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Abstract

Many latent-variable applications, including community detection, collaborative
filtering, genomic analysis, and NLP, model data as generated by low-rank matrices.
Yet despite considerable research, except for very special cases, the number of
samples required to efficiently recover the underlying matrices has not been known.
We determine the onset of learning in several common latent-variable settings. For
all of them, we show that learning k×k, rank-r, matrices to normalizedL1 distance ε
requires Ω(krε2 ) samples, and propose an algorithm that usesO(krε2 log2 r

ε ) samples,
a number linear in the high dimension, and nearly linear in the, typically low, rank.
The algorithm improves on existing spectral techniques and runs in polynomial time.
The proofs establish new results on the rapid convergence of the spectral distance
between the model and observation matrices, and may be of independent interest.

1 Introduction

1.1 Motivation

A great many scientific and technological applications concern relations between two objects that
range over large domains, yet are linked via a low-dimensional latent space. Often this relation is
precisely, or nearly, linear, hence can be modeled by a low-rank matrix. The problem of recovering
low-rank model matrices from observations they generate has therefore been studied extensively.
Following are five of the most common settings considered, each introduced via a typical application.

Distribution matrices In Probabilistic latent semantic analysis samples are co-occurrences (w, d)
of words and documents, assumed independent given one of r latent topic classes t [Hof99]. The
joint probability matrix [pw,d] is therefore a mixture of at most r product matrices p(d|t) · p(w|t), and
has rank ≤ r. This setting also arises in many hidden Markov applications, e.g., [MR05, HKZ12].

For this setting, the model matrix is a distribution, hence its elements are non-negative and sum to
1. The model is sampled independently n times, and Xi,j is the number of times pair (i, j) was
observed. In the remaining settings, the model matrix consists of arbitrary parameters, it is sampled
just once, and each parameter is reflected in an independent observation Xi,j .

Poisson Parameters Recommendation systems infer consumer preferences from their consumption
patterns. The number of times customer i purchases product j is typically modeled as an independent
Poisson random variableXi,j∼Poi(λi,j). Often λi,j is the inner product of the consumer’s disposition
and product’s expression of r latent features [SKKR00], so the parameter matrix [λi,j ] has rank ≤ r.

Bernoulli Parameters In inhomogeneous Erdös-Rényi graphs, the edge between nodes i and j is an
independent random variableXi,j ∼ Ber(pi,j). In Community-detection, the Stochastic Block Model
(SBM), e.g., [Abb17, MNS18, ABH15, BLM15], assumes that graph nodes fall in few communities
C1, . . . ,Cr such that the pi,j’s are one constant if i and j are in the same community, and a different
constant if i and j are in two distinct communities. Clearly, the parameter matrix [pi,j ] has rank ≤ r.
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Binomial Parameters The probability that gene pair (i, j) will express as a phenotype is often
viewed as the result of a few factors, resulting in an expression probability matrix [pi,j ] of low rank
at most r [KMA16]. In a study of t phenotypic patients, the number Xi,j of patients with gene pair
(i, j) will therefore be distributed binomially Bin(t, pi,j).

Collaborative filtering Let Yi,j ∈ [0, 1] be the random rating user i assigns to movie j. If the
ratings are based on a small number of r intrinsic film features, the matrix [Fi,j ] of expected ratings
Fi,j = E[Yi,j ], may be views as having a low rank r. Since only some ratings are reported, the
matrix-completion and collaborative-filtering literature, e.g., [BCLS17], assumes that 1i,j ∼ Ber(p)
are independent indicator random variables, and upon observing Xi,j = 1i,j · Yi,j for all (i, j) we
wish to recover the mean matrix [Fi,j ].

Each of these five settings has been studied in many additional contexts, including word embed-
ding [SCH15], Genomic Analysis [ZLWY14, ZHPA13], and more [AGH+14].

As observed above, in all these settings, the observations are generated by low-rank matrices. In the
rest of the paper we show that relatively few observations suffice to learn the underlying matrices.

1.2 Unified formulation

We first unify the five settings, facilitating the interpretation of their matrix norm as the number of
observations, and allowing us to subsequently show that all models have essentially the same answer.

Let Rk×m be the collection of k ×m real matrices, and let Rk×mr be its subset of matrices with rank
at most r. Both our lower and upper bounds for recovering k ×m matrices depend only on the larger
of k and m. Hence without loss of generality we assume square model matrices of size k × k.

Note that in the first four models, Xi,j is the number of times pair (i, j) was observed. For example,
for the Poisson model, it is the number of times customer i bought product j. Hence ||X||1 =∑
i,j Xi,j is the total number of observations. In collaborative filtering, Xi,j = 1i,j · Yi,j does not

carry the same interpretation, still ||X||1 =
∑
i,j Xi,j will concentrate around p · k2 · F avg, where

F avg = 1
k2

∑
i,j Fi,j . And since Fi,j ∈ [0, 1], therefore F avg is typically a constant, hence ||X||1 will

be proportional to the expected number of observations, pk2.

We therefore scale the matrixM so thatMi,j = E(Xi,j) reflects the expected number of observations
of pair (i, j). We let M be n · [pi,j ] for distribution matrices, [λi,j ] for Poisson parameters, [pi,j ] for
Bernoulli parameters, [t ·pi,j ] for Binomial parameters, and [p ·Fi,j ] for collaborative filtering. Conse-
quently, for all modelsM = E[X], hence ||M ||1 = ||E[X]||1 is the expected number of observations.

Let M ∈ Rk×kr be an unknown model matrix for one of the five settings, and let X ∼ M be
a resulting observation matrix. We would like to recover M from X . A model estimator is a
mapping M est : Rk×k → Rk×k that associates with an observation X an estimated model matrix
M est := M est(X).

Different communities have used different measures for how wellM est approximatesM . For example
community detection concerns the recovery of labels, a criterion quite specific to this particular
application. Many other works considered recovery in squared-error, or Forbenius, norm, but as
argued in Section 1.4, this measure is less meaningful for the applications we consider.

Perhaps the most apt estimation measure, and the one we adopt, is L1 distance, the standard Machine-
Learning accuracy measure. L1 distance arises naturally in numerous applications and is the main
criterion used for learning distributions. Since M has non-unitary norm, we define the loss of the
estimate M est as the normalized L1 distance between M and M est,

L(M est) := LM (M est) := ||M est −M ||1/||M ||1.
Note that for distribution matrices, this reduces to the standard L1 norm. Also, similar to total
variation distance, L(M est) upper bounds the absolute difference between the expected and predicted
number of occurrences of pairs (i, j) in any subset S ⊆ [k]× [k], normalized by the total observations.

While the multitude of applications has drawn considerable amount of work on these latent variable
model, a majority of work assumes that the number of samples are plenty, way beyond the information
theoretic limit, or assumes more stronger assumptions on the model matrix then just low rank, thus
limiting its applicability. We show recovery is possible with number of samples only linear in k and
near linear in r in all these models and with no other assumptions on low rank matrix M .
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1.3 Overview of the background, main results and techniques

Recovery of distribution-matrices (the first model) in L1 distance was first addressed in [HKKV18].
They considered matrices M that can be factored as UWUᵀ where W is r̂ × r̂ and positive
semi-definite, and U is non-negative. They derived a polynomial-time algorithm that requires
O(w

M
k r̂2/ε5) samples, where w

M
≥ r̂2, hence at best guaranteeing sample complexity O(k r̂4/ε5),

and potentially much higher. Note however that their definition applies only to positive semi-definite,
and not general matrices M , and even then, r̂ is at least the rank of M , and can be significantly higher.

We first lower bound the loss of any estimator. An array of kr elements can be viewed as a special
case of a k × k matrix of rank r. Simply place the array’s kr elements in the matrix’s first r rows,
and set the remaining rows to zero. A well-known lower bound for learning discrete distributions, or
arrays of Poisson parameters, in L1 distance [KOPS15, HJW15] therefore implies:

Recall that X ∼M means that observation matrix X was generated by an underlying model matrix
M , where EX = M . Unless specified otherwise, the results apply to all five models described in
Section 1.1.
Theorem 1. For any k, r, ε < 1, and M ∈ Rk×kr , let X ∼ M via the Poisson parameters or
distribution matrix model. Then for any, possibly random, estimator M est,

sup
M∈Rk×k

r :||M ||1≤kr/ε2
EX∼M [L(M est(X))] = Ω(ε).

The bound implies that achieving expected normalized L1 error < ε requires expected number of
observations ||M ||1 = Ω(kr/ε2). Equivalently, any estimator incurs an expected normalized L1

error at least Ω(min{
√
kr/||M ||1, 1}).

Our main result is a polynomial-time algorithm curated SVD that returns an estimate M cur :=
M cur(X) that essentially achieves the above lower bound for all five models and all matrices M .

Theorem 2. Curated SVD runs in polynomial time, and for every k, r, ε > 0, and M ∈ Rk×kr with
||M ||1 ≥ kr

ε2 · log2 r
ε , if X ∼M , then with probability ≥ 1− k−2,

L(M cur(X)) = O(ε).

A few observations are in order. While [HKKV18] provides weaker guarantees and only for a special
subclass of matrices, Curated SVD achieves essentially the lower bound for all matrices. It also holds
for all five models. It recovers M with O(kr log2 r) observations. This number is linear in the large
matrix dimension k, and near linear in the typically small rank r. This is the first such result for
general matrices.

In many applications, only a small number of observations is available per row and column. For
example on average each viewer may rate only few movies, and a person typically has few friends.
Hence the number of observations is near linear in the dimension k. Our results are the first to enable
learning general low rank matrices in these regimes.

With n samples, general discrete distributions over k elements can be learned to L1 distance
Θ(
√
k/n). Theorems 1 and 2 show that essentially the same result holds for L1 learning of low-rank

matrices. The number of parameters is kr, the number of observations is ||M ||1, and the normalized
L1 error is between

√
kr/||M ||1 and

√
kr/||M ||1 log(r||M ||1/k).

To obtain these results we generalize a recent work [LLV17] that bounds the spectral distance between
M and X . This bound requires the strong condition that each entry of the corresponding Bernoulli
parameter matrix M should be within a constant factor from the average. The paper asked whether
such results can be achieved for more general sparse graphs, possibly with the aid of regularization.
We provide a counter example showing that such strong guarantees cannot hold for sparse graphs.

Instead, we derive a new spectral result (Theorem 3) that helps recoverM even when few observations
are available, and may be of independent interest. The result applies to all models, not just Bernoulli,
and shows that even when the number of observations is only linear in k, zeroing out a small submatrix
in M and X , and then regularizing the two matrices, results in a small spectral distance between
them. This result is the first result to imply nontrivial concentration in spectral norm in linear sample
regime for the general matrices in any of these settings. We believe this new result could potentially
imply learning in the sparse sample regime for other settings that are not explicitly considered here.

3



Theorem 3 (Informal, full version in Section 3) There is a small unknown set of rows that when
zeroed out from regularized versions of X and M results in small spectral distance between them.

Although this set of rows is unknown, we derive an algorithm that recovers M to a small L1 distance.

Curated SVD (Informal, full version in Section 4) Successively zeroes out few suspicious rows,
ensuring that any small set of rows of X don’t have too large an influence on the recovered matrix.

We show that Theorem 3 implies that curated SVD achieves the recovery guaranties in Theorem 2.

1.4 Implications of the results and related work

As mentioned in the introduction, many communities have considered recovering model matrices
from samples. Here we describe a few more of the most relevant work to this paper.

In community detection the goal is to infer communal structure from pairwise interactions between
individuals. Much work has focused on the Stochastic Block models (SBM) where individuals fall
in few communities C1, . . . ,Cr and the interaction probabilities pi,j are one constant if i and j are
in the same community, and a different constant if i and j are in two distinct communities. Precise
guarantees were provided for both exact recovery and detection [Abb17, AS15, ABH15, BLM15],
even for the sparse regime. However, note that SBM only allows matrices of interaction probabilities
that are a very special case of low rank matrices and not general low rank matrices.

A more general Mixed membership SBM associates each individual with an unknown r-dimensional
vector reflecting weighted membership in each of r communities, and the pairwise interaction
probability is determined by inner product of the respective membership vectors. The resulting
interaction probability matrix is a rank-r Bernoulli parameter matrix. Recently, [HS17] considered a
Bayesian setting where the resulting membership weights are both sparse and evenly distributed, and
achieved weak detection with only O(kr2) samples.

The additional assumptions needed in [HS17] imply that the entries in the resulting model matrix are
within a constant factor from their average. By contrast our analysis applies to all low rank matrices
M , and for L1 recovery using O(kr log2 r) samples. We note that the goal in community detection
setting is somewhat more specific than ours, and the two guarantees may not be directly comparable.

Another recent work [MD19] considered recovering Poisson and distribution matrices under the
Frobenius norm. They showed that matrices M with moderately-sized entries, can be recovered with
O(k log3/2 k) samples, but the error depended on M ’s maximum row and column sum. However,
they note that the Frobenius norm "might not always be the most appropriate error metric" and point
out that the L1 norm is "much stronger" for these settings. A similar sentiment about L1 is echoed
by [HKKV18] in relation to the spectral norms. By contrast, our results apply to the L1 norm, grow
only linearly with k, and the error depends on M ’s average, not the maximum, row and column sum.

Our collaborative filtering setting uses the same general bounded noise model as [BCLS17]. However
they assume that the mean matrix F is generated by a Lipschitz latent variable model. They recover F
to mean square error

∑
i,j(Fi,j − F̂i,j)2/k2 = O(r2/(pk)2/5), implying that recovering F requires

pk2 = O(r5k) samples. They also provides a nice survey of related matrix completion and show that
their result is the first to achieve linear in k recovery for the general bounded noise model.

By contrast, we make no additional assumptions, and recover F to L1 distance with O(kr log2 r)

samples. Note also that 0 ≤ Fi,j ≤ 1, hence |Fi,j − F̂i,j | ≥ |Fi,j − F̂i,j |2. Therefore normalized
L1 error upper bounds mean squared error. In Appendix D we show that our estimator achieves
a better error bound,

∑
i,j |Fi,j − F̂i,j |/k2 = O(

√
r/pk · log(rpk)), even for the stronger L1 norm.

Learning latent variables models has been addressed in several other communities that typically
focused on computational efficiency when the data is in abundance, includes work on Topic Mod-
elling [AGH+13, KW17, BBW18], and Hidden Markov Models [HKZ12, MR05, AGH+14], word
embedding [SCH15], and Gaussian mixture models [Das99, GHK15, VW04].

1.5 Arrangement of the paper

The reminder of the paper is organised as follows. Section 2 defines some useful notations and recalls
some useful properties for these models. Section 3 defines the regularization and establish bounds on
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the regularized spectral distance between X and M . Section 4 describes the Curated-SVD algorithm
to recover M and gives an overview of its analysis.

2 Preliminaries

2.1 Notation

We will use the following formulation for rank, singular values, and decompositions of a matrix.
Every matrix A ∈ Rk×m can be expressed in terms of its singular-value decomposition (SVD),
A =

∑min{k,m}
i=1 σiuiv

ᵀ
i , where the singular values σi := σi(A) are non-increasing and non-negative,

and the right singular vectors vi := vi(A) are orthogonal, as are the left singular vectors ui := ui(A).
A matrix has rank r iff its first r singular values are positive, and the rest are zero. A t-truncated
SVD of a matrix is one where only the first t singular values in the SVD are retained and the rest
are discarded. For t ≤ min{k,m}, let A(t) denote the t-truncated SVD of a matrix A ∈ Rk×m, it is
easy to see that the rank of A(t) is min(t, r).

The L1 "entry-wise" norm, or L1 norm, of a matrix A is ||A||1 :=
∑
i,j |Aij |. Let

||Ai,∗||1 :=
∑
j |Ai,j | and ||A∗,j ||1 :=

∑
i |Ai,j | denote the L1 norm of ith row and jth

column of A, respectively.

The L2 norm of a vector v = (v(1), . . . ,v(m)) ∈ Rm is ||v|| :=
√∑m

i=1 v(i)2. The spec-
tral norm, or norm for short, of a matrix A ∈ Rk×m is ||A|| := maxv∈Rm:||v||=1 ||Av|| =
maxu∈Rk:||u||=1 ||Aᵀu||.

2.2 A unified framework

We first describe a unified common framework for all five problems.

To unify distribution-matrices with Poisson-parameter matrices, we apply the well-known Poisson
trick [Szp01], where instead of a fixed sample size n, we take Poi(n) samples. The resulting random
variables Xi,j will be Poisson and independent. Furthermore, since with probability ≥ 1− 1/n3, the
difference between n and Poi(n) is O(

√
n log n), this modification contributes only smaller order

terms, and the algorithm and guarantees for Poisson parameters carry over to distribution matrices.

Having unified distribution- and Poisson-parameter- matrices, we focus on the remaining four
settings. In all of them, the observations Xi,j are independent non-negative random variables with
E[Xi,j ] = Mi,j and Var(Xi,j) ≤Mi,j . The last inequality clearly holds for the Poisson, Bernoulli,
and Binomial matrices. For collaborative filtering it follows as

Var(Xi,j) ≤ E((Xi,j)
2) ≤ E(Xi,j) = Mi,j .

Define the noise matrix N := X −M as the difference between X and its expectation M . Note that
the spectral distance between X and M is the same as the the spectral norm of the noise matrix N .

Let navg := ||M ||1/k denote the average expected number of observations in each row and column.
For simplicity, we assume ||M ||1, the total number of expected observation, is known. Otherwise,
since E[||X||1] = ||M ||1, it can be estimated very accurately.

3 Spectral norm of the regularized noise matrix

Recall that the noise matrix N = X −M , and its spectral norm ||N || is the spectral distance between
observation matrix X and M . When ||N || = O(

√
navg), a simple truncated-SVD of X can be shown

to recover M . Unfortunately ||N || can be >> √navg, and one of the reason for this is when some
row- or column-sums of M far exceed the average. This is because the expected squared norm of
row i of N is

∑
j Var(Xi,j) which is roughly ||Mi,∗||1, and if for some row i of M , the row sum

||Mi,∗||1 is much larger than the average value navg across the rows then ||N || will be large as well.
Similarly for the columns.

The difficulty caused by the heavy rows and columns ofM can be mitigated by a regularization that re-
duces their weight. Let w = (wf , wb) where wf = ((wf (1), .., wf (k)) and wb = (wb(1), .., wb(k))
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are the row and columns regularization weights, all at least 1. And let D(u) be the diagonal matrix
with entries u(i). The w-regularized A ∈ Rk×k is

R(A,w) := D−
1
2 (wf ) ·A ·D− 1

2 (wb).

Upon multiplying the ith row of matrixA by (wf (i))−1/2, its expected squared norm reduces by a fac-
tor 1/wf (i), and similarly for the columns. Therefore, selecting regularization weights w̃ = (w̃f , w̃b),
where w̃f (i) = max{1, ||Mi,∗||1/navg} and w̃b(j) = max{1, ||M∗,j ||1/navg} would reduce the ex-
pected squared norm of heavy rows and columns of R(N, w̃) to navg.

Unfortunately, the ||Mi,∗||1 and ||M∗,j ||1’s are not known, hence neither is w̃. However,
E[
∑
j Xi,j ] = ||Mi,∗||1, hence we approximate w̃ by w̄ = (w̄f , w̄b), where

w̄f (i) := max{1, ||Xi,∗||1
navg

} and w̄b(j) := max{1, ||X∗,j ||1navg
}.

Unless specified otherwise we use weights w̄, and refer to them as weights. This is one of the several
commonly used regularizations in spectral methods for community detection [CCT12, QR13, JY13].

When navg = o(log k), some rows and columns may have regularization weights that are below the
ideal weights, w̄f (i) � w̃f (i) and w̄b(j) � w̃b(j), and will not be regularized properly. Yet as
shown in Theorem 3, our technique can handle these problematic rows and columns as well.

The regularized spectral distance between two matrices A and B is ||R(A − B,w)||, the spectral
norm of their regularized spectral difference. Lemma 4 in the next section relates ||R(N, w̄)|| to L1

recovery guarantees, and implies that when ||R(N, w̄)|| ≤ O(
√
navg) a simple variation of truncated

SVD can recover M from X to the minmax lower bound on L1 recovery in Theorem 1.

When the number of samples is at least a few log k factors more than k, this spectral concentration
could probably be achieved with the help of the regularization. The more interesting, challenging,
and prevalent setting, is when few observations are available, and this is the main focus of the paper.

For Bernoulli Parameter matrices, [LLV17] obtained the tight bound ||R(N, w̄)|| = O(
√
navg) that

holds even for sparse graphs, or equivalently few observations. However it requires that every Mi,j =
O(||M ||1/k2), hence holds only for a very limited and often impractical subclasses of parameter
matrices M . They posed the question whether this bound also holds for general M . In Appendix F,
we provide a counterexample that answers the question in the negative. We construct an explicit
Bernoulli parameter matrix M , s.t. w.h.p. ||R(N, w̄)|| = Ω(navg), much larger than O(

√
navg).

Yet upper bounding ||R(N, w̄)|| is just one approach to achieving optimal sample complexity. One
of this paper’s contribution is an alternative approach that decomposes the noise matrix N into two
parts. A large part with small spectral norm, and a small part, in fact a submatrix, that may have a
large spectral norm. While we cannot identify the "noisy" part, as shown in Section 4, we can ensure
that no small part has a large influence on the estimate.

The next theorem establishes the above partition for all parameter matrices, and for all settings. To
specify the matrix decomposition, both here and later, for A ∈ Rk×m and subset S ⊆ [k]× [m], let
AS be the projection of matrix A over S that agrees with A for indices in S and is zero elsewhere.
Further let AI := AI×[m] and AIc := A[k]\I×[m] be the matrices derived from A by zeroing out all
rows outside, and inside, set I , respectively.

For the weights w̄ = (w̄f , w̄b) above, let w̄f (I) :=
∑
i∈I w̄

f (i) denote the weight of row subset I .
In the next theorem and thereafter, we refer to rows that are needed to be zero out to achieve spectral
concentration as contaminated rows.
Theorem 3. For X ∼M , any ε ≥ 1

navg
max

(
log4 k
k , exp−

navg
8

)
, with probability ≥ 1− 6k−3, there

is a row subset Icn ⊆ [k] of possibly contaminated rows with weight w̄f (Icn) ≤ εk and

||R(N, w̄)Ic
cn
|| ≤ O

(√
navg · log 2

ε

)
.

Since w̄f (i) is the maximum of 1 and the number of observations in row i, the theorem shows that
for some Icn ⊆ [k] with only a few rows, XIcn contains only few observations, and zeroing out rows
Icn from the regularized noise matrix R(N, w̄) would result in small spectral norm. The above result
is the first to imply nontrivial concentration in spectral norm, in linear sample regime, for the general
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matrices in any of the settings we considered. We derive an algorithm that uses this result and to
provably recovers low rank parameter matrices, even when the number of samples are only O(k).

To prove Theorem 3, we extend a technique used in [LLV17] for specialized Bernoulli matrices with
entries all below O(||M ||1/k2), to bound the spectral noise norm of general models and Matrices.
In Appendix E, we use standard probabilistic methods and concentration inequalities, to establish
concentration in `∞ → `2 norm for all sub-matrices of R(N, w̄). We then recursively apply a form
of Grothendieck-Pietsch Factorization [LT13] and incorporate these bounds to partition R(N, w̄) into
successively smaller submatrices and upper bound their spectral norms, until the resulting submatrix
is very small. Finally we show that the squared spectral norm of any matrix is at most the sum of
the squared spectral norms of its decomposition parts, and thus upper bound the spectral norm of
R(N, w̄), except for the small submatrix, that is excluded.

4 Recovery Algorithms

We start by describing a simple generalisation of truncated SVD, on which our algorithm builds.
Recall that for any A ∈ Rk×k, R(A,w) denotes the regularized matrix A, and that R(A,w)(t) is its
rank-t truncated SVD. For any t > 0, regularization weights w, and matrix A, let the (t, w)-SVD of
A be the de-regularized, rank-t-truncated SVD of regularized matrix A,

A(t,w) := D
1
2 (wf ) ·R(A,w)(t) ·D 1

2 (wb).

Let A be rank-r and B be any matrix. The next lemma bounds the L1 distance between A and B(r,w)

in terms of the regularized spectral distance between A and B. Appendix G provides a simple proof.

Lemma 4. For any rank-r matrix A ∈ Rk×kr , matrix B ∈ Rk×k, and weights w = (wf , wb),

||A−B(r,w)||1 ≤
√
r · (

∑
iw

f (i))(
∑
j w

b(j)) · ||R(A−B,w)||.

Recall thatN = X−M . The lemma implies that when ||R(N, w̄)|| is small, X(r,w̄), the (r, w̄)-SVD
of X , would recover M . However, ||R(N, w̄)|| could be large. Instead, Theorem 3 in the last section
implies that w.h.p., the following essential property holds.

Essential property There is an unknown contaminated set, Icn ⊂ [k], such that after zeroing all
Icn rows in X and M , their regularized spectral distance is at most,

||R(N, w̄)Ic
cn
|| ≤ τ := O(

√
navg log(rnavg)), (1)

and the weight of the set Icn is at most, w̄f (Icn) ≤Wcn := O(k/(rnavg)2). The above property holds
with probability ≥ 1− 6k−3, by choosing ε = 1/(rnavg)2 in Theorem 3. As the property holds with
high probability, the reminder of this section assumes that it holds.

This property implies a small regularized spectral distance between XIc
cn

and MIc
cn

, and since
w̄f (Icn) ≤Wcn, the “noisier” part of observation matrix, namely XIcn , is limited to just a few rows
and observations.

Recall that the (r, w)-SVD of any matrix A is the de-regularized rank-r-truncated SVD of regularized
matrix R(A,w). Equation (1) and Lemma 4 implies that a simple (r, w̄)-SVD of XIc

cn
would recover

MIc
cn

to a small error, and since the rows Icn of X have only a few observations, recover M as well.
But the set Icn of contaminated rows is unknown.

Building on this simple (r, w̄)-SVD, we derive our main algorithm, Curated SVD, that achieves the
same performance guarantee up to a constant factor, even when the set Icn is unknown.

In Curated SVD, for every row subset I ⊂ [k] with weight w̄f (I) ≤ Wcn, we limit the maximum
impact the submatrix R(X, w̄)I can have on the truncated SVD of regularized observation matrix
R(X, w̄). In particular, this limits the impact of the unknown “noisier” submatrix R(X, w̄)Icn .

To describe the algorithm, first we formally define the impact of a row subset on SVD components.
For a general matrix A ∈ Rk×k, let A =

∑k
j=1 σjujvj

ᵀ be its SVD. Then for any i, j ∈ [k], let
the impact of row i of A, on the jth component in SVD of A, beH(A, i, j) := σ2

juj(i)
2. Similarly,
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for a row subset I , the impact of AI , or simply impact of I , on jth component in SVD of A be
H(A, I, j) :=

∑
i∈I H(A, i, j), the sum of the impact of each row. From the standard properties of

SVD, it is easy to see thatH(A, I, j) = σ2
j

∑
i∈Iuj(i)

2 = ||AI · vj ||2.

Next, we present an overview of the algorithm and its analysis. Essentially, Curated SVD finds a set
Izr ⊆ [k] of row indices, such that the following objectives are fulfilled:

(i) Let (R(X, w̄)Ic
zr

)(2r) =
∑2r
j=1 σjujvj

ᵀ, be the rank 2r-truncated SVD of regularized observation
matrix upon zeroing out rows Izr. For every row subset I of weight w̄f (I) ≤Wcn and ∀ j ∈ [2r],
the impact of I on the jth component isH(R(X, w̄)Ic

zr
, I, j) = σ2

j

∑
i∈Iuj(i)

2 ≤ 16τ2.

(ii) The total weight of the set Izr is small, w̄f (Izr) =
∑
i∈Izr w̄

f (i) ≤ O(k/navg).

After finding such a row subset Izr, Curated SVD zeroes out rows Izr from X and simply returns
the (2r, w̄)-SVD of XIc

zr
as the estimate of M .

Objective (i), ensures that for every collection of rows I of weight w̄f (I) ≤ Wcn, the impact of
R(X, w̄)I on each of the first 2r components of SVD is small. As weight of Icn is at most Wcn, in
particular it limits the impact of the noisier submatrix R(X, w̄)Icn .

Objective (ii) ensures that the weight of Izr, and hence the number of observations in XIzr , that get
ignored in final truncated regularized SVD is small. This limits the loss due to the ignored rows Izr.

Lemma 13 in the appendix uses these two observations to show that, the (2r, w̄)-SVD of XIc
zr

recovers M .

Next, we describe the algorithm Curated-SVD and show that it finds a set Izr that achieves Objective (i)
and (ii). The pseudo-code of the algorithm is in Appendix B.

4.1 Description of the Curated SVD

Curated-SVD starts with Izr = φ. In each iteration it calculates
(
R(X, w̄)Ic

zr

)(2r)
=
∑2r
j=1 σjujvj

ᵀ,
the rank-2r truncated SVD of R(X, w̄)Ic

zr
. Then it calls subroutine Row-Deletion for each j ∈ [2r].

Row deletion checks for the row subsets I ⊆ Ic
zr with small weight and high impact that violate

Objective (i). It then adds rows from such subsets I to Izr to reach Objective (i) in a way that Izr
does not end up too heavy. To do this, Row-Deletion tries to find a row subset I ⊆ Ic

zr with weight
w̄f (I) ≤Wcn and maximum impactH(R(X, w̄)Ic

zr
, I, j) = σ2

j

∑
i∈Iuj(i)

2. This however is essen-
tially the well-known NP-hard 0-1-knapsack problem. Instead, we use a greedy 0.5-approximation
algorithm [SCGDS92] for 0-1 knapsack, to obtain a row subset I with weight ≤Wcn, such that its
impact is at least half of the maximum possible, namely

H(R(X, w̄)Ic
zr
, I, j) ≥ 0.5 max{H(R(X, w̄)Ic

zr
, I ′, j) : I ′ ⊆ Ic

zr,
∑
i∈I′ w̄

f (i) ≤Wcn}.

If the impact of row collection I , found using the greedy algorithm, isH(R(X, w̄)Ic
zr
, I, j) ≤ 8τ2,

sub-procedure Row-Deletion terminates. Else it adds a row i ∈ I to Izr, with probability of row i ∈ I
proportional to its impact to the weight ratio,H(R(X, w̄)Ic

zr
, i, j)/w̄f (i). Row-Deletion repeats this

procedure on the remaining rows in Ic
zr, until it terminates.

After calling Row-Deletion for each j ∈ [2r], Curated-SVD checks if the new rows were added to Izr
in this iteration, in which case it repeats the same procedure in the next iteration with updated Izr,
else it returns (2r, w̄)-SVD of XIc

zr
as the estimate of M .

Curated SVD achieves Objective (i). Iterations in Curated-SVD stop when for the current choice
of Izr, for all j ∈ [2r], Row-Deletion fails to add any row to Izr. This happens when for each j ∈ [2r],
the greedy-approximation algorithm in Row-Deletion finds the row subset I that has impact ≤ 8τ2,
which implies that the impact of every row subsets I ′ ⊆ Ic

zr of weight w̄f (I ′) ≤Wcn, is at most 16τ2.
Therefore, iterations in the algorithm stops only when Izr meets Objective (i).

Curated SVD achieves Objective (ii) w.p. 1 − O(k−2). This is more challenging of the two
objectives. The proof is based on the following key observation proved in the Appendix C.1.

There exist a row subset Ihv s.t. for every subset I ⊆ Ic
hv of weight w̄f (I) ≤Wcn, the following holds

||R(XI , w̄)|| ≤ 2τ. And moreover, the weight of Ihv is w̄f (Ihv) ≤ O(k/navg).
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It is easy to see that ||R(XI , w̄)||2 upper bounds the impact submatrix R(XI , w̄) can have on
the components of SVD. Therefore, from the previous observation, any row subset I of weight
w̄f (I) ≤ Wcn with impact ≥ 8τ2, must have more than half of its impact due to the rows I ∩ Ihv.
Recall that Row-Deletion adds a row from I to Izr only when I has impact ≥ 8τ2. We show that in
each step in expectation it adds more weight from I ∩ Ihv to Izr, then from I ∩ Ichv.

Using this we show that, the expected total weight of rows added to Izr is at most a constant times the
weight of Ihv, that is O(k/navg), and Objective (ii) is achieved with constant probability. Repeating
the procedure O(log k) times on the same data, Objective (ii) holds with probability 1−O(k−2).

Finally, by combining Lemma 13 and the fact that the Curated SVD achieves both objectives, we
prove Theorem 2 in Appendix D.

Broader impact

This work does not present any foreseeable societal consequence.
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