
APPENDIX

A Likelihood

A.1 Initial form of likelihood

To derive the likelihood, we start by conditioning on s. Then, we make a variable transformation from
xi to ni = W ixi − s, as opposed to the transformation to s as is usual in ICA. Using the probability
transformation formula, we obtain

p(xi|s) = |W i|pin(W ixi − s) (8)

where pin is the distribution of ni. Note that the xi are conditionally independent given s, so we have
their joint probability as

p(x|s) =

m∏
i=1

|W i|pin(W ixi − s) (9)

and we next get the joint probability as

p(x, s) = p(s)

m∏
i=1

|W i|pin(W ixi − s) (10)

Integrating out s gives Eq. (2).

A.2 Integrating out the sources

The integral in question, after factorization, is given by∫
s

k∏
j=1

exp

(
− 1

2σ2

m∑
i=1

((wi
j)
>xi − sj)2

)
d(sj)ds (11)

which factorizes for each j. Denote yij = (wi
j)
>xi and s̃j = 1

m

∑m
i=1 y

i
j . Fix j, and drop it to

simplify notation. Then we need to solve the integral∫
s

exp

(
− 1

2σ2

m∑
i=1

(yi − s)2

)
d(s)ds

=

∫
s

exp

(
− 1

2σ2
[m(s̃− s)2 +

m∑
i=1

(yi − s̃)2]

)
d(s)ds

= exp

(
− 1

2σ2

m∑
i=1

(yi − s̃)2

)∫
z

exp
(
− m

2σ2
z2
)
d(s̃− z)dz

where we have made the change of variable z = s̃− s. The remaining integral simply means that d
is smoothed by a Gaussian kernel, which can be computed exactly if d is a Gaussian mixture. We
therefore define f(s) = log

(∫
z

exp
(
− m

2σ2 z
2
)
d(s− z)dz

)
.

B Initialization of MultiViewICA

Since the cost function L is non-convex, having a good initialization can make a difference in the final
result. We propose a two stage approach. We begin by applying PermICA on the datasets, which gives
us a first set of unimixing matrices W 1

1 , . . . ,W
m
1 . Note that we could also use GroupICA for this

task. Next, we perform a diagonal scaling of the mixing matrices, i.e. we find the diagonal matrices
Λ1, . . . ,Λm such that L(Λ1W 1

1 , . . . ,Λ
mWm

1 ) is minimized. To do so, we employ Algorithm 1 but
only take into account the diagonal of the descent direction at each step: the update rule becomes
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W i ← (Ik + ρDiag(D))W i. The initial unmixing matrices for Algorithm 1 are then taken as
Λ1W 1

1 , . . . ,Λ
mWm

1 .

Empirically, we find that this two stage procedure allows for the algorithm to start close from a
satisfactory solution.

C Proofs of Section 2

C.1 Proof of Prop. 1

We fix a subject i. Since s has independent components, so does s + ni. Following [22], Theorem
11, there exists a scale-permutation matrix P i such that A′i = AiP i. As a consequence, we have
s + ni = P i(s′ + n′i) for all i.

Then, we focus on subject 1 and subject i 6= 1:

s + n1 − (s + ni) = P 1(s′ + n′1)− P i(s′ + n′i) (12)

n1 − ni = P 1(s′ + n′1)− P i(s′ + n′i) (13)

⇐⇒ P 1s′ − P is′ = P in′i − ni + n1 − P 1n′1 (14)

Since the right hand side of equation (14) is a linear combination of Gaussian random variables, this
would imply that P 1s′−P is′ is also Gaussian. However, given that s′ is assumed to be non-Gaussian,
the equality can only hold if P 1 = P i and both the right and the left hand side vanish. Therefore, the
matrices P i are all equal, and there exists a scale and permutation matrix P such that A′i = AiP .

C.2 Proof of Prop. 2

We consider W i = Λ(Ai)−1, where Λ is a diagonal matrix. We recall xi = Ai(s + ni), so that
yi = W ixi = Λ(s + ni). The gradient of L is given by eq. (5):

Gi =
1

m
f ′(s̃)(s + ni)>Λ +

1− 1/m

σ2
Λ

ni −
1

m− 1

∑
j 6=i

nj

 (s + ni)>Λ− Ik (15)

=
1

m
f ′(Λ(s +

1

m

∑
j

nj))(s + ni)>Λ +
σ′2(1− 1/m)

σ2
Λ2 − Ik (16)

where we write f ′(s) =

f
′(s1)

...
f ′(sk)

. Therefore, Gi is diagonal and constant across subjects (because

f ′(Λ(s + 1
m

∑
j n

j))(ni)> = f ′(Λ(s + 1
m

∑
j n

j))(ni
′
)>). Let us therefore consider only its

coefficient (a, a), and let λ = Λaa:

Giaa = G(λ) = φ(λ)λ+
σ′2(1− 1/m)

σ2
λ2 − 1,

where φ(λ) = 1
mf
′(λ(sa + 1

m

∑
j n

j
a))(sa + nia). One the one hand, we have G(0) = −1. On the

other hand, if we assume for instance that f ′ has sub linear growth (i.e. |f ′(x)| ≤ c|x|α + d for some
α < 1) or that φ is positive, we find that G(+∞) = +∞. Therefore, G cancels, which concludes the
proof.

C.3 Stability conditions

We consider W i = Λ(Ai)−1 where Λ is such that the gradients Gi all cancel. We consider a
small relative perturbation of W i of the form W i ← (Ik + Ei)W i, and consider the effect on the
gradient. We define ∆i = Gi

(
(Ik + E1)W 1, . . . , (Ik + Em)Wm

)
. Denoting C = 1−1/m

σ2 and
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ñ = 1
m

∑m
i=1 n

i, we find:

∆i =
1

m
f ′

Λ(s + ñ) +
1

m

m∑
j=1

EjΛ(s + nj)

 (s + ni)>Λ(Ik + Ei)>

︸ ︷︷ ︸
∆i

1

+ (17)

C

Λni − 1

m− 1

∑
j 6=i

Λnj + EiΛ(s + ni)− 1

m− 1

∑
j 6=i

EjΛ(s + nj)

 (s + ni)>Λ(Ik + Ei)>

︸ ︷︷ ︸
∆i

2

(18)
− Ik (19)

(20)

The first term is expanded at the first order, denoting S =
∑m
j=1E

j :

∆i
1 =

1

m

f ′(Λ(s + ñ)) + f ′′(Λ(s + ñ))�

 1

m

m∑
j=1

EjΛ(s + nj)

 (s + ni)>Λ(Ik + Ei)>

(21)

=
1

m
f ′(Λ(s + ñ))(s + ni)>Λ(Ik + Ei)> +

1

m2
S �

(
f ′′(Λ(s + ñ))(s2)>Λ2

)
(22)

+
1

m2
Ei �

(
f ′′(Λ(s + ñ))((ni)2)>Λ2

)
(23)

The symbol � denotes the element-wise multiplication, f ′(s) =

f
′(s1)

...
f ′(sk)

 and f ′′(s) =

f
′′(s1)

...
f ′′(sk)

.

Similarly, the second term gives at the first order:

∆i
2 = σ′2Λ2(Ik + Ei)> + (1 + σ′2)EiΛ2 − 1

m− 1
(S − Ei)Λ2 (24)

Combining this, we find:

∆i = (Ei)> + Ei � ΓE + S � ΓS (25)

where

ΓE =

(
1

m2
f ′′(Λ(s + ñ))((ni)2)> + (1− 1

m
)
σ′2

σ2
+

1

σ2

)
Λ2

ΓS =

(
1

m2
f ′′(Λ(s + ñ))(s2)> − 1

mσ2

)
Λ2

are k×k matrices, independent of the subject. This linear operator is the Hessian block corresponding
to the i-th subject: DenotingH the Hessian, it is the mappingH(E1, . . . , Em) = (∆1, . . . ,∆m).

The coefficient ∆i
ab only depends on (Eiab, E

i
ba, E

1
ab, . . . , E

m
ab). Therefore, the Hessian is block

diagonal with respect to the blocks of coordinates (E1
ab, E

1
ba, . . . , E

m
ab, E

m
ba). Denote ε = ΓEab,

ε′ = ΓEba, β = ΓSab and β′ = ΓSba. The linear operator for the block is:
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K(ε, ε′, β, β′) =



ε+ β 1 β 0 . . . β 0
1 ε′ + β′ 0 β′ . . . 0 β′

β 0 ε+ β 1 β 0

0 β′ 1 ε′ + β′
. . . 0 β′

...
...

. . . . . .
...

...
β 0 β 0 . . . ε+ β 1
0 β′ 0 β′ . . . 1 ε′ + β′


The positivity ofH is equivalent to the positivity of this operator for all pairs a, b. We now assume
ββ′ > 0.

First, we should note that K(ε, ε′, β, β′) is congruent to K(ε
√

β′

β , ε
′
√

β
β′ ,
√
ββ′,
√
ββ′) via the

basis diag((β
′

β )1/4, ( ββ′ )
1/4, · · · , (β′

β )1/4, ( ββ′ )
1/4). We denote to simplify notation α = ε

√
β′

β ,

α′ = ε′
√

β
β′ and γ =

√
ββ′. We only have to study the positivity of K(α, α′, γ, γ). We have:

K(α, α′, γ, γ) = Im ⊗Mα + γ1⊗ I2, Mα =

(
α 1
1 α′

)
Since Im ⊗ Mα and γ1 ⊗ I2 commute, the minimum value of Sp(K) is min(Im ⊗ Mα) +

min(γSp(1)) = 1
2 (α + α′ −

√
(α− α′)2 + 4) + mmin(0, γ). Since we assumed ββ′ > 0 we

have γ > 0. This is similar to the usual ICA case, we find that the condition is αα′ > 1.

If the following conditions hold for all pair of sources a, b, the sources are a local minimum of the
cost function:

• ΓSabΓ
S
ba ≥ 0

• ΓEabΓ
E
ba > 1

D Identifiability for Shared Response Model

The shared response model [20] (SRM) models the data xi ∈ Rv of subject i for i = 1, . . . ,m as

xi = Ais + ni with s ∼ N (0,Σ), ni ∼ N (0, ρ2
i Iv), A

i>Ai = Ik

where Ai ∈ Rv,k, s ∈ Rk and Σ ∈ Rk,k is a symmetric positive definite matrix.

Proposition 3. SRM is not identifiable

Proof. Let us assume the data xi i = 1, . . . ,m follow the SRM model with parameters Σ, Ai, ρ2
i i =

1, . . . ,m.

Let us consider an orthogonal matrix O ∈ Ok. We call A′i = AiO and Σ′ = O>ΣO. Σ′ is trivially
symmetric positive definite.

Then the data also follows the SRM model with different parameters Σ′, A′i, ρ2
i i = 1, . . . ,m.

Proposition 4. We consider the decorrelated SRM model with an additional decorrelation assumption
on the shared responses.

xi = Ais + ni with s ∼ N (0,Σ), ni ∼ N (0, ρ2
i Iv), A

i>Ai = Ik

where Σ is a positive diagonal matrix. We further assume that the values in Σ are all distinct and
ranked in ascending order. The decorrelated SRM is identifiable up to sign indeterminacies on the

columns of

A
1

...
Am

.
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Proof. The decorrelated SRM model can be written

xi ∼ N (0, AiΣAi
>

+ ρ2
i Iv) with Ai

>
Ai = Ik

where Σ is a positive diagonal matrix with distincts values ranked in ascending order.

Let us assume the data xi i = 1, . . . ,m follow the decorrelated SRM model with parameters
Σ, Ai, ρi

2 i = 1, . . . ,m. Let us further assume that the data xi i = 1, . . . ,m follow the decorrelated
SRM model with an other set of parameters Σ′, A′i, ρ′i

2
i = 1, . . . ,m.

Since the model is Gaussian, we look at the covariances. We have for i 6= j

E[xi
(
xj
)>

] = AiΣAj
>

= A′iΣ′A′j
>
,

The singular value decomposition is unique up to sign flips and permutation. Since eigenvalues are
positive and ranked the only indeterminacies left are on the eigenvectors. For each eigenvalue a sign
flip can occur simultaneously on the corresponding left and right eigenvector.

Therefore we have Σ′ = Σ, Ai = A′iDij and Aj = A′jDij where Dij ∈ Rk,k is a diagonal matrix
with values in {−1, 1}. This analysis holds for every j 6= i and therefore Dij = D is the same for all
subjects.

We also have for all i

E[xi
(
xi
)>

] = AiΣAi
>

+ ρ2
i Iv = A′iΣ′A′i

>
+ ρ′

2
i Iv

We therefore conclude ρ′2i = ρ2
i , i = 1 . . .m.

Note that if the diagonal subject specific noise covariance ρ2
i Iv is replaced by any positive definite

matrix, the model still enjoys identifiability.

E fMRI experiments

E.1 Dataset description and preprocessing

The full brain mask used to select brain regions is available in the Python package associated with
the paper.

Sherlock In sherlock dataset, 17 participants are watching "Sherlock" BBC TV show (beginning
of episode 1). These data are downloaded from http://arks.princeton.edu/ark:/88435/
dsp01nz8062179. Data were acquired using a 3T scanner with an isotropic spatial resolution
of 3 mm. More information including the preprocessing pipeline is available in [19]. Subject
5 is removed because of missing data leaving us with 16 participants. Although sherlock data
are downloaded as a temporal concatenation of two runs, we split it manually into 4 runs of 395
timeframes and one run of 396 timeframes so that we can perform 5 fold cross-validation in our
experiments.

FORREST In FORREST dataset 20 participants are listening to an audio version of the Forrest
Gump movie. FORREST data are downloaded from OpenfMRI [60]. Data were acquired using a
7T scanner with an isotropic spatial resolution of 1 mm (see more details in [35]) and resampled to
an isotropic spatial resolution of 3 mm. More information about the forrest project can be found
at http://studyforrest.org. Subject 10 is discarded because not all runs available for other
subjects were available for subject 10 at the time of writing. Run 8 is discarded because it is not
present in most subjects.

RAIDERS In RAIDERS dataset, 11 participants are watching the movie "Raiders of the lost ark".
The RAIDERS dataset belongs to the Individual Brain Charting dataset [59]. Data were acquired
using a 3T scanner and resampled to an isotropic spatial resolution of 3 mm. The RAIDERS dataset
reproduces the protocol described in [36]. Preprocessing details are described in [59].
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Figure 4: Reconstructing the BOLD signal of missing subjects: Reconstruction R2 score per
voxel We plot for GroupICA, SRM and MultiViewICA, the R2 score per voxel using 50 compo-
nents for datasets sherlock, forrest, raiders and clips. We visually see that data reconstructed by
MultiViewICA are more faithful reproduction of the original data than other methods.

CLIPS In CLIPS dataset, 12 participants are exposed to short video clips. The CLIPS dataset also
belongs to the Individual Brain Charting dataset ([59]). Data were acquired using a 3T scanner and
resampled to an isotropic spatial resolution of 3 mm. It reproduces the protocol of original studies
described in [52] and [39]. Preprocessing details are described in [59].

At the time of writing, the CLIPS and RAIDERS dataset from the individual brain chart-
ing dataset https://project.inria.fr/IBC/ are available at https://openneuro.org/
datasets/ds002685. Protocols on the visual stimuli presented are available in a dedicated reposi-
tory on Github: https://github.com/hbp-brain-charting/public_protocols.

E.2 Reconstructing the BOLD signal of missing subjects: Discussion on ROIs choice

The quality of the reconstructed BOLD signal varies depending on the choice of the region of interest.
In Figure 4, we plot for GroupICA, SRM and MultiViewICA, the R2 score per voxel using 50
components for datasets sherlock, forrest, raiders and clips. As could be anticipated from the task
definition, forrest obtains high reconstruction accuracy in the auditory cortices, while clips shows
good reconstruction in the visual cortex (occipital lobe mostly); the richer sherlock and raiders
datasets yield good reconstructions in both domains, but also in other systems (language, motor).
We also see visually see that data reconstructed by MultiViewICA are a better approximation of the
original data than other methods. This is particularly obvious for the clips datasets where it is clear
that voxels in the posterior part of the superior temporal sulcus are better recovered by MultiViewICA
than by SRM or GroupICA.

In order to determine the ROIs, we focus on the R2 score per voxel between the BOLD signal
reconstructed by GroupICA and the actual bold signal. We run GroupICA with 10, 20 and 50
components and select the voxels that obtained a positive R2 score for all sets of components. We
discard voxels with an R2 score above 80% as they visually correspond to artefacts and apply a binary
opening using a unit cube as the structuring element. The chosen regions are plotted in figure 5.

E.3 Between-runs time-segment matching

We measure the ability of each algorithm to extract meaningful shared sources that correlate more
when they correspond to the same stimulus than when they correspond to distinct stimuli. We use
the raiders-full dataset, which allows this kind of analysis because subjects watch some selected
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Figure 5: Data-driven choice of ROI Chosen ROIs for the experiment: Reconstructing the BOLD
signal of missing subjects.
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Figure 6: Between runs time-segment matching. Interesting sources correlates more when they
correspond to the same stimulus (same scenes of the movie) than when they correspond to distinct
stimuli (different scenes). We extract 20 sources and report the mean accuracy of the 3 best performing
sources

scenes from the movie twice, during the first two runs (1 and 2) and the last two (11 and 12). First,
the forward operators are learned by fitting each algorithm with 20 components on the data of all
11 subjects using all 12 runs. We then select a subset of 8 subjects and the shared sources are
computed by applying the forward operators and averaging. We select a large target time-segment
(50 timeframes) taken at random from run 1 and 2, and we try to localize the corresponding sample
time-segment from the 10 last runs using a single component of the shared sources. The time-segment
is said to be correctly classified if the correlation between the target and corresponding sample time-
segment is higher than with any other time-segment (partially overlapping windows are excluded). In
contrast to the between subject time-segment matching experiment, we obtain one accuracy score per
component. We repeat the experiment 10 times with different subsets of subjects randomly chosen
and report the mean accuracy of the 3 best performing components in Figure 6. Error bars correspond
to a 95 % confidence interval. MultiView ICA achieves the highest accuracy.

We then focus on the 3 best performing components of MultiView ICA. For each component, we
plot in Figure 7 (left) the shared sources during two sets of runs where subjects were exposed to the
same scenes of the movie. We then study the localisation of these sources. We average the forward
operators across subjects and plot the columns corresponding to the components of interest in Figure 7
(right). As each column is seen as a set of weights over all voxels, it represents a spatial map.

The component 1 of the shared responses follows almost the same pattern in the two set of runs
corresponding to the same scenes of the movie. The spatial map corresponding to component 1
highlights the language network. In component 2, the temporal patterns during the viewing of
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Figure 7: Between-runs time segment matching: spatial maps and timecourses Left: Time-
courses of the 3 shared sources yielding the highest accuracy. The two displayed set of runs
correspond to the same scenes in the movie. Right: Localisation of the same shared sources in the
brain

identical scenes are also very similar. The corresponding spatial map highlights the visual network
especially the visual dorsal pathway. In component 3, there exists a similarity however less striking
than with the two previous components. The corresponding spatial map highlights a contrast between
the spatial attention network and the auditory network.

E.4 Reproducing time-segment matching experiment

We reproduce the time-segment matching experiments described in [21] and [73] and use two fold
classification over runs instead of 5-fold as we have done in the main paper. We used the sherlock data
available at http://arks.princeton.edu/ark:/88435/dsp01nz8062179 and the full brain
mask provided in the Python package associated with the paper. We applied high-pass filtering (140 s
cutoff) and the time series of each voxel were normalized to zero mean and unit variance.

The results are available in Figure 8.

22

http://arks.princeton.edu/ark:/88435/dsp01nz8062179


10010 20 505

Number of components

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

sherlock

MultiViewICA

GroupICA

PCA+GroupICA

CanICA

PermICA

SRM

GroupPCA

Chance

Figure 8: Reproducing the time-segment matching experiment of [21, 73] Mean classification
accuracy - error bars represent 95% confidence interval

E.5 Impact of the hyperparameter σ

On top of the theoretical guarantees about the robustness of our method to the choice of the σ
parameter, we investigate its practical impact on the time-matching segment experiment, on the
Sherlock dataset with 10 components. We compute the accuracy of the multi-view ICA pipeline with
different choice of σ. This is reported in Fig. 9. The accuracy is constant for a wide range of σ, only
decreasing when σ attains very high values.
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Figure 9: Effect of the parameter σ: We compute the accuracy of the multiview-ICA pipeline on
the time-segment matching experiment for various values of the σ hyperparameter over a grid. The
accuracy varies only marginally with σ.

F Related Work

The following table describes some usual method for extracting shared sources from multiple subjects
datasets. The column "Modality/Source" describes the type of data for which each algorithm was
initially proposed, even though each algorithm could be applied on any type of data. The source type
can be either temporal if extracted sources are time courses or spatial if they are spatial patterns.
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Method Modality/Source Dimension reduc-
tion

Description

SRM [20] fMRI/Temporal SRM The model is xi = Ais + ni,
with Gaussian sources and or-
thogonal mixing matrices Ai

GroupPCA [62] fMRI/Spatial GroupPCA A memory efficient implemen-
tation of PCA applied on tem-
porally concatenated data.

GIFT [13] fMRI/Spatial Individual PCA +
Group PCA (on
component-wise
concatenated data)

Single-subject ICA is applied
on the aggregated data

EEGIFT [27] EEG/Temporal Individual PCA +
Group PCA (on
component-wise
concatenated data)

Single-subject ICA is applied
on the aggregated data

PermICA Any Any Single-subject ICA is applied
on each subject’s data, and the
components are matched us-
ing the Hungarian algorithm

Clustering ap-
proach [28]

fMRI/Spatial Individual PCA Single-subject ICA is applied
on each subject’s data, and the
components are matched us-
ing a hierarchical clustering al-
gorithm.

Measure
projection
analysis [11]

EEG/Temporal Individual PCA Single-subject ICA is applied
on each subject’s data, and the
components are matched us-
ing a hierarchical clustering al-
gorithm.

TensorICA [7] fMRI/Spatial Group PCA (on spa-
tially concatenated
data)

TensorICA incorporates
ICA assumptions into the
PARAFAC model. The
mixing matrices A1 · · ·An
are such that Ai = ADi

where A is common to all
subjects and Di are subject
specific diagonal matrices.

Unifying Ap-
proach of [34]

fMRI/Spatial Group PCA (on spa-
tially concatenated
data) + GroupPCA
(on component-wise
concatenated data).

The model is xi = Ais +
ni with a Gaussian mixture
model on independent sources
and a matrix normal prior on
the noise.

SR-ICA [73] fMRI/Temporal SR-ICA SR-ICA incorporates ICA as-
sumptions into the shared re-
sponse model.

CAE-SRM
[21]

fMRI/Temporal CAE-SRM A convolutional auto-encoder
is used to perform the unmix-
ing.

CanICA [70] fMRI/Spatial Individual PCA +
multi set CCA (on
component-wise
concatenated data)

CanICA applies single-subject
ICA on data reduced with
PCA and CCA.

Spatial Concat-
ICA [65]

fMRI/Spatial Group PCA (on spa-
tially concatenated
data)

ICA is applied on spatially
concatenated data. The mix-
ing is constrained to be the
same across all subjects.
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Temporal Con-
catICA [23]

EEG/Temporal Group PCA (on
temporally concate-
nated data)

ICA is applied on temporaly
concatenated data. The mix-
ing is constrained to be the
same across all subjects.

coroICA [57] Any Any The model is xi = Asi + ni.
The mixing is constrained to
be the same across all subjects.

An additional related model is described in [31]. Similarly to our work, the ICA model has noise
on the source side. However, the model involves nonlinear mixings, which are computationally
unfeasible to optimize via maximum likelihood; a contrastive learning scheme is therefore adopted,
and the likelihood is not derived in closed form. No evaluation on neuroimaging datasets is presented.

G Detailed Cam-CAN sources

We display each of the 11 shared sources found by Multiview ICA on the Cam-CAN. The time-courses
are on the left, the corresponding brain maps are on the right.
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H Average forward operators on fMRI datasets

We display the average forward operator across subjects on the Raiders, Forrest, Clips and Sherlock
datasets obtained with MultiViewICA and GroupICA with 5 components. A 5 mm spatial smoothing
was applied on all datasets, and the confound signals corresponding to the 5 components with the
highest variance were removed before applying MultiViewICA or GroupICA.
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I Synthetic benchmark using the model xi = Ais+ ni

We generate data according to the model xi = Ais + ni, where xi ∈ R50, s ∈ R20, and ni ∼
N (0, σ2I50). After applying individual PCA to obtain signals of dimension 20, we apply the different
ICA algorithms and report the reconstruction error in fig. 10.
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Figure 10: Synthetic experiment with model xi = Aisi + ni

J Summary of our quantitative results

Our quantitative results for the fMRI experiments of time-segment matching and BOLD signal
reconstruction and on for the MEG phantom data experiment are summarized, respectively, in
Table 2, Table 3 and Table 4. All methods are compared upon extraction of sources with the same
dimensionality (20 components).
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Dataset Method Accuracy Confidence interval
clips Chance 0.002 [0.001, 0.003]

CanICA 0.130 [0.112, 0.147]
PCA + GroupICA 0.124 [0.109, 0.139]

GroupICA 0.152 [0.133, 0.171]
PermICA 0.147 [0.126, 0.169]

SRM 0.115 [0.104, 0.126]
MultiViewICA 0.167 [0.142, 0.192]

forrest Chance 0.002 [0.001, 0.002]
CanICA 0.192 [0.170, 0.214]

PCA + GroupICA 0.088 [0.077, 0.098]
GroupICA 0.154 [0.137, 0.170]
PermICA 0.135 [0.118, 0.152]

SRM 0.188 [0.173, 0.203]
MultiViewICA 0.448 [0.411, 0.484]

raiders Chance 0.002 [0.001, 0.003]
CanICA 0.256 [0.220, 0.291]

PCA + GroupICA 0.331 [0.289, 0.372]
GroupICA 0.321 [0.281, 0.361]
PermICA 0.381 [0.341, 0.421]

SRM 0.265 [0.240, 0.289]
MultiViewICA 0.408 [0.358, 0.458]

sherlock Chance 0.005 [0.003, 0.006]
CanICA 0.607 [0.567, 0.648]

PCA + GroupICA 0.454 [0.416, 0.492]
GroupICA 0.519 [0.481, 0.556]
PermICA 0.399 [0.365, 0.434]

SRM 0.493 [0.465, 0.520]
MultiViewICA 0.873 [0.844, 0.903]

Table 2: Timesegment matching: Summary of our quantitative results. We report the mean accuracy
across cross-validation splits.
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Dataset Method R2 score Confidence interval
clips Chance 0.000 [0.000 ,0.000]

CanICA 0.110 [ 0.097 , 0.123]
PCA + GroupICA 0.075 [ 0.058 , 0.092]

GroupICA 0.077 [ 0.059 , 0.094]
PermICA 0.099 [ 0.087 , 0.111]

SRM 0.081 [ 0.069 , 0.094]
MultiViewICA 0.114 [ 0.099 , 0.128]

forrest Chance 0.000 [0.000 ,0.000]
CanICA 0.181 [ 0.169 , 0.193]

PCA + GroupICA 0.072 [ 0.054 , 0.090]
GroupICA 0.081 [ 0.062 , 0.099]
PermICA 0.098 [ 0.090 , 0.106]

SRM 0.180 [ 0.168 , 0.193]
MultiViewICA 0.191 [ 0.177 , 0.204]

raiders Chance 0.000 [0.000 ,0.000]
CanICA 0.136 [ 0.122 , 0.149]

PCA + GroupICA 0.063 [ 0.045 , 0.080]
GroupICA 0.062 [ 0.043 , 0.081]
PermICA 0.107 [ 0.091 , 0.124]

SRM 0.138 [ 0.121 , 0.154]
MultiViewICA 0.144 [ 0.124 , 0.164]

sherlock Chance 0.000 [0.000 ,0.000]
CanICA 0.156 [ 0.141 , 0.172]

PCA + GroupICA 0.087 [ 0.065 , 0.108]
GroupICA 0.091 [ 0.070 , 0.112]
PermICA 0.067 [ 0.055 , 0.078]

SRM 0.164 [ 0.147 , 0.181]
MultiViewICA 0.161 [ 0.142 , 0.180]

Table 3: Reconstructing the BOLD signal of missing subjects: Summary of our quantitative results.
We report the mean R2 score across cross-validation splits.

Method Reconstruction error 1st and 3d quartiles
MultiViewICA 0.0045 [0.0039, 0.0052]

GroupICA 0.1098 [0.0549, 0.1734]
PCA+GroupICA 0.1111 [0.0760, 0.1502]

PermICA 0.0730 [0.0423, 0.1037]
Table 4: Phantom MEG data: Summary of our quantitative results with 2 epochs. We report the
median reconstruction error across cross-validation splits.
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