
A Proof of Lemma 1

Denote by D(x) the sub-differential of ReLU function, i.e. D(x) = 1 for x > 0, D(x) = 0 for
x < 0 and D(x) = [0, 1] for x = 0.

According to [5], G has a closed graph and compact values. Furthermore, it holds that G(t) ⊆ D(t)
for all t ∈ R. Adopting the terminology from [5], D is conservative for the ReLU function, which
implies that G is conservative for the ReLU function as well [5, Remark 3(e)]. The formulation
GFk

(x0) = (
∏m
i=1 A

T
i diag(G(zi)))ck is an application of the chain rule of differentiation, where

along each chain the conservative set-valued field G is used in place of derivative for the ReLU
function. By [5, Lemma 2], chain rule preserves conservativity, hence GFk

is a conservative mapping
for function Fk. By conservativity [5], using convexity of Ω we have for all x,y ∈ Ω, integrating
along the segment.

|Fk(y)− Fk(x)| =
∣∣∣∣∫ t=1

t=0

max
v∈GFk

(x+t(y−x))
〈y − x,v〉 dt

∣∣∣∣
≤
∫ t=1

t=0

max
v∈GFk

(x+t(y−x))
‖y − x‖‖v‖∗dt

≤
∫ t=1

t=0

‖y − x‖L||·||F dt

= L
||·||
F ‖y − x‖.

Remark (Being a gradient almost everywhere is not sufficient in general): As suggested by anonymous
AC5, Lemma 1 may admit a simpler proof. Indeed the Clarke subdifferential is the convex hull of
limits of sequences of gradients. For Lipschitz constant, we want the maximum norm element, which
necessarily happens at a corner of the convex hull, therefore for our purposes it suffices to consider
sequences. Since the ReLU network will be almost-everywhere differentiable, we can consider a
shrinking sequence of balls around any point, and we will have gradients which are arbitrarily close to
any corner of the differential at our given point. Therefore, the norms will converge to that norm, and
thus it suffices to optimize over differentiable points, and what we choose at the nondifferentiability
does not matter.

The above argument is essentially valid because ReLU only contains univariate nondifferentiability
which is very specific. However the argument is implicitely based on the idea that the composition of
almost everywhere differentiable functions complies with calculus rules, which is not correct in gen-
eral due to lack of injectivity. For more general networks, what we choose at the nondifferentiability
does matter. Indeed, consider the following functions

F : x 7→
(
x
x

)
G :

(
y1

y2

)
7→ max {y1, y2}

The composition G ◦ F is the identity on R and both F and G are differentiable almost every where.
Consider the mappings

JF : x 7→
(

1
1

)

JG :

(
y1

y2

)
7→


(0, 0)T if , y1 = y2

(1, 0)T if , y1 > y2

(0, 1)T if , y1 < y2

.

JF is the Jacobian of F and JG is the gradient of G almost everywhere. Now the product

JG(F (x))× JF (x) = 0

for all x ∈ R. Hence computing the product of these gradient almost everywhere operators gives
value 0, suggesting that the function is constant, while it is not. The reason for the failure here is that

5This is the occasion to thank this person for his/her work on the paper, and for this nice suggestion.
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JG, despite being gradient almost everywhere, is not conservative for G. For this reason, the product
does not provide any notion of Lipschicity and the choice at nondifferentiability point does matter for
G.

Overall, we believe that the proof suggested by AC is correct for ReLU networks because they are
built only using univariate nondifferentiabilities. However the argument that, the choice made at
nondifferentiability point does not have an impact, is not correct for more general networks. This dis-
cussion is kept explicit in this appendix since many other types of semialgebraic activation functions
are used in deep learning, such as max pooling, for which one may use similar approaches as what we
proposed to evaluate Lipschitz constants. For these more complex nondifferentiability, concervativity
will be essential to ensure that one obtains proper Lipschitz constants, beyond the argument that
beging differentiable almost everywhere implies that the choice made at nondifferentiability point
does not matter.

B Illustration Examples of Lasserre’s Hierarchy 3

B.1 Dense Case 3.1
For illustration purpose and without going into details, consider the following simple example where
we want to minimize x1x2 over the unit disk on R2. That is:

inf
x∈R2
{f(x) = x1x2 : g(x) = 1− x2

1 − x2
2 ≥ 0} . (5)

For d = 1, y = {y00, y01, y10, y20, y11, y02} ∈ R6, Ly(f) = y11, and

M1(y) =

(
y00 y10 y01

y10 y20 y11

y01 y11 y02

)
.

As ω = ddeg(g)/2e = 1, M0(gy) � 0 simply translates to the linear constraint Ly(g) = 1− y20 −
y02 ≥ 0. Therefore (MomOpt-d) with d = 1 reads:

inf
y∈R6
{y11 : y00 = 1,M1(y) � 0, 1− y20 − y02 ≥ 0} , (6)

with optimal value ρ1 = −1/2 = f∗. It turns out that (6) is exactly Shor’s relaxation applied to (5).
In fact, for QCQP the first-order moment relaxation (i.e., (MomOpt-d) with d = 1) is exactly Shor’s
relaxation.

B.2 Sparse Case 3.2
For illustration, consider the following POP:

inf
x∈R2
{x1x2 + x2x3 : x2

1 + x2
2 ≤ 1, x2

2 + x2
3 ≤ 1} . (7)

Define the subsets I1 = {1, 2}, I2 = {2, 3}. It is easy to check that assumptions A1, A2, A3 and
A4 hold. Define y = {y000, y100, y010, y001, y200, y110, y101, y020, y011, y002} ∈ R10. For d = 1, the
first-order dense moment matrix reads:

M1(y) =

y000 y100 y010 y001

y100 y200 y110 y101

y010 y110 y020 y011

y001 y101 y011 y002

 ,

whereas the sparse moment matrix M1(y, I1) (resp. M1(y, I2)) is the submatrix of M1(y) taking
red and pink (resp. blue and pink) entries. That is, M1(y, I1) and M1(y, I2) are submatrices of
M1(y), obtained by restricting to rows and columns concerned with subsets I1 and I2 only.

C Link between SDP and Sum-of-Square (SOS)

The primal and dual of Lasserre’s hierarchy (MomOpt-d) nicely illustrate the duality between
moments and positive polynomials. Indeed for each fixed d, the dual of (MomOpt-d) reads:

sup
t∈R
{t : f − t = σ0 +

p∑
i=1

σigi} , (SOS-d)
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where σ0 is a sum-of-squares (SOS) polynomial of degree at most 2d, and σj are SOS polynomials
of degree at most 2(d − ωi), ωi = ddeg(gj)/2e. The right-hand-side of the identity in (SOS-d) is
nothing less than Putinar’s positivity certificate [29] for the polynomial x 7→ f(x)− t on the compact
semialgebraic set {x : gi(x) ≥ 0, i ∈ [p]}.
Similarly, the dual problem of (MomSpOpt-d) reads:

sup
t∈R
{t : f − t =

l∑
k=1

(
σ0,k +

m∑
j=1

σj,kgj
)
} , (SpSOS-d)

where σ0,k are SOS in R[xIk ] of degree at most 2d, and σj,k are SOS in R[xIk ] of degree at most
2(d− ωi), ωi = ddeg(gj)/2e. Then (SpSOS-d) implements the sparse Putinar’s positivity certificate
[18, 37].

D Illustration of Heuristic Relaxation

Consider problem (NlySpOpt). We already have a sparsity pattern with subsets Ik and an additional
“bad” constraint g ≥ 0 (assumed to be quadratic). Then we consider the sparse moment relaxations
(MomSpOpt-d) applied to (NlySpOpt) without the bad constraint g ≥ 0 and simply add two con-
straints: (i) the moment constraint M1(y) � 0 (with full dense first-order moment matrix M1(y)),
and (ii) the linear moment inequality constraint Ly(g) ≥ 0 (which is the lowest-order localizing
matrix constraint M0(g y) � 0).

To see why the full moment constraint M1(y) � 0 is needed, consider the toy problem (7). Recall
that the subsets we defined are I1 = {1, 2}, I2 = {2, 3}. Now suppose that we need to consider
an additional “bad” constraint (1 − x1 − x2 − x3)2 = 0. After developing Ly(g), one needs
to consider the moment variable y103 corresponding to the monomial x1x3 in the expansion of
g = (1 − x1 − x2 − x3)2, and y103 does not appear in the moment matrices Md(y, I1) and
Md(y, I2) because x1 and x3 are not in the same subset. However y103 appears in M1(y) (which is
a n× n matrix).

Now let us see how this works for problem (LCEP). First introduce new variables zi with associated
constraints zi −Aixi−1 − bi = 0, so that all “bad” constraints are affine. Equivalently, we may and
will consider the single “bad" constraint g ≥ 0 with g(z1, . . . ,x0,x1, . . .) = −

∑
i ||zi −Axi−1 −

bi||2 and solve (MomNlySpOpt-d). We briefly sketch the rationale behind this reformulation. Let
(yd)d∈N be a sequence of optimal solutions of (MomNlySpOpt-d). If d→∞, then yd → y (possibly
for a subsequence (dk)k∈N), and y corresponds to the moment sequence of a measure µ, supported on
{(x, z) : gi(x, z) ≥ 0, i ∈ [p];

∫
g dµ ≥ 0}. But as −g is a square,

∫
gdµ ≥ 0 implies g = 0, µ-a.e.,

and therefore zi = Axi−1 + bi, µ-a.e. This is why we do not need to consider the higher-order
constraints Md(g y) � 0 for d > 0; only M0(g y) � 0 (⇔ Ly(g) ≥ 0) suffices. In fact, we impose
the stronger linear constraints Ly(g) = 0 and Ly(zi −Axi−1 − bi) = 0 for all i ∈ [p].

E Lifting and Approximation Techniques for Cubic Terms

As discussed at the end of Section 4, for 2-hidden layer networks, one needs to reduce the objective
function to degree 2 so that the HR-2 algorithm can be adapted to problem (LCEP). Precisely,
problem (LCEP) for 2-hidden layer networks is the following POP:

max
xi,ui,t

tTAT
1 diag(u1)AT

2 diag(u2)c (LCEP-MLP2)

s.t.


u1(u1 − 1) = 0, (u1 − 1/2)(A1x0 + b1) ≥ 0 ,

u2(u2 − 1) = 0, (u2 − 1/2)(A2x1 + b2) ≥ 0 ,

x1(x1 −A1x0 − b1) = 0,x1 ≥ 0,x1 ≥ A1x0 + b1 ;

t2 ≤ 1, (x0 − x̄0 + ε)(x0 − x̄0 − ε) ≤ 0 .
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E.1 Lifting Technique

Define new decision variable s := u1u
T
2 , so that the degree of objective is reduced to 2. Problem

(LCEP-MLP2) can now be reformulated as:

max
xi,ui,t

∑
i

ti〈diag(A
(:,i)
1 )AT

2 diag(c), s〉 (ReducedLCEP-MLP2)

s.t.


u1(u1 − 1) = 0, (u1 − 1/2)(A1x0 + b1) ≥ 0 ,

u2(u2 − 1) = 0, (u2 − 1/2)(A2x1 + b2) ≥ 0 ,

x1(x1 −A1x0 − b1) = 0,x1 ≥ 0,x1 ≥ A1x0 + b1 ;

t2 ≤ 1, (x0 − x̄0 + ε)(x0 − x̄0 − ε) ≤ 0, s = u1u
T
2 .

For (ReducedLCEP-MLP2), we have p1p2 more variables (s) and constraints (s = u1u
T
2 ), where

u1 ∈ Rp1 and u2 ∈ Rp2 . Even when p1 = p2 = 100, we add 10000 variables and constraints, which
will cause a memory issue (no SDP solver is able to handle matrices of size O(104)). This is why we
use the following approximation technique as a remedy.

E.2 Heuristic Relaxation for Cubic Terms

In this section, we introduce an alternative technique to handle the cubic terms tiuj1u
k
2 appearing

in the objective function of problem (LCEP-MLP2). Recall that the main obstacle that prevents us
from applying the HR-2 method is that we don’t have the moments for cubic terms tiuj1u

k
2 in the

first-order moment matrix M1(y, {ti, uj1, uk2})). Precisely, we only have the moments of quadratic
terms in M1(y, {ti, uj1, uk2})):

M1(y, {ti, uj1, uk2})) =


Ly(1) Ly(ti) Ly(uj1) Ly(uk2)

Ly(ti) Ly((ti)2) Ly(tiuj1) Ly(tiuk2)

Ly(uj1) Ly(uj1t
i) Ly((uj1)2) Ly(uj1u

k
2)

Ly(uk2) Ly(uk2t
i) Ly(uk2u

j
1) Ly((uk2)2)



The moments of cubic terms tiuj1u
k
2 lie in the second-order moment matrix M2(y, {ti, uj1, uk2}),

which is of size
(

3+2
2

)
= 10. However, since we only need the moments of the cubic terms, a

submatrix of M2(y) suffices:

Msub
2 (y, {ti, uj1, uk2}) =

 Ly(1) Ly(ti) Ly(uj1u
k
2)

Ly(ti) Ly((ti)2) Ly(tiuj1u
k
2)

Ly(uj1u
k
2) Ly(tiuj1u

k
2) Ly((uj1)2(uk2)2)



Thus, in order to obtain the moments of cubic terms, one only needs to put M1(y) and
Msub

2 (y, {ti, uj1, uk2}) for each cubic term tiuj1u
k
2 together. Recall that for problem (LCEP-MLP2),

t ∈ Rp0 , u1 ∈ Rp1 , u2 ∈ Rp2 . Define the subsets for (LCEP-MLP2) as Ii = {xi0, ti} for i ∈ [p0];
Jj1 = {xj1, z

j
1}, J

j
2 = {uj1, z

j
1} for j ∈ [p1]; Kk = {uk2 , zk2} for k ∈ [p2]. Then the second-order
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heuristic relaxation (HR-2) for problem (LCEP-MLP2) reads as:

sup
y
{Ly(tTAT

1 diag(u1)AT
2 diag(u2)c) : Ly(1) = 1,M1(y) � 0 ;

Msub
2 (y, {ti, uj1, uk2}) � 0, i ∈ [p0], j ∈ [p1], k ∈ [p2] ;

Ly(z1 −A1x0 − b1) = 0, Ly((z1 −A1x0 − b1)2) = 0 ;

Ly(z2 −A2x1 − b2) = 0, Ly((z2 −A2x1 − b2)2) = 0 ;

M2(y, Jj2 ) � 0,M1(uj1(uj1 − 1)y, Jj2 ) = 0,M1((uj1 − 1/2)zj1y, J
j
2 ) � 0, j ∈ [p1] ;

M2(y,Kk) � 0,M1(uk2(uk2 − 1)y,Kk) = 0,M1((uk2 − 1/2)zk2y,K
k) � 0, k ∈ [p2] ;

M2(y, Jj1 ) � 0,M1(xj1(xj1 − z
j
1)y, Jj1 ) = 0 ,

M1(xj1y, J
j
1 ) � 0,M1((xj1 − z

j
1)y, Jj1 ) � 0, j ∈ [p1] ;

M2(y, Ii1) � 0,M1((1− (ti)2)y, Ii) � 0 ,

M1(−(xi0 − x̄i0 + ε)(xi0 − x̄i0 − ε)y, Ii) � 0, i ∈ [p0]} .
(MomLCEP2-2)

In this way, we add p0p1p2 moment matrices Msub
2 (y, {ti, uj1, uk2}) of size 3, and p0p1p2 + p1p2

moment variables Ly(tiuj1u
k
2), Ly((uj1)2(uk2)2). A variant of this technique is to enlarge the size

of the moment matrices but in the meantime reduce the number of moment matrices. For instance,
consider the following submatrix of the second-order moment matrix M2(y, {t,y1, u

k
2}):

Msub
2 (y, {t,u1, u

k
2}) =

 Ly(1) Ly(tT ) Ly(uT1 u
k
2)

Ly(t) Ly(ttT ) Ly(tuT1 u
k
2)

Ly(u1u
k
2) Ly(u1t

Tuk2) Ly(u1u
T
1 (uk2)2)

 (8)

We have all the moments of the cubic terms tiuj1u
k
2 from those Msub

2 (y, {t,u1, u
k
2}). However, in this

case, we only add p2 moment matrices Msub
2 (y, {t,u1, u

k
2}) of size 1 + p0 + p1, and p0p1p2 + p2

1p2

new variables Ly(u1t
Tuk2), Ly(u1u

T
1 (uk2)2). Note that we can also use the first-order heuristic

relaxation (HR-1), which is formulated as:
sup
y
{Ly(tTAT

1 diag(u1)AT
2 diag(u2)c) : Ly(1) = 1,M1(y) � 0 ,

Msub
2 (y, {ti, uj1, uk2}) � 0, i ∈ [p0], j ∈ [p1], k ∈ [p2] ,

Ly(u1(u1 − 1)) = 0, Ly((u1 − 1/2)z1) ≥ 0 ,

Ly(u2(u2 − 1)) = 0, Ly((u2 − 1/2)z2) ≥ 0 ,

Ly(x1(x1 − z1)) = 0, Ly(x1) ≥ 0, Ly(x1 − z1) ≥ 0 ;

Ly(t2 − 1) ≤ 0, Ly((x0 − x̄0 + ε)(x0 − x̄0 − ε)) ≤ 0} . (MomLCEP2-1)

F Global Lipschitz Constant Estimation for Random Networks

We use the experimental settings described in Section 5.

F.1 1-Hidden Layer Networks

Figure 2 displays the average upper bounds of global Lipschitz constants and the time of different
algorithms for 1-hidden layer random networks of different sizes and sparsities. We can see from
Figure 2a that when the size of the network is small (10, 20, etc.), the LP-based method LipOpt-3 is
slightly better than the SDP-based method HR-2. However, when the size and sparsity of the network
increase, HR-2 provides tighter bounds. From Figure 2b, we can see that LipOpt-3 is more efficient
than HR-2 only when the size or the sparsity of the network is small (for (10, 10) networks, or for
(40, 40) networks of sparsity 5, etc.). When the networks are dense or nearly dense, our method not
only takes much less time, but also gives much tighter upper bounds. For global Lipschitz constant
estimation, SHOR and HR-2 give nearly the same upper bounds. This is because the sizes of the
toy networks are quite small. For big real network, as shown in Table 2, HR-2 provides strictly
tighter bound than SHOR. Finally, SHOR is more efficient than HR-2 and LipOpt-3 in terms of
computational complexity.
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Figure 2: Global Lipschitz constant upper bounds (left) and solver running time (right) for 1-hidden
layer networks with respect to L∞-norm obtained by SHOR, HR-2, LipOpt-3, LipOpt-4 and LBS.
We generate random networks of size 10, 20, 40, 80. For size 10, we consider sparsity 4, 8, 12, 16,
20; for size 20, we consider sparsity 8, 16, 24, 32, 40; for size 40 and 80, we consider sparsity 10, 20,
30, 40, 50, 60, 70, 80. In the meantime, we display median and quartiles over 10 random networks
draws.

F.2 2-Hidden Layer Networks

For 2-hidden layer networks, we use the technique introduced in Appendix E in order to deal with the
cubic terms in the objective. Figure 3 displays the average upper bounds of global Lipschitz constants
and the running time of different algorithms for 2-hidden layer random networks of different sizes
and sparsities. We can see from Figure 3a that the SDP-based method HR-2 performs worse than the
LP-based method LipOpt-3 for networks of size (10, 10, 10). However, as the size and the sparsity
of the network increase, the difference between HR-2 and LipOpt-3 becomes smaller (and HR-2
performs even better). For networks of size (20, 20, 10), (30, 30, 10) and (40, 40, 10), with sparsity
greater than 10, HR-2 provides strictly tighter bounds than LipOpt-3. This fact has already been
shown in Table 1 (right), HR-1 and HR-2 give consistently tighter upper bounds than LipOpt-3,
with the price of higher computational time.

G Local Lipschitz Constant Estimation for Random Networks

We use the experimental settings described in Section 5.

G.1 1-Hidden Layer Networks

Figure 4 displays the average upper bounds of local Lipschitz constants and the running time of
different algorithms for 1-hidden layer random networks of different sizes and sparsities. By contrast
with the global case, we can see from Figure 4a that HR-2 gives strictly tighter upper bounds than
SHOR when the sparsity is larger than 40. As a trade-off, HR-2 takes more computational time than
SHOR. According to Figure 4b, the running time of HR-2 is around 5 times longer than SHOR.
Similar to the global case, LipOpt-3 performs well when the network is sparse. However, when the
sparsity increases, HR-2 and SHOR are more efficient and provide better bounds than LipOpt-3.

G.2 2-Hidden Layer Networks

For 2-hidden layer networks, we use the approximation technique described in Appendix E in order
to reduce the objective to degree 2. Figure 5a and 5b displays the average upper bounds of local
Lipschitz constants and the running time of different algorithms for 2-hidden layer random networks
of different sizes and sparsities. By contrast with the global case, we can see from Figure 5a that
HR-2 gives strictly tighter upper bounds than HR-1 when the sparsity is larger than 40. As a trade-off,
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Figure 3: Global Lipschitz constant upper bounds (left) and solver running time (right) for 2-hidden
layer networks with respect to L∞-norm obtained by HR-2, HR-1, LipOpt-3, LipOpt-4 and LBS.
We generate random networks of size 10, 20, 30, 40. For size (10, 10, 10), we consider sparsity 4,
8, 12, 16, 20; for size (20, 20, 10), we consider sparsity 4, 8, 12, 16, 20, 24, 28, 32, 36, 40; for size
(30, 30, 10), we consider sparsity 10, 20, 30, 40, 50, 60; for size (40, 40, 10), we consider sparsity
10, 20, 30, 40, 50, 60, 70, 80. In the meantime, we display median and quartiles over 10 random
networks draws.
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Figure 4: Local Lipschitz constant upper bounds (left) and solver running time (right) for 1-hidden
layer networks with respect to L∞-norm obtained by HR-2, SHOR, LipOpt-3 and LBS. By default,
ε = 0.1. We generate random networks of size 10, 20, 40, 80. For size 10, we consider sparsity 4, 8,
12, 16, 20; for size 20, we consider sparsity 8, 16, 24, 32, 40; for size 40 and 80, we consider sparsity
10, 20, 30, 40, 50, 60, 70, 80. In the meantime, we display median and quartiles over 10 random
networks draws.

HR-2 takes more computational time than HR-1. According to Figure 5b, the running time of HR-2
is just around 3 times longer than HR-1. Similar to the global case, LipOpt-3 performs well when
the network is sparse. However, when the sparsity increases, HR-2 and HR-1 provide better bounds
than LipOpt-3, with the price of higher computational time..
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Figure 5: Local Lipschitz constant upper bounds (left) and solver running time (right) for 2-hidden
layer networks with respect to L∞-norm obtained by HR-2, HR-1, LipOpt-3 and LBS. By default,
ε = 0.1. We generate random networks of size 20, 30, 40, 50. For size (10, 10, 10), we consider
sparsity 4, 8, 12, 16, 20; for size (20, 20, 10), we consider sparsity 4, 8, 12, 16, 20, 24, 28, 32, 36, 40;
for size (30, 30, 10), we consider sparsity 10, 20, 30, 40, 50, 60; for size (40, 40, 10), we consider
sparsity 10, 20, 30, 40, 50, 60, 70, 80. In the meantime, we display median and quartiles over 10
random networks draws.

H Robustness Certification for MNIST Network SDP-NN [30]

The matrix of Lipschitz constants of function fi,j (defined in the second paragraph of Section 5.2)
with respect to input x0 = 0, ε = 2 and norm || · ||∞:

L =



∗ 7.94 7.89 8.28 8.64 8.10 7.66 8.04 7.46 8.14
7.94 ∗ 7.74 7.36 7.68 8.81 8.06 7.55 7.36 8.66
7.89 7.74 ∗ 7.63 8.81 10.23 8.18 8.13 7.74 9.08
8.28 7.36 7.63 ∗ 8.52 7.74 9.47 8.01 7.37 7.96
8.64 7.68 8.81 8.52 ∗ 9.44 7.98 8.65 8.49 7.47
8.10 8.81 10.23 7.74 9.44 ∗ 8.26 9.26 8.17 8.55
7.66 8.06 8.18 9.47 7.98 8.26 ∗ 10.18 8.00 9.83
8.04 7.55 8.13 8.01 8.65 9.26 10.18 ∗ 8.28 7.65
7.46 7.36 7.74 7.37 8.49 8.17 8.00 8.28 ∗ 7.87
8.14 8.66 9.08 7.96 7.47 8.55 9.83 7.65 7.87 ∗


where L = (Lij)i 6=j . Note that if we replace the vector c in (LCEP) by−c, the problem is equivalent
to the original one. Therefore, the matrix L is symmetric, and we only need to compute 45 Lipschitz
constants (the upper triangle of L).

Figure 6 shows several certified and non-certified examples taken from the MNIST test dataset.

Figure 6: Examples of certified points (above) and non-certified points (bellow).
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