to 200 and 10, respectively, leading to 210 total number of epochs in the search process. The Tmax
is set to 500. To optimize the policy, we use the Adam optimizer with a learning rate of ηθ = 0.1,
β1 = 0.5 and β2 = 0.999. Some other details are studied and reported in the supplementary.

6

ImageNet During the policy search process, we use ResNet-50 [12] as the basic model, and then
transfer the policies to ResNet-200 [12]. The learning rate ηθ is set to 0.2. The numbers of epochs
of the two training stages are set to 150 and 5, respectively. Other hyper-parameters of the search
process are the same as what we use for the CIFAR datasets. Some other details are studied and
reported in the supplementary.

4.3 Comparison with the state-of-the-arts

The comparisons between our AWS method and the state-of-the-arts are reported in Tab. 1, Tab. 2
and Tab. 3. To minimize the influence of randomness, we run our method repetitively for eight
times on CIFAR and four times on ImageNet, and report our test error rates in terms of Mean ±
STD (standard deviation). For other methods in comparison, we directly quote their results from
the original papers. Except Adv. AA [41], these methods only report the average test error rates.
“Baseline" in tables refers to the basic models using only the default pre-processing without applying
the searched augmentation policies and the Cutout. For a fair comparison, we report our resulting both
using and without using the Enlarge Batch (EB) proposed by Adv. AA [41]. By leveraging rEB×EB
in practice, the mini-batch size is rEB times larger, while the number of iterations is not changed.
Besides, our searched policies have strong preferences, as only a few augmentation operations are
preserved eventually, which is quite different from other methods like [4, 20, 41]. Details about them
are presented in the supplementary material.

Table 1: CIFAR-10 results. Top-1 test error rates (%) are reported (lower is better). For fair
comparison, we report our results both using and without using the Enlarge Batch proposed by Adv.
AA [41]. We report Mean ± STD (standard deviation) of the test error rates wherever available.

Approach Res-18 WRN Shake-Shake PyramidNet

Baseline 4.66 3.87 2.86 2.67
Cutout [7] 3.62 3.08 2.56 2.31
Fast AA [20] - 2.7 2.0 1.7
RandAug [5] - 2.7 2.0 1.5
AutoAug [4] 3.46 2.68 1.99 1.48
PBA [13] - 2.58 2.03 1.46
OHL [21] 3.29 2.61 - -
Adv. AA (8×EB) [41] - 1.90 ± 0.15 1.85± 0.12 1.36± 0.06
Ours 2.91 ± 0.062 1.95 ± 0.047 1.65± 0.039 1.31± 0.044
Ours (8×EB) 2.38 ± 0.041 1.57 ± 0.038 1.42± 0.040 1.24± 0.042

Table 2: CIFAR-100 results. Top-1 test error rates (%) are reported (lower is better). We report
Mean ± STD (standard deviation) of the test error rates wherever available.

Approach WRN Shake-Shake PyramidNet

Baseline 18.80 17.1 13.99
Cutout [7] 18.41 16.0 12.19
Fast AA [20] 17.3 14.6 11.7
RandAug [5] 16.7 - -
AutoAug [4] 17.1 14.3 10.67
PBA [13] 16.7 15.3 10.94
Adv. AA (8×EB) [41] 15.49± 0.18 14.10± 0.15 10.42± 0.20
Ours 15.28 ± 0.067 14.07± 0.053 10.40± 0.040
Ours (8×EB) 14.16 ± 0.055 13.96± 0.032 10.45± 0.044

Results on CIFAR The results on CIFAR-10 are summarized in Tab. 1. Comparing the results
horizontally in Tab. 1, it can be seen that our learned policies using ResNet-18 could be well
transferred to training other network models like WRN [39], Shake-shake [8] and PyramidNet [10].
Compared with the baseline without using the searched augmentation, the performance of all these
models significantly improves after applying our searched policies for augmentation. Comparing the
results vertically in Tab. 1, our AWS method is the best performer across all four network architectures.

7

Specifically, ours achieves the best top-1 test error of 1.24% with PyramidNet+ShakeDrop, which is
0.12% better than the second-best performer Adv. AA [41], even though we, unlike [41], do not use
the Sample Pairing [14] for search. Consistent observations are found on the results on CIFAR-100 in
Tab. 2. Ours again performs best on all four network architectures among the methods in comparison.

Table 3: ImageNet results. Top-1 / Top-5 test error rates (%) are reported (lower is better). We report
Mean ± STD (standard deviation) of the test error rates of our method. “Ours" denotes our approach
without using EB. “Ours (4× or 2× EB)" denotes our approach using 4 times the mini-batch size for
ResNet-50 and 2 times the mini-batch size for ResNet-200. Please note that Adv. AA used 8 times
the mini-batch size.

Approach ResNet-50 ResNet-200

Baseline 23.7 / 6.9 21.5 / 5.8
Fast AA [20] 22.4 / 6.3 19.4 / 4.7
AutoAug [4] 22.4 / 6.2 20.0 / 5.0
RandAug [5] 22.4 / 6.2 -
OHL [21] 21.07 / 5.68 -
Adv. AA (8×EB) 20.60 ± 0.15 / 5.53 ± 0.05 18.68 ± 0.18 / 4.70 ± 0.05
Ours 20.61 ± 0.17 / 5.49 ± 0.08 18.64 ± 0.16 / 4.67 ± 0.07
Ours (4× or 2× EB) 20.36 ± 0.15 / 5.41 ± 0.07 18.56 ± 0.14 / 4.62 ± 0.05

Results on ImageNet The results on ImageNet are summarized in Tab. 3. We report both the top-1
and the top-5 test errors following the convention. Adv. AA [41] has evaluated its performance for
different EB ratios r ∈ {2, 4, 8, 16, 32}. The test accuracy improves rapidly with the increase of r up
to 8. The further increase of r does not bring a significant improvement. So r = 8 is finally used in
Adv. AA. We tried to increase the batch size, but we can only use 4×EB for ResNet-50 and 2×EB for
ResNet-200 due to the limited resources. As can be seen, we still achieve superior performance over
those automatic augmentation works in comparison. Moreover, our outstanding performance using
the heavy model ResNet-200 also verifies the generalization of our learned augmentation policies.

Table 4: Comparison with the computation cost. We estimate ours with Tesla V100.

Approach Cutout [7] AutoAug [4] OHL [21] Adv. AA [41] Ours

Time Consuming (times) - 60 1 5 1.5
Relative Error Reduction (%) 0 12.99 15.26 38.31 49.02

Results on computational cost We further compare the computational cost among different auto-
augmentation methods and report the error reductions of WRN relative to Cutout’s. Following the
existing works, the computation costs on CIFAR-10 are reported in Tab. 4. In this table, we use the
GPU hours used by OHL-Auto-Aug [21] as the baseline, and report the relative time consuming
on this baseline. As can be seen that our method is 40 times faster than AutoAugment [4] with
an even better performance. Although it is slightly slower than OHL, our method has a salient
performance advantage over it. Overall, our proposed method is a very promising approach: it has
the best performance with acceptable computational cost.

4.4 Comparison Among Proxy Tasks

To verify the superiority of the proxy selected by us, we make comparisons among different proxy
tasks using ResNet-18 on CIFAR-10. To solve the problem in Equ. 4, we design four optional proxies,
which are summarized in Tab. 5. The correlations between ACC(ω̄∗θ) and ACC(ω∗) are investigated,
shown in Fig. 4. As can be seen in Tab. 5, among the four options, our selection (PAF) produces
the highest Pearson correlation coefficient 0.85, which outperforms other options by a large margin.
Specifically, the proxy PNF trains the model without data augmentation in the first stage, and only
searches the augmentation policy in the second stage like AutoAugment [4]. Its inferior performance
to our proposed proxy PAF may suggest that simply performing AutoAugment [4] only in the late
stage could not lead to good results. As for the proxy PIT , there is no first-stage training and the

8

network parameters in the second stage are randomly initialized. Its inferior performance to PAF
may suggest that less trained network parameters could not generate a reliable ranking for rewording.
Finally, the proxy PAV is similar to that used in Fast AutoAugment [20] and the low correlation
coefficient indicates that the evaluation process without fine-tuning may be unreliable.

Table 5: Optional proxy tasks. The first three proxies fine-tune (PIT does not learn ωshare) ωshare
in different ways with the same goal to maximize the validation accuracy. The last proxy aims to
maximize the accuracy on an augmented validation set without fine-tuning.

Symbolic The way to The way to pearsonr
representation obtain ωshare optimize

PAF (ours) Train with Augmentation Finetune+Eval 0.85
PNF Train without Augmentation Finetune+Eval 0.55
PIT Random Initialized Finetune+Eval 0.36
PAV Train with Augmentation Eval 0.045

𝑷𝑨𝑭 𝑷𝑵𝑭

𝑷𝑰𝑻 𝑷𝑨𝑽

Figure 4: Correlation between ACC(ω̄∗θ) and ACC(ω∗), where ω∗ denotes the optimal network
parameters for a fixed augmentation policy θ and ω̄∗θ denotes the network parameters obtained by a
proxy task via finetuing the checkpoint. Four proxy tasks, PAF , PNF , PIT and PAV are investigated.

5 Conclusion

In this paper, we propose an innovative and elegant way to search for auto-augmentation policies
effectively and efficiently. We first verify that data augmentation operations function more in the
late training stages. Based on this phenomenon, we propose an efficient and reliable proxy task
for fast evaluation of augmentation policy and solve the auto-augmentation search problem with
an augmentation-wise weight sharing proxy. The intensive empirical evaluations show that the
proposed AWS auto-augmentation outperforms both previous searched and handcrafted augmentation
policies. To our knowledge, it is the first time for a weight sharing proxy paradigm to be applied to
augmentation search. The augmentation policies we found on both CIFAR and ImageNet benchmark
will be released to the public as off-the-shelf augmentation policies to push the boundary of the
stat-of-the-art performance.

9

Broader Impact

In this paper, we propose a new framework to conduct an efficient and reliable Automated Augmenta-
tion (AutoAug) search and achieve superior performance compared with existing methods. AutoAug
enhances the performances of deep models as a typical Automated Machine Learning (AutoML)
technique.

For fundamental research and ML applications, our research contributes towards many computer
vision areas that benefit from image data augmentations. It may help reduce the demand for data
scientists by enabling domain experts to automatically design tailored augmentation strategies without
extensive knowledge of statistics and machine learning.

For broader societal implications, as an AutoML technique, our approach can be utilized to build
models and establish reasonable lower bounds of them for performance quickly and cheaply. It
may be useful and powerful to ML practitioners in various entities, such as the media industry, the
transportation industry, and the automatic production industries. However, each of these uses may
result in job losses. Some other issues, like personal privacy leak problems, may also be raised when
this technique is used by those malicious. In summary, this technique may be socially beneficial or
harmful, which depends on the users. We would encourage the researchers, general practitioners, or
anyone else to use it for social benefits, rather than infringe the interests of individuals and the nation,
and threaten social stability.

Acknowledgments and Disclosure of Funding

Wanli Ouyang is supoorted by the Australian Research Council Grant DP200103223, and Australian
Medical Research Future Fund MRFAI000085. Support from them as well as numerous colleagues,
friends and experts from SenseTime and University of Sydney is gratefully acknowledged. We also
appreciate all the reviewers for their valuable and constructive suggestions.

References
[1] H. S. Baird. Document image defect models. In Structured Document Image Analysis, pages 546–556.

Springer, 1992.
[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions
on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[3] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of operations research,
153(1):235–256, 2007.

[4] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 113–123, 2019.

[5] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data augmentation with
a reduced search space. arXiv preprint arXiv:1909.13719, 2019.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[7] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017.

[8] X. Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.
[9] R. Guo, C. Lin, C. Li, K. Tian, M. Sun, L. Sheng, and J. Yan. Powering one-shot topological nas with

stabilized share-parameter proxy. arXiv preprint arXiv:2005.10511, 2020.
[10] D. Han, J. Kim, and J. Kim. Deep pyramidal residual networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5927–5935, 2017.
[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017.
[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
[13] D. Ho, E. Liang, I. Stoica, P. Abbeel, and X. Chen. Population based augmentation: Efficient learning of

augmentation policy schedules. arXiv preprint arXiv:1905.05393, 2019.
[14] H. Inoue. Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929,

2018.

10

[15] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.
[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998.
[18] Q. Li, S. Jin, and J. Yan. Mimicking very efficient network for object detection. In Proceedings of the ieee

conference on computer vision and pattern recognition, pages 6356–6364, 2017.
[19] X. Li, C. Lin, C. Li, M. Sun, W. Wu, J. Yan, and W. Ouyang. Improving one-shot nas by suppressing the

posterior fading. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13836–13845, 2020.

[20] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. Fast autoaugment. In Advances in Neural Information
Processing Systems, pages 6662–6672, 2019.

[21] C. Lin, M. Guo, C. Li, X. Yuan, W. Wu, J. Yan, D. Lin, and W. Ouyang. Online hyper-parameter learning
for auto-augmentation strategy. In Proceedings of the IEEE International Conference on Computer Vision,
pages 6579–6588, 2019.

[22] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[23] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37. Springer, 2016.

[24] X. Lu, B. Li, Y. Yue, Q. Li, and J. Yan. Grid r-cnn. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7363–7372, 2019.

[25] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural architecture optimization. In Advances in Neural
Information Processing Systems, pages 7827–7838, 2018.

[26] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268, 2018.

[27] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier architecture
search. arXiv preprint arXiv:1802.01548, 2018.

[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[29] W. S. Sarle. Stopped training and other remedies for overfitting. Computing science and statistics, pages
352–360, 1996.

[30] S. Saxena and J. Verbeek. Convolutional neural fabrics. In NIPS, pages 4053–4061, 2016.
[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017.
[32] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of

Big Data, 6(1):60, 2019.
[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

[34] P. Y. Simard, D. Steinkraus, J. C. Platt, et al. Best practices for convolutional neural networks applied to
visual document analysis. In Icdar, volume 3, 2003.

[35] A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1653–1660, 2014.

[36] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3156–3164, 2015.

[37] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep image: Scaling up image recognition. arXiv preprint
arXiv:1501.02876, 7(8), 2015.

[38] L. Xie and A. L. Yuille. Genetic cnn. In ICCV, pages 1388–1397, 2017.
[39] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.
[40] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv

preprint arXiv:1710.09412, 2017.
[41] X. Zhang, Q. Wang, J. Zhang, and Z. Zhong. Adversarial autoaugment. arXiv preprint arXiv:1912.11188,

2019.
[42] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint

arXiv:1611.01578, 2016.
[43] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable image

recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017.

11

	Introduction
	Related Work
	Auto Machine Learning and Neural Architecture Search
	Automatic Augmentation

	Method
	Motivations
	Key Observation
	Augmentation-Wise Weight Sharing

	Auto-Aug Formulation
	Our Proxy Task
	Augmentation Policy Space and Search Pipeline

	Experiments and Results
	Datasets and Comparison Methods
	Implementation Details
	Comparison with the state-of-the-arts
	Comparison Among Proxy Tasks

	Conclusion

