
A Proofs

In this section we provide proofs for the conclusions in the main text.

A.1 Proof of Lemma 1

If Lθ(x) is T -times-differentiable at x, then according to the general form of multivariate Taylor’s
theorem [7], there is

Lθ(x+ γv) =

T∑
t=0

γtGtθ(x, v, ε) + o(εT ), where Gtθ(x, v, ε) =

(
εt

t!

∂t

∂vt
Lθ(x)

)
. (1)

In order to extract the T -th component Gtθ(x, v, ε), we arbitrarily select a set of T + 1 different real
values as {γi}i∈[T+1], and denote the induced Vandermonde matrix V as

V =

1 γ1 γ21 · · · γT1
...

...
...

. . .
...

1 γ(T+1) γ2(T+1) · · · γT(T+1)


(T+1)×(T+1)

, and β =

 β1
...

β(T+1)


(T+1)×1

, (2)

where β is the vector of coefficients. The determinant of the Vandermonde matrix V is det(V ) =∏
i<j(γj − γi) 6= 0 since the values γi are distinct. We consider the linear combination

T+1∑
i=1

βiLθ(x+ γiv) =

T∑
t=0

φtG
t
θ(x, v, ε) + o(εT ), where V >β = φ ∈ RT+1 . (3)

To eliminate the term Gtθ(x, v, ε) for any t < T and keep the T -th order term GTθ (x, v, ε), we just
need to set the coefficient vector β be solution of V >β = e(T+1), where e(T+1) is the one-hot
vector of the (T+1)-th element. Then we have

T+1∑
i=1

βiLθ(x+γiv) = GTθ (x, v, ε) +o(εT )⇒ εT
∂T

∂vT
Lθ(x) = T !

T+1∑
i=1

βiLθ(x+γiv) +o(εT ). (4)

A.2 Proof of Theorem 1

Let K ∈ N+, and {αk}k∈[K] be any set of K different positive numbers, β = (β1, · · · , βK) ∈ RK
be a coefficient vector. Assuming that Lθ(x) is (T+1)-times-differentiable at x. When T = 2K is
an even number, we select the coefficient set to be {±α1, · · · ,±αK}. Then we can construct the
linear combination

λLθ(x) +
1

2

K∑
k=1

βkα
−2
k [Lθ(x+ αkv) + Lθ(x− αkv)]

=λLθ(x) +
1

2

K∑
k=1

βkα
−2
k

T+1∑
t=0

(
1 + (−1)t

)
αtkG

t
θ(x, v, ε) + o(εT+1)

=λLθ(x) +

K∑
k=1

βkα
−2
k

K∑
t=0

α2t
k G

2t
θ (x, v, ε) + o(εT+1),

(5)

where the second equation holds because (1 + (−1)t) = 0 for any odd value of t. Note that there is
G0
θ(x, v, ε) = Lθ(x), thus in order to eliminate the zero-order term, we let

λ = −
K∑
k=1

βkα
−2
k , (6)
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and then we can rewrite Eq. (5) as

1

2

K∑
k=1

βkα
−2
k [Lθ(x+ αkv) + Lθ(x− αkv)− 2Lθ(x)]

=

K∑
k=1

βkα
−2
k

K∑
t=1

α2t
k G

2t
θ (x, v, ε) + o(εT+1),

=

K∑
k=1

βk

K−1∑
t=0

α2t
k G

2t+2
θ (x, v, ε) + o(εT+1),

(7)

Now in Eq. (7) we only need to eliminate the term G2t+2
θ (x, v, ε) for t < K − 1 and keep the

term G2K
θ (x, v, ε), i.e., the T -th order term. we define the Vandermonde matrix V generated by

{α2
1, · · · , α2

K} as

V =

1 α2
1 (α2

1)2 · · · (α2
1)K−1

...
...

...
. . .

...
1 α2

K (α2
K)2 · · · (α2

K)K−1


K×K

. (8)

It is easy to know that V is non-singular as long as αk are positive and different. Then if β is the
solution of V >β = eK is the one-hot vector of the K-th element. Then we have

1

2

K∑
k=1

βkα
−2
k [Lθ(x+ αkv) + Lθ(x− αkv)− 2Lθ(x)] = GTθ (x, v, ε) + o(εT+1). (9)

Similarly when T = 2K − 1 is an odd number, we can construct the linear combination

1

2

K∑
k=1

βkα
−1
k [Lθ(x+ αkv)− Lθ(x− αkv)]

=
1

2

K∑
k=1

βkα
−1
k

T+1∑
t=0

(
1− (−1)t

)
αtkG

t
θ(x, v, ε) + o(εT+1)

=

K∑
k=1

βk

K−1∑
t=0

α2t
k G

2t+1
θ (x, v, ε) + o(εT+1),

(10)

where the second equation holds because (1− (−1)t) = 0 for any even value of t. Now we only
need to eliminate the term G2t+1

θ (x, v, ε) for t < K − 1 and keep the term G2K−1
θ (x, v, ε), i.e., the

T -th order term. Then if we still let β be the solution of V >evenβ = eK , we will have

1

2

K∑
k=1

βkα
−1
k [Lθ(x+ αkv)− Lθ(x− αkv)] = GTθ (x, v, ε) + o(εT+1). (11)

A.3 Proof of Lemma 2

We first investigate the gradient∇θJFD-SSM(x, v; θ), whose elements consist of ∂
∂ωJFD-SSM(x, v; θ)

for ω ∈ θ. Let Bε0 be the closure of Bε0 , then ∀(x, θ) ∈ B, t ∈ [−1, 1], there is (x+ t · v, θ) ∈ Bε0
holds for any v ∈ Rd, ‖v‖2 = ε < ε0. It is easy to verify that Bε0 is a compact set. Since log pθ(x)
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is four times continuously differentiable in Bε0 , we can obtain

∂

∂ω
log pθ(x+ v)

=
∂

∂ω
log pθ(x) + v>∇x

∂

∂ω
log pθ(x) +

1

2
v>∇2

x

∂

∂ω
log pθ(x)v +

∑
|α|=3

Rωα(x+ v) · vα

=
∂

∂ω

[
log pθ(x) + v>∇x log pθ(x) +

1

2
v>∇2

x log pθ(x)v

]
+
∑
|α|=3

Rωα(x+ v) · vα,

(12)

where |α| = α1 + · · ·+ αd, α! = α1! · · ·αd!, vα = vα1
1 · · · v

αd
d , and

Rωα(x+ v) =
|α|
α!

∫ 1

0

(1− t)|α|−1Dα ∂

∂ω
log pθ(x+ t · v)dt,

Dα =
∂|α|

∂xα1
1 · · · ∂x

αd
d

.
(13)

Due to the continuity of the fourth-order derivatives of log pθ(x) on the compact set Bε0 , we can
obtain the uniform upper bound for ∀(x, θ) ∈ B, v ∈ Rd, ‖v‖2 = ε < ε0 that

|Rωα(x+ v)| ≤ U+
ω (α) ≤ max

α
U+
ω (α) = U+

ω . (14)

So the remainder term in Eq. (12) has a upper bound as∣∣∣∣∣∣
∑
|α|=3

Rωα(x+ v) · vα
∣∣∣∣∣∣ < d3ε3U+

ω , (15)

where similar results also hold for x − v and we represent the corresponding upper bound as U−ω .
Then we further have

∂

∂ω
[log pθ(x+ v) + log pθ(x− v)− 2 log pθ(x)]

=
∂

∂ω
v>∇2

x log pθ(x)v +
∑
|α|=3

(Rωα(x+ v) +Rωα(x− v)) · vα;

∂

∂ω
[log pθ(x+ v)− log pθ(x− v)]

=2
∂

∂ω
v>∇x log pθ(x) +

∑
|α|=3

(Rωα(x+ v)−Rωα(x− v)) · vα.

(16)

Similar for the expansion of log pθ(x+ v), the remainder is

Rα(x+ v) =
|α|
α!

∫ 1

0

(1− t)|α|−1Dα log pθ(x+ t · v)dt (17)

and we can obtain the uniform upper bound on the compact set Bε0 as

|Rα(x+ v)| ≤ U+(α) ≤ max
α

U+(α) = U+. (18)

We denote the bound for Rα(x− v) as U− and further have

log pθ(x+ v)− log pθ(x− v)

=2v>∇x log pθ(x) +
∑
|α|=3

(Rα(x+ v)−Rα(x− v)) · vα. (19)

We denote ∆Rα = Rα(x + v) − Rα(x − v) and ∆Rω,+α = Rωα(x + v) + Rωα(x − v) and
∆Rω,−α = Rωα(x+ v)−Rωα(x− v) for notation compactness. Thus for ∀(x, θ) ∈ B and ‖v‖2 = ε,
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we obtain the partial derivative of JFD-SSM(x, v; θ) as

∂

∂ω
JFD-SSM(x, v; θ)

=
1

ε2

v>∇x log pθ(x) +
1

2

∑
|α|=3

∆Rα · vα
 ·

 ∂

∂ω
v>∇x log pθ(x) +

1

2

∑
|α|=3

∆Rω,−α · vα


+
1

ε2

 ∂

∂ω
v>∇2

x log pθ(x)v +
∑
|α|=3

∆Rω,+α · vα


=
1

ε2

(
v>∇x log pθ(x) · ∂

∂ω
v>∇x log pθ(x) +

∂

∂ω
v>∇2

x log pθ(x)v

)

+
1

ε2

v>∇x log pθ(x) · 1

2

∑
|α|=3

∆Rω,−α · vα +
∂

∂ω
v>∇x log pθ(x) · 1

2

∑
|α|=3

∆Rα · vα


+
1

ε2

1

2

∑
|α|=3

∆Rα · vα
 ·

1

2

∑
|α|=3

∆Rω,−α · vα
+

∑
|α|=3

∆Rω,+α · vα
 .

Note that the first term in the above equals to ∂
∂ωJSSM(x, v; θ). Due to the continuity of the norm

functions ‖∇x log pθ(x)‖2 and ‖∇x ∂
∂ω log pθ(x)‖2 on the compact set Bε0 , we denote their upper

bound as G and Gω , respectively. Then we have |v>∇x log pθ(x)| ≤ εG and ∂
∂ω v

>∇x log pθ(x) =

v>∇x ∂
∂ω log pθ(x) ≤ εGω . Now we can derive the bound between the partial derivatives of FD-SSM

and SSM as∣∣∣∣ ∂∂ωJFD-SSM(x, v; θ)− ∂

∂ω
JSSM(x, v; θ)

∣∣∣∣
<

1

2ε2

(
εGd3ε3∆Uω + εGωd

3ε3∆U +
1

2
∆Uω∆Ud6ε6 + 2∆Uωd

3ε3
)

<ε · 1

2

(
Gd2∆Uω +Gωd

2∆U +
1

2
∆Uω∆Ud3 + 2∆Uωd

3

)
, holds when ε <

1

d
,

(20)

where we denote ∆U = U+ + U− and ∆Uω = U+
ω + U−ω . By setting ε0 < 1

d , we can omit the
condition ε < 1

d since ε < ε0 = min(ε0,
1
d ). Note that the condition ε < 1

d can be generalize to, e.g.,
ε < 1 without changing our conclusions. Then it is easy to show that

‖∇θJFD-SSM(x, v; θ)−∇θJSSM(x, v; θ)‖2

≤dim(S) ·max
ω∈θ

∣∣∣∣ ∂∂ωJFD-SSM(x, v; θ)− ∂

∂ω
JSSM(x, v; θ)

∣∣∣∣
<ε · dim(S) ·max

ω∈θ
Mω ,

where Mω =
1

2

(
Gd2∆Uω +Gωd

2∆U +
1

2
∆Uω∆Ud3 + 2∆Uωd

3

)
.

(21)

Just to emphasize here, the bound above uniformly holds for ∀(x, θ) ∈ B and v ∈ Rd, ‖v‖2 = ε < ε0.
We have the simple fact that give two vectors a and b, if there is ‖a− b‖2 < ‖b‖2, then their angle is
∠(a, b) ≤ arcsin(‖a− b‖2/‖b‖2). So finally we can derive the angle

∠ (∇θJFD-SSM(x, v; θ),∇θJSSM(x, v; θ))

≤ arcsin

(
‖∇θJFD-SSM(x, v; θ)−∇θJSSM(x, v; θ)‖2

‖∇θJSSM(x, v; θ)‖2

)
≤ arcsin

(
ε · dim(S) ·maxω∈θMω

min(x,θ)∈B,‖v‖2<ε0 ‖∇θJSSM(x, v; θ)‖2

)
<η,

(22)
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where min(x,θ)∈B,‖v‖2<ε0 ‖∇θJSSM(x, v; θ)‖2 must exist and larger than 0 due to the continuity of
∇θJSSM(x, v; θ) and the condition that ‖∇θJSSM(x, v; θ)‖2 > 0 on the compact set. So we only
need to choose ξ as

ξ =
sin η ·min(x,θ)∈B,‖v‖2<ε0 ‖∇θJSSM(x, v; θ)‖2

dim(S) ·maxω∈θMω
. (23)

When we choose ‖v‖2 = ε < min(ε0, ξ), we can guarantee the angle between ∇θJFD-SSM(x, v; θ)
and ∇θJSSM(x, v; θ) to be uniformly less than η on B.

A.4 Proof of Theorem 2

We consider in the compact set Bε0 defined in Lemma 2. The assumptions for general stochastic
optimization include:

• (i) The condition of Corollary 4.12 in Bottou et al. [1]: JFD-SSM(θ) is twice-differentiable
with θ;

• (ii) The Assumption 4.1 in Bottou et al. [1]: the gradient∇θJFD-SSM(θ) is Lipschitz;
• (iii) The Assumption 4.3 in Bottou et al. [1]: the first and second moments of the stochastic

gradients are bounded by the expected gradients;
• (iv) The stochastic step size αk satisfies the diminishing condition in Bottou et al. [1]:∑∞

k=1 αk =∞,
∑∞
k=1 α

2
k <∞;

• (v) The condition of Lemma 2 holds in each step k of stochastic gradient update.

Note that the condition (v) only holds in the compact set Bε0 , but we can choose it to be large
enough to contain (x, θk), x ∼ p(x), as well as containing the neighborhood of stationary points of
∇θJSSM(θ). These can be achieved by setting ε→ 0. Thus we have

lim
k→∞,ε→0

E [‖∇θJSSM(θk)‖2] = 0. (24)

This means that stochastically optimizing the FD-SSM objective can make the parameters θ converge
to the stationary point of the SSM objective when ε→ 0.

B Extended conclusions

In this section we provide extended and supplementary conclusions for the main text.

B.1 Parallel computing on dependent operations

For the dependent operations like those in the gradient-based SM methods, it is possible to execute
them on different devices via asynchronous parallelism [9]. However, this asynchronous paralleliza-
tion needs to perform across different data batches, requires complex design on the synchronization
mechanism, and could introduce extra bias when updating the model parameters. These difficulties
usually outweigh the gain from paralleling the operations in the gradient-based SM methods. In
contrast, for our FD-based SM methods, the decomposed independent operations can be easily
executed in a synchronous manner, which is further compatible with data or model parallelism.

B.2 Scaling the projection vector in training objectives

Below we explain why the scale of the random projection v will not affect the training of SM
objectives. For the original SM objective, we have

JSM(θ) =Epdata(x)

[
tr(∇2

x log pθ(x)) +
1

2
‖∇x log pθ(x)‖22

]
=Epdata(x)

[
d∑
i=1

e>i ∇2
x log pθ(x)ei +

1

2

d∑
i=1

(
e>i ∇x log pθ(x)

)2]
.

(25)
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When we scale the basis vector ei with a small value ε′, i.e., ei → ε′ei, we have

Epdata(x)

[
d∑
i=1

(ε′ei)
>∇2

x log pθ(x)(ε′ei) +
1

2

d∑
i=1

(
(ε′ei)

>∇x log pθ(x)
)2]

=ε′
2Epdata(x)

[
d∑
i=1

e>i ∇2
x log pθ(x)ei +

1

2

d∑
i=1

(
e>i ∇x log pθ(x)

)2]
= ε′

2JSM(θ).

(26)

Thus we can simply divide the objective by ε′2 to recover the original SM objective JSM(θ). Similarly,
for the DSM objective we have

JDSM(θ) =
1

d
Epdata(x)Epσ(x̃|x)

[∥∥∥∥∇x̃ log pθ(x̃) +
x̃− x
σ2

∥∥∥∥2
2

]

=
1

d
Epdata(x)Epσ(x̃|x)

[
d∑
i=1

(
e>i ∇x̃ log pθ(x̃) +

e>i (x̃− x)

σ2

)2
]

.

(27)

When we scale the basis vector ei with a small value ε′, i.e., ei → ε′ei, we also have

1

d
Epdata(x)Epσ(x̃|x)

[
d∑
i=1

(
(ε′ei)

>∇x̃ log pθ(x̃) +
(ε′ei)

>(x̃− x)

σ2

)2
]

=
ε′
2

d
Epdata(x)Epσ(x̃|x)

[
d∑
i=1

(
e>i ∇x̃ log pθ(x̃) +

e>i (x̃− x)

σ2

)2
]

= ε′
2JDSM(θ).

(28)

Thus we can divide by ε′2 to recover the DSM objective JDSM(θ). Finally as to SSM, we have

JSSM(θ) =
1

Cv
Epdata(x)Epv(v)

[
v>∇2

x log pθ(x)v +
1

2

(
v>∇x log pθ(x)

)2]
. (29)

When we scale the random projection v with a small value ε′, i.e., v → ε′v, we should not that the
adaptive factor Cv will also be scaled to ε′2Cv , then we can derive

1

ε′2Cv
Epdata(x)Epv(v)

[
(ε′v)>∇2

x log pθ(x)(ε′v) +
1

2

(
(ε′v)>∇x log pθ(x)

)2]
= JSSM(θ). (30)

This indicates that the SSM objective is already invariant to the scaling of v. It is trivial to also divide
similar factors as Cv in SM and DSM to result in similarly invariant objectives.

B.3 Mild regularity conditions for the FD-based SM methods

The mild conditions for the original gradient-based SM methods [5, 16] include: (i) pdata(x) and pθ(x)

are both twice-differentiable on Rd; (ii) Epdata(x)[‖∇x log pθ(x)‖22] and Epdata(x)[‖∇x log pdata(x)‖22]
are finite for any θ; (iii) There is lim‖x‖→∞ pdata(x)∇x log pθ(x) = 0 holds for any θ. Here we
provide two additional regularity conditions which are sufficient to guarantee the o(ε) or O(ε2)
approximation error of FD-SSM and FD-DSM: (iv) pθ(x) is four-times continuously differentiable
on Rd; (v) There is Epdata(x)[|Dα log pθ(x)|] <∞ holds for any θ and |α| = 4, where D and α are
defined in Eq. (13). The proof is almost the same as it for Theorem 1 under Lagrange’s remainder.

Remark. Note that the condition (iv) holds when we apply, e.g., average pooling layers and Softplus
activation in the neural network models, while the condition (v) always holds as long as the support
set of pdata(x) is bounded, e.g., for RGB-based image tasks there is x ∈ [0, 255]d.

B.4 DSM under sliced Wasserstein distance

To construct the FD instantiation for DSM, we first cast the original objective of DSM into sliced
Wasserstein distance [13] with random projection v. Since there is Epε(v)

[
vv>

]
= ε2I

d , we can
rewrite the objective of DSM with Gaussian noise distribution as

JDSM(θ) =
1

ε2
Epdata(x)Epσ(x̃|x)Epε(v)

[(
v>∇x̃ log pθ(x̃) +

v>(x̃− x)

σ2

)2
]

. (31)
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In this case, there is v
>(x̃−x)
σ2 = O(ε) with high probability, thus we can approximate v>∇x̃ log pθ(x̃)

according to our FD decomposition.

B.5 Consistency between DSM and FD-DSM

Theorem* 1. Let S be the parameter space of θ, B be a bounded set in the space of Rd×S, and
Bε0 is the ε0-neighbourhood of B for certain ε0 > 0. Then under the condition that log pθ(x̃) is
three times continuously differentiable w.r.t. (x̃, θ) and ‖∇θJDSM(x, x̃, v; θ)‖2 > 0 in the closure of
Bε0 , we have ∀η > 0, ∃ξ > 0, such that

∠ (∇θJFD-DSM(x, x̃, v; θ),∇θJDSM(x, x̃, v; θ)) < η (32)

uniformly holds for ∀(x̃, θ) ∈ B, v ∈ Rd, ‖v‖2 = ε < min(ξ, ε0) and x in any bounded subset of Rd.
Here ∠(·, ·) denotes the angle between two vectors. The arguments x, x̃, v in the objectives indicate
the losses at that point.

Proof. Following the routines and notations in the proof of Lemma 2, we investigate the gradient
∇θJFD-DSM(x, x̃, v; θ), whose elements consist of ∂

∂ωJFD-DSM(x, x̃, v; θ) for ω ∈ θ. When log pθ(x̃)

is three-times-differentiable in Bε0 , we can obtain

∂

∂ω
log pθ(x̃+ v)

=
∂

∂ω
log pθ(x̃) + v>∇x̃

∂

∂ω
log pθ(x̃) +

1

2
v>∇2

x̃

∂

∂ω
log pθ(x̃)v +

∑
|α|=3

Rωα(x̃+ v) · vα

=
∂

∂ω

[
log pθ(x̃) + v>∇x̃ log pθ(x̃) +

1

2
v>∇2

x̃ log pθ(x̃)v

]
+
∑
|α|=3

Rωα(x̃+ v) · vα,

where Rωα(x̃+ v) =
|α|
α!

∫ 1

0

(1− t)|α|−1Dα ∂

∂ω
log pθ(x̃+ t · v)dt,

(33)

Then we can further obtain that

∂

∂ω
[log pθ(x̃+v)−log pθ(x̃−v)] = 2

∂

∂ω
v>∇x̃ log pθ(x̃)+

∑
|α|=3

(Rωα(x̃+v)−Rωα(x̃−v)) · vα.

Due to the continuity of Rωα(x̃+ v) and Rωα(x̃− v) on the compact set Bε0 , they have the uniform
absolute upper bounds U+

ω and U−ω , respectively. Similarly, we have

log pθ(x̃+v)−log pθ(x̃−v) = 2v>∇x̃ log pθ(x̃)+
∑
|α|=3

(Rα(x̃+v)−Rα(x̃−v)) · vα,

where the uniform absolute upper bounds forRα(x̃+v) andRα(x̃−v) are U+ and U−, respectively.
Besides, note that the terms x−x̃

σ in the DSM / FD-DSM objectives are independent of θ. We denote
∆Rα = Rα(x̃+v)−Rα(x̃−v) and ∆Rωα = Rωα(x̃+v)−Rωα(x̃−v) for notation compactness. Thus
for ∀(x̃, θ) ∈ B and ‖v‖2 = ε, x ∈ Rd, we can obtain the partial derivative of JFD-DSM(x, x̃, v; θ) as

∂

∂ω
JFD-DSM(x, x̃, v; θ)

=
1

2ε2

2v>∇x̃ log pθ(x̃) +
∑
|α|=3

∆Rα · vα +
2v>(x̃−x)

σ2

 ·
2

∂

∂ω
v>∇x̃ log pθ(x̃) +

∑
|α|=3

∆Rωα · vα


=
1

ε2
∂

∂ω

(
v>∇x̃ log pθ(x̃) +

v>(x̃−x)

σ2

)2

+
1

2ε2

∑
|α|=3

∆Rωα · vα
 ·

∑
|α|=3

∆Rα · vα


+
1

ε2

(v>∇x̃ log pθ(x̃) +
v>(x̃−x)

σ2

) ∑
|α|=3

∆Rωα · vα +
∂

∂ω
v>∇x̃ log pθ(x̃)

∑
|α|=3

∆Rα · vα
 ,
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where the first term equals to ∂
∂ωJDSM(x, x̃, v; θ). Due to the continuity of the norm functions

‖∇x̃ log pθ(x̃)‖2 and ‖∇x̃ ∂
∂ω log pθ(x̃)‖2 on the compact set Bε0 , we denote their upper bound

as G and Gω, respectively. Then we have |v>∇x̃ log pθ(x̃)| ≤ εG and ∂
∂ω v

>∇x̃ log pθ(x̃) =

v>∇x̃ ∂
∂ω log pθ(x̃) ≤ εGω . Besides, since x̃ and x both come from bounded sets, we have an upper

bound of v>(x̃ − x) ≤ εσ2Gx. Now we can derive the bound between the partial derivatives of
FD-DSM and DSM as

| ∂
∂ω
JFD-DSM(x, x̃, v; θ)− ∂

∂ω
JDSM(x, x̃, v; θ)|

<
1

ε2

(
1

2
∆U∆Uωd

6ε6 + (G+Gx)∆Uωd
3ε3 +Gω∆Ud3ε3

)
<ε ·

(
1

2
∆U∆Uωd

3 + (G+Gx)∆Uωd
3 +Gω∆Ud3

)
, holds when ε <

1

d
,

(34)

where we denote ∆U = U+ + U− and ∆Uω = U+
ω + U−ω . By setting ε0 < 1

d , we can omit the
condition ε < 1

d since ε < ε0 = min(ε0,
1
d ). Note that the condition ε < 1

d can be generalize to, e.g.,
ε < 1 without changing our conclusions. Then it is easy to show that

‖∇θJFD-DSM(x, x̃, v; θ)−∇θJDSM(x, x̃, v; θ)‖2

≤dim(S) ·max
ω∈θ

∣∣∣∣ ∂∂ωJFD-DSM(x, x̃, v; θ)− ∂

∂ω
JDSM(x, x̃, v; θ)

∣∣∣∣
<ε · dim(S) ·max

ω∈θ
Mω ,

where Mω =
1

2
∆U∆Uωd

3 + (G+Gx)∆Uωd
3 +Gω∆Ud3.

(35)

Just to emphasize here, the bound above uniformly holds for ∀(x̃, θ) ∈ B and v ∈ Rd, ‖v‖2 = ε < ε0
and x from any bounded set (x is inherently bounded when we consider, e.g., pixel input space). So
finally we can derive the angle

∠ (∇θJFD-DSM(x, x̃, v; θ),∇θJDSM(x, x̃, v; θ))

≤ arcsin

(
‖∇θJFD-DSM(x, x̃, v; θ)−∇θJDSM(x, x̃, v; θ)‖2

‖∇θJDSM(x, x̃, v; θ)‖2

)
≤ arcsin

(
ε · dim(S) ·maxω∈θMω

min(x̃,θ)∈B,‖v‖2<ε0 ‖∇θJDSM(x, x̃, v; θ)‖2

)
<η,

(36)

where min(x̃,θ)∈B,‖v‖2<ε0 ‖∇θJDSM(x, x̃, v; θ)‖2 must exist and larger than 0 due to the continuity
of∇θJDSM(x, x̃, v; θ) and the condition that ‖∇θJDSM(x, x̃, v; θ)‖2 > 0 on the compact set. So we
only need to choose ξ as

ξ =
sin η ·min(x̃,θ)∈B,‖v‖2<ε0 ‖∇θJDSM(x, x̃, v; θ)‖2

dim(S) ·maxω∈θMω
. (37)

When we choose ‖v‖2 = ε < min(ε0, ξ), we can guarantee the angle between∇θJFD-DSM(x, x̃, v; θ)
and ∇θJDSM(x, x̃, v; θ) to be uniformly less than η on B.

B.6 Application on the latent variable models

For the latent variable models (LVMs), the log-likelihood is usually intractable. Unlike EBMs, this
intractability cannot be easily eliminated by taking gradients. Recently, the proposed SUMO [11] can
provide an unbiased estimator for the intractable log pθ(x), which is defined as

SUMO(x) = IWAE1(x) +

K∑
k=1

∆k(x)

P(K ≥ k)
, where K ∼ pk(K) and K ∈ N+. (38)

There are P(K = K) = pk(K) and ∆k(x) = IWAEk+1(x) − IWAEk(x), where IWAEk(x) is the
importance-weighted auto-encoder [2], defined as

IWAEk(x) = log
1

k

k∑
j=1

pθ(x|zj)pθ(zk)

qφ(zk|x)
, where zk

i.i.d∼ qφ(z|x). (39)
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Now we can derive an upper bound for our FD reformulated objectives exploiting SUMO. To see
how to achieve this, we can first derive a tractable lower bound for the first-order squared term as

Epε(v)Epdata(x)

[
(log pθ(x+ v)− log pθ(x− v))

2
]

=Epε(v)Epdata(x)

[(
Epk(K1),pk(K2) [SUMO(x+ v;K1)− SUMO(x− v;K2)]

)2]
≤Epdata(x)Epk(K1),pk(K2)Epε(v)

[
(SUMO(x+ v;K1)− SUMO(x;K2) + 2)

2
]

,

(40)

as well as a tractable unbiased estimator for the second-order term as

Epε(v)Epdata(x) [log pθ(x+ v) + log pθ(x− v)− 2 log pθ(x)]

=Epdata(x)Epk(K1),pk(K2),pk(K3)Epε(v) [SUMO(x+ v;K1) + SUMO(x− v;K2)

−2 · SUMO(x;K3)] ,
(41)

where we adjust the order of expectations to indicate the operation sequence in implementation.
According to Eq. (40) and Eq. (41), we can construct upper bounds for our FD-SSM and FD-DSM
objectives, and then train the LVMs via minimizing the induced upper bounds. In comparison, when
we directly estimate the gradient-based terms v>∇x log pθ(x) and v>∇2

x log pθ(x)v, we need to take
derivatives on the SUMO estimator, which requires technical derivations [11].

B.7 Connection to MPF

We can provide a naive FD reformulation for the SSM objective as

R(θ)=
1

2ε2
Epdata(x)Epε(v)

[
(log pθ(x+v)−log pθ(x))

2
+4(log pθ(x+v)−log pθ(x))

]
=

1

ε2
Epdata(x)Epε(v)

[
1

2

(
v>∇x log pθ(x)

)2
+v>∇2

x log pθ(x)v+o(ε2)

]
=JSSM(θ)+o(1).

(42)

Minimum probability flow (MPF) [14] can fit probabilistic model parameters via establishing a
deterministic dynamics. For a continues state space, the MPF objective is

KMPF = Epdata(x)

∫
g(y, x) exp

(
Eθ(x)− Eθ(y)

2

)
dy,

where Eθ(x) = − log pθ(x) − logZθ is the energy function. Let Bε(x) = {x + v|‖v‖2 ≤ ε} and
we choose g(y, x) = 1(y ∈ Bε(x)) be the indicator function, then the MPF objective becomes

K̂MPF = VεEpdata(x)Epε(v)
[
exp

(
log pθ(x+ v)− log pθ(x)

2

)]
,

where Vε denotes the volume of d-dimensional hypersphere of radius ε. Let ∆θ(x, v) = log pθ(x+
v)− log pθ(x), then we can expand the exponential function around zero as

K̂MPF =VεEpdata(x)Epε(v)
[
1+

∆θ(x, v)

2
+

∆θ(x, v)2

8
+o(∆θ(x, v)2)

]
=
Vεε

2

4
[R(θ)+o(1)] + Vε,

where the second equation holds because ∆θ(x, v) = Θ(ε). In this case, after removing the offset
and scaling factor, the objective of MPF is directly equivalent toR(θ) as to an o(1) difference.

C Implementation details

In this section, we provide a pseudo code for the implementation of FD formulation for both SSM
and DSM. Then we provide the specific details in our experiments.

C.1 Pseudo codes

The pseudo code of FD-SSM is as follows:
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c a t _ i n p u t = c o n c a t e n a t e ( [ da t a , d a t a + v , d a t a − v ] , dim =0)
e n e r g y _ o u t p u t = e ne rg y ( c a t _ i n p u t )
energy1 , energy2 , ene rgy3 = s p l i t ( e n e r g y _ o u t p u t , 3 , dim =0)

l o s s 1 = ( ene rgy2 − ene rgy3 )**2 / 4
l o s s 2 = (− ene rgy2 − ene rgy3 + 2 * ene rgy1 ) * 2
FD_SSM_loss = ( l o s s 1 + l o s s 2 ) . mean ( ) / eps ** 2

The pseudo code of FD-DSM is as follows:

p d a t a = d a t a + n o i s e
c a t _ i n p u t = c o n c a t e n a t e ( [ p d a t a + v , p d a t a − v ] , dim =0)
e n e r g y _ o u t p u t = e ne rg y ( c a t _ i n p u t )
energy1 , ene rgy2 = s p l i t ( e n e r g y _ o u t p u t , 2 , dim =0)

l o s s 1 = ( ene rgy2 − ene rgy1 ) * 0 . 5
l o s s 2 = sum ( v * n o i s e / sigma , dim=−1)
FD_DSM_loss = ( ( l o s s 1 + l o s s 2 ) * * 2 ) . mean ( ) / eps ** 2

C.2 Implementation details and definitions

DKEF defines an unnormalized probability in the form of log p̃(x) = f(x) + log p0(x), with p0 is
the base measure. f(x) is defined as a kernel function f(x) =

∑N
i=1

∑Nj
j=1 ki(x, zj), where N is

the number of kernels, k(·, ·) is the kernel function, and zj0<j<Nj+1 are Nj inducing points. We
follow the officially released code from Song et al. [16]. Specifically, we adopt three Gaussian RBF
kernel with the extracted by a three-layer fully connected neural network (NN) with 30 hidden units.
The width parameters for the Gaussian kernel is jointly optimized with the parameters of the NN. We
apply the standard whitening process during training following Wenliang et al. [17] and Song et al.
[16]. We adopt Adam optimizer [6] with default momentum parameters and the learning rate is 0.01.
The only extra hyper-parameter ε in the finite-difference formulation is set to 0.1.

Deep EBM directly defines the energy function with unnormalized models using a feed forward
NN f(·) and the probability is defined as p(x) = exp(−f(x))∫

exp(−f(x))dx . The learning rate for DSM is
5× 10−5 and the learning rate for SSM is 1× 10−5 since the variance of SSM is larger than DSM.
The optimizer is Adam with β1 = 0.9 and β2 = 0.95. The sampling method is annealed SGLD with
a total of 2, 700 steps. The ε in the finite-difference formulation is set to 0.05. When training with
annealed DSM, the noise level is an arithmetic sequence from 0.05 to 1.2 with the same number of
steps as the batch size. The default batch size is 128 in all our experiments unless specified. The
backbone we use is an 18-layer ResNet [4] following Li et al. [8]. No normalizing layer is used in the
backbone and the output layer is of a generalized quadratic form. The activation function is ELU. All
experiments adopt the ResNet with 128 filters. During testing, we randomly sample 1500 test data to
evaluate the exact score matching loss.

NICE is a flow-based model, which converts a simple distribution p0 to the data space p using a
invertible mapping f . In this case, the probability is defined as log p(x) = log p0(z) + log det( ∂z∂x ),
where z = f−1(x) and det(·) denotes the determinant of a matrix. The NICE model has 4 blocks
with 5 fully connected layers in each block. Each layer has 1, 000 units. The activation is Softplus.
Models are trained using Adam with a learning rate of 1× 10−4. The data is dequantized by adding
a uniform noise in the range of [− 1

512 ,
1

512 ], which is a widely adopted dequantization method for
training flow models. The ε in the finite-difference formulation is set to 0.1.

NCSN models a probability density by estimating its score function, i.e., ∇x log p(x), which is
modeled by a score net. We follow Song and Ermon [15] and provide an excerpt on the description
of the model architecture design in the original paper: "We use a 4-cascaded RefineNet [10] and
pre-activation residual blocks. We replace the batch normalizations with CondInstanceNorm++ [3],
and replace the max-pooling layers in Refine blocks with average pooling. Besides, we also add
CondInstanceNorm++ before each convolution and average pooling in the Refine blocks. All
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activation functions are chosen to be ELU. We use dilated convolutions [18] to replace the subsampling
layers in residual blocks, except the first one. Following the common practice, we increase the dilation
by a factor of 2 when proceeding to the next cascade. For CelebA and CIFAR-10 experiments, the
number of filters for layers corresponding to the first cascade is 128, while the number of filters for
other cascades are doubled. For MNIST experiments, the number of filters is halved."

C.3 Details of the results on out-of-distribution detection

For out-of-distribution (OOD) detection, we apply the typicality [12] as the detection metric. Specifi-
cally, we first use the training set Dtrain to approximate the entropy of model distribution as

H[pθ(x)] ≈ 1

N

∑
x∈Dtrain

− log pθ(x), (43)

where |Dtrain| = N indicates the number of elements in the training set. Then give a set of test data
Dtest, where we control |Dtest| = M as a hyperparameter, then we can calculate the typicality as∣∣∣∣∣

(
1

M

∑
x∈Dtest

− log pθ(x)

)
−H[pθ(x)]

∣∣∣∣∣ . (44)

Note that the metric in Eq. (44) naturally adapt to unnormalized models like EBMs, since there is
1

M

∑
x∈Dtest

− log pθ(x) = Zθ +
1

M

∑
x∈Dtest

− log p̃θ(x);

1

N

∑
x∈Dtrain

− log pθ(x) = Zθ +
1

N

∑
x∈Dtrain

− log p̃θ(x),
(45)

where the intractable partition function Zθ can be eliminated after subtraction in Eq. (44). Thus we
can calculate the typicality for EBMs as∣∣∣∣∣

(
1

M

∑
x∈Dtest

− log p̃θ(x)

)
−

(
1

N

∑
x∈Dtrain

− log p̃θ(x)

)∣∣∣∣∣ . (46)

As shown in Nalisnick et al. [12], a higher value of M usually lead to better detection performance
due to more accurate statistic. Thus to have distinguishable quantitative results, we set M = 2 in our
experiments. As to training the deep EBMs for the OOD detection, the settings we used on SVHN
and CIFAR-10 are identical to those that we introduced above. On the ImageNet dataset, the images
are cropped into a size of 128×128, and we change the number of filters to 64 limited by the GPU
memory. On SVHN and CIFAR-10, the models are trained on two GPUs, while the model is trained
on eight GPUs on ImageNet. For all datasets, we use N = 50, 000 to estimate the data entropy and
randomly sample 1000M test samples to conduct OOD detection.

C.4 Results on the VAE / WAE with implicit encoders

VAE / WAE with implicit encoders enable more flexible inference models. The gradient of the
intractable entropy term H(q) in the ELBO can be estimated by a score net. We adopt the identical
neural architectures as in Song et al. [16]. The encoder, decoder, and score net are both 3-layer
MLPs with 256 hidden units on MNIST and 4-layer CNNs on CelebA. For MNIST, the optimizer is
RMSProp with the learning rate as 1× 10−3 in all methods. The learning rate is 1× 10−4 on CelebA.
All methods are trained for 10K iterations. The ε in the finite-difference formulation is set to 0.1.
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