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Abstract

We introduce a new theoretical framework to analyze deep learning optimization
with connection to its generalization error. Existing frameworks such as mean
field theory and neural tangent kernel theory for neural network optimization anal-
ysis typically require taking limit of infinite width of the network to show its global
convergence. This potentially makes it difficult to directly deal with finite width
network; especially in the neural tangent kernel regime, we cannot reveal favor-
able properties of neural networks beyond kernel methods. To realize more natural
analysis, we consider a completely different approach in which we formulate the
parameter training as a transportation map estimation and show its global conver-
gence via the theory of the infinite dimensional Langevin dynamics. This enables
us to analyze narrow and wide networks in a unifying manner. Moreover, we give
generalization gap and excess risk bounds for the solution obtained by the dynam-
ics. The excess risk bound achieves the so-called fast learning rate. In particular,
we show an exponential convergence for a classification problem and a minimax
optimal rate for a regression problem.

1 Introduction

Despite the extensive empirical success of deep learning, there are several missing issues in theoret-
ical understanding of its optimization and generalizations. Even though there are several theoretical
analyses on its generalization error and representation ability [46, 18, 2| [67) 156], they are not nec-
essarily well connected with an optimization procedure. The biggest difficulty in neural network
optimization lies in its non-convexity. Recently, this difficulty of non-convexity is partly resolved by
considering infinite width limit of networks as performed in mean field theory 58 140]] and Neural
Tangent Kernel (NTK) [32,22]. These analyses deal with different scaling of parameters for taking
the limit of the width, but they share a similar spirit that an appropriate gradient descent direction
can be found in an over-parameterized setting until convergence.

The mean field analysis formulates the neural network training as a gradient flow in the space of
probability measures over the weights. The gradient flow corresponding to a deterministic dynamics
of the weights can be analyzed as an interacting particle system [47, 18] |53} 154]. On the other
hand, a stochastic dynamics of an interacting particle system can be formulated as McKean—Vlasov
dynamics, and convergence to the global optimal is ensured by the ergodicity of this dynamics
[40, 41]]. Intuitively, inducing stochastic noise makes the solution easier to get out of local optimal
and facilitates convergence to the global optimal.

The second regime, NTK, deals with larger scaling than the mean field regime, and the gradient
descent dynamics is approximated by that in the tangent space at the initial solution [32, 123} 1,22} 3]
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That is, in the wide limit of the neural network, the gradient descent can be seen as that in an
reproducing kernel Hilbert space (RKHS) corresponding to the neural tangent kernel, which resolves
the difficulty of non-convexity. Actually, it is shown that the gradient descent converges to the
zero error solution exponentially fast for a sufficiently large width network [23| |1, [22]]. In addition
to the optimization, its generalization error has been also extensively studied in the NTK regime
(231 11} 22} [76L 116 (171 [79L 1501 48}, 34]. On the other hand, [29] pointed out that non-convexity of a
deep neural network model is essential to show superiority of deep learning over linear estimators
such as kernel methods as in the analysis of [65] 130, 66]. Therefore, the NTK regime would not be
appropriate to show superiority of deep learning over other methods such as kernel methods.

The above mentioned researches opened up new directions for analyzing deep learning optimization.
However, all of them require that the width should diverge as the sample size goes up to show
the global convergence and obtain generalization error bounds. On the other hand, a convergence
guarantee for “fixed width” training is still difficult and we have not obtained a satisfactory result
that can bridge both of under-parameterized and over-parameterized settings in a unifying manner.
One way to tackle non-convexity in a finite width situation would be stochastic gradient Langevin
dynamics (SGLD) [77, 151} 24]. This would be useful to show the global convergence for the non-
convex optimization in deep leaning. However, the convergence rate depends exponentially to the
dimensionality, which is not realistic to analyzing neural network training that typically requires
huge parameter size.

Our contribution: In this paper, we resolve these difficulties such as (i) diverging width against
sample size and (ii) curse of dimensionality for analyzing Langevin dynamics in neural network
training by formulating the neural network training as a transport map estimation problem of the
parameters. By doing so, we can deal with finite width and infinite width in a unifying manner.
We also give a generalization error bound for the solution obtained by our optimization formulation
and further show that it achieves fast learning rate in a well-specified setting. The preferable gen-
eralization error heavily relies on similarity between a nonparametric Bayesian Gaussian process
estimator and the Langevin dynamics. More details are summarized as follows:

e (formulation) We formulate neural network training as a transportation map learning of
weights (parameters) and solve this problem by infinite dimensional gradient Langevin dy-
namics in RKHS [20} 45]. This formulation has a wide range of applications including two
layer neural network, ResNet, Wasserstein optimal transportation map estimation and so on.

o (optimization) Based on this formulation, we show its global convergence for finite width and
infinite width in a unifying manner. We give its size independent convergence rate.

o (generalization) We derive the generalization error bound of the estimator obtained by our
optimization framework. We also derive the fast learning rate in a student-teacher setup. Es-
pecially, we show exponential convergence for classification.

2 Problem setting and model: Training parameter transportation map

In this section, we give the problem setting and notations that will be used in the theoretical analysis.
Basically, we consider the standard supervised leaning where data consists of input-output pairs
z = (z,y) where z € R is an input and y € R is an output (or label). We may also consider
a unsupervised learning setting, but just for the presentation simplicity, we consider a supervised
learning. Suppose that we are given n i.i.d. observations D,, = (z;,y;) distributed from a
probability distribution P, the marginal distributions of which with respect to = and y are denoted
by Px and Py respectively. We denote X = supp(Py ). To measure the performance of a trained
function f, we use a loss function £ : R x R — R ((y, f) — £(y, f)) and define the expected risk

and the empirical risk as £(f) := Ey x [¢(Y, f(X))] and L(f) = LS U(yi, f(x;)) respectively.
As in the standard deep learning, we optimize the training risk L. Our theoretical interest is to bound
the following errors for an estimator f:

~ ~

Excesstisk: £(f) — inf L(f), Generalization gap: £(f) — L(f).
f:measurable
In a typical situation, the generalization gap is bounded as O(1/+/n) via VC-theory type analysis
[43]], for example. On the other hand, the excess risk can be faster than O(1/+/n), which is known
as a fast learning rate [42, 15, 135 127]. The population Ls-norm with respect to P is denoted by



I/ lz, := VEz~p[f(Z)?] and the sup-norm on the domain of the input distribution Px is denoted
by ||f||00 ‘= SUPgesupp(Px) |f(l‘)|

2.1 Introductory setting: mean field training of two layer neural network

Here, we explain the motivation of our theoretical framework by introducing mean field analysis of
two layer neural networks. Let us consider the following two layer neural network model:

f@(.%‘) = ﬁ 2%21 ama(wr—rrzx)~ (1

where o : R — R is a smooth activation function, (a,,)}_; C R is the set of weights in the second
layer which we assume is fixed for simplicity, and © = (w,,)M_, C R% is the set of weights in
the first layer. We aim to minimize the following regularized empirical risk with respect to © and
analyze the dynamics of gradient descent updates:

. iy M
mineg l:(f@) + ﬁ Emzl |wm||2'

The stochastic gradient descent (SGD) update for optimizing L (fo) with respect to © is reduced to

Wit = w) = (3wl + Va, Lifow)) +v/2n/Be™, 2)
where Vi, L(fom) = dm LN xia’(wﬁﬁﬁmi)ﬁ’(yhf@m(:ci)) and e§m> is an i.i.d. Gaussian

noise mimicking the deviation of the stochastic gradient. Here, > 0 is a step size and 8 > 0 is an
inverse temperature parameter. This could be time discretized version of the following continuous
time stochastic differential equation (SDE):

A (£) = = (3 wm(t) + Va0 £(for))dt + v/20/BdB{™,

where (Bt(m))t is a d-dimensional Brownian motion. In the mean field analysis, this optimization
process is casted to an optimization of probability distribution over the parameters [40} 41} 147} [18]
based on the following integral representation of neural networks:

fola) = [ aotuTa)dn(w) ®

where p is a Borel probability measure defined on the parameter space R? and the parameter in the
second layer is fixed to a constant ¢ € R just for presentation simplicity. The time evolution of the
distribution p is deduced from the optimization dynamics with respect to each “particle” given by

AW (t) = ~ (W (1) + a3 a0’ (W) T2)t (5, () )t + /514 B,
i=1

where p; is the probability law of W (¢) € R? with an initial distribution W (0) ~ pg, which is one
of the McKean-Viasov processes. We can see that this equation is space-time continuous limit of
the update Eq. (Z). Importantly, p; admits a density function 7; obeying the so-called continuity
equation [40, 41]. The usual finite width network is regarded as a finite sum approximation of the
integral representation (Eq. (3)). As a consequence, the convergence analysis needs to take limit
of infinite width to approximate the absolutely continuous distribution p;. Hence, a finite width
dynamics is outside the scope of mean field analysis. This is due to the fact that an independent noise
is injected to each particle regardless its location; the diffusion B; is independently and identically
applied to each realized path {W(¢) | ¢ > 0} (interaction between particles is induced only through
gradient). However, in a real neural network training, the noise induced by stochastic gradient has
high correlation between each node. Thus, we need a different approach.

Lift of McKean-Vlasov process Our core idea is to “lift” the stochastic process W (¢) as a process
of a function with the initial value ¥ (0). For each W (0) = wy, the particle’s location at time ¢ is
determined by W (t) = W (¢, wo). This means that the process generates a function wg — W (¢, wo)
with respect to the initial solution wy. By considering the stochastic process of this function itself
directly, the dynamics is transformed to an infinite dimensional stochastic differential equation,
which has been studied especially in the stochastic partial differential equation [20]. In other words,



we try to estimate a map from the initial parameters to the solution at time ¢ instead of analyzing
each particle’s behavior.

From this perspective, we can directly regularize the smoothness of the trajectory, especially, we can
incorporate a smoothed noise of the dynamics by utilizing a spatially correlated Gaussian process
in the space of functions on parameters. Let W;(w) = W (¢, w) and we regard W; as a member of
L3 (po) space. Then, f,, can be rewritten by

i) = [ ao(Witw) o)dpow) = [ ar(wTa)dWitpn(w). @

where Wtpg is the pushforward of the measure pg by the map Wy, i.e., fiu(B) := po f~1(B) =
w(f~1(B)) for a Borel measurable map f : R? — RY, a Borel measure /s, and a Borel set B C R?.
By using this notation, the stochastic process we consider can be written as

AW, = —(AW; + Vi L(fw,))dt + /28-1dE;, (5)

where A : La(pg) — La(po) is an unbounded linear operator corresponding to a regularization
(which will be explained later in more details), Vy L(fy) is the Frechet derivative of L£(fw)

with respect to W in the space of La(pg), in our setting, which is given by VWZ( fw)(w) =
at 30 wio! (W(w) @)l (yi, fw (z:)). (&)e is a cylindric Brownian motion in La(po) [201,
which is an infinite dimensional Brownian motion and will be defined rigorously later on. In prac-
tical deep learning, the regularization term AW, is induced by several mechanism such as weight
decay [37]], dropout [60, [74], batch-normalization [31]. As a result, the regularization term AW}
introduces spatial correlation between particles unlike the McKean-Vlasov process.

Then, training two layer neural networks is formulated as optimizing the map W : w € R?
W (w) € R? with the initial condition W, = I (identity map). This dynamics is well analyzed
and guaranteed to converge to at least a stationary distribution (a.k.a., invariant measure) under mild
assumptions [[19} 139,159,133, 57, 28] which is useful to show convergence to a (near) global optimal.

Remark 1. We would like to emphasize that our formulation admits a finite width neural network
training by setting the initial distribution py as a discrete distribution py = ﬁ Zj\m/le 0w, for a
Dirac measure d,,,, which has probability 1 on a point wy,. In this situation, optimizing the map
Wy corresponds to optimizing the finite width model (1)) because p; = Wipo = % 2%21 OW, (wm)
which is still a discrete distribution throughout entire t € R_,. This is remarkably different from both

mean field analysis and NTK analysis that essentially take infinite width limits: mean field analysis
in [40, 41)] requires M = Q(e™') for a time horizon T and NTK requires M = Q(poly(n)) [79].

General formulation of our optimization problem Here, we describe mathematical details of
optimizing the transportation map in a more general setting and give a practical algorithm of the
corresponding GLD. We assume that the map W, (+) is included in a separable Hilbert space H
with norm || - |3 and an inner product (-, -)3 (in the previous section, H = L2(po)). The Hilbert

space H consists of functions whose domain is a set ¥} and whose range is W (in the previous
example, W = R? amd W = R?%). Since a function w € # has no smoothness condition in
typical settings, we consider a more “regulated” subspace of 7{. Such a subspace is denoted by
Hy and given by Hy = {D 1o arer | Yopeo @i/ pk < 00}, where (ex)72, is an orthonormal
basis of H and (i), is a non-increasing non-negative sequence. We equip an inner product
(-, )2, to the space H defined by (f, 9)u, = Y oo @kBr/ 1k for f =" arer € Hy and
g = > reoBrer € Hg. Correspondingly, the norm || - |5, is defined from the inner product.
When H = Lo(pg), Hx becomes a reproducing kernel Hilbert space (RKHS) corresponding to a
kernel function K (z,y) = > e, tteer(x)ex(y) where 2,y € R? under an appropriate convergence
condition. That is, we have the reproducing property (K (z,-), W)y, = W (x) for each W €
‘Hy. Based on the norm || - ||%,, we define an unbounded linear operator A : H — H as Af =
A hso ke, for f = 357 g arer € H. We note that Af = 3Vl fII3,,. which is a Frechet
derivative of A|| - [|3,, in # (which is the derivative of the RKHS norm, if H is an RKHS). We
assume that for each W € 7, there exits a function fyr : R? — R as in Eq. @), and we basically
aim to minimize the regularized empirical risk

L(fw) + 3IW 3,



By abuse of notation, we denote by EA(W) indicating E( fw). To execute this non-convex opti-
mization, we use the GLD in the infinite dimensional Hilbert space # as introduced in Eq. (3).

Here, (§)i>0 in Eq. (§) is the cylindrical Brownian motion defined as & = >, Bt(k)ek

where (Bt(k))tzo is a real valued standard Brownian motion and they are independently identical

fork=0,1,2,.. [ﬂ Since this is defined on a continuous time domain, we introduce a discrete time
implicit Euler scheme for practical implementation:

Wiei1= Wi i AWies1 + Vi £(Wi)) 4/ D et & Wi =S, (WimnVw W) +/ %er), 6)

where 7 > 0 is the step size and S, = (I + nA)~!. We can see that the “regularization effect”
AW induces the spacial smoothness of the noise of the gradient. It is known [[14] that under some
assumption (Assumption [I| below is sufficient), the process (3) has a unique invariant measure 7
given by

dme

T (W) ocexp(=BLW)),
Vg

where v is the Gaussian measure in H with mean O and covariance (3A)~! (see Da Prato &
Zabczyk [20] for the rigorous definition of the Gaussian measure on a Hilbert space and related
topics about existence of invariant measure). In a special situation where 5 = n, A = 1/n and

BLA(W) is a log-likelihood function of some model, this invariant measure is nothing but the Bayes
posterior distribution for a Gaussian process prior corresponding to the RKHS H . Remarkably,
this formulation can be applied to several problems other than training two layer neural networks:

e Ordinary nonparametric regression model: W = R%, W = R and fy (x) = W(x).

e Two layer neural networks (continuous topology): W = W = R? and fiy =
Jaa alw)a(W(w) "z)dpo(w).

e Two layer neural networks (discrete topology): W = {1,2,3,...}, W = R and fyr =
et amo (W (m)"z).

e Two layer neural networks (discrete topology): W = {1,2,3,...}, W = R? and fw =
S amo(W(m) ).

e Deep neural networks (continuous topology): W = R?% x {1,..., L}, W = R< and

fw (@) = u" (fga @w,Lo(W(w, L) )dpo(w)) 0 -+ o ([pa aw10(W(w, 1) Ta)dpo(w)) ,

where u € R? and a,, € R? forw € R?and ¢ € {1,...,L}.

e ResNet: W = R4 x {1,...,T},VNV:Rd and

fw(@)=u" (I+ [gaawro(W(w, T)T)dpo(w)) o - -+ o (I+ [gaaw,10 (W (w, 1) T2)dpo(w)) ,

where u € R and a,, ; € R? forw € R¢and t € {1,...,T}.

e Wasserstein optimal transportation map: W = W = R and fi(z) = W(z). For
random variables X and Y obeying distributions P and @ respectively: W?(P,Q) =
miny.q=fy tp Ex~p[|X — fwr (X)|?].

3 Optimization error bound of transportation map learning

To show convergence of the dynamics (6], we utilize the recent result given by [43]. Let |W]|. :=

(Siso ()= (We)3) " and PyW = SN (W, ex)pen for W € H where (e;); is the
orthonormal system of H. Accordingly, let H n be the image of Py: Hy = PyH.

Assumption 1.

(i) (Eigenvalue condition) There exists a constant c,, such that py, < c,(k + 1)

"More natural modeling would be that the regularization A and the covariance of &; depend on the current
solution W, but we consider this simplest model for technical tractability.



(i) (Boundedness and Smoothness) There exist B, M > 0 such that the gradient of the empirical
risk is bounded by B and is M -Lipschitz continuous with « € (1/4, 1) almost surely:

IVL(W)|ly < B(YW € H), [[VLW) = VLW )|ls < LIW — W|la (YW, W' € H).

(iii) (Third order smoothness [13} Assumption 2.7]) Let EN :Hy — Rbe [ZN = E(PN w). L is
three times differentiable, and there exists o/ € [0,1),Cy € (0,00) such that for all N € N
and YW, h,k € My, [[VPLy(W) - (b, k)llor < Corl|hll3[[Ellae, IV2Ly (W) - (B, K)ll3 <

~

Cor|hll=ar |kl (a.s.), where V3L (W) is the third-order derivative, we identify it with
third-order linear form, and we also write V3L (W) - (h, k) for the Riesz representor of
leH = V3Ln(W) - (k).

The first condition controls the strength of the regularization term. The second condition ensures
the smoothness of the loss function that yields the disspativity condition of the objective combined
with the regularization term. That is, the solution of the gradient Langevin dynamics can remain
a bounded region with high probability. The Lipschitz continuity of the gradient is a bit strong
condition because the right hand side appears a weaker norm || - ||, than the canonical norm || - ||%.
However, this gives the geometric ergodicity (exponential convergence to the stationary distribution)
of the discrete time dynamics. The third condition is more technical assumption. This condition is
used for bounding the continuous time dynamics and discrete time dynamics. Intuitively, a smoother
loss function makes the two dynamics closer. In particular, /2% term appearing in the following
bound can be shown by this condition.

Then, we can show the following weak convergence rate. Let 7, be the probability measure on H
corresponding to the distribution of W.

Proposition 1. Assume Assumptionholds and B > 1. Suppose that IR > 0, 0 < L(Y, fw (X)) <

_ . min( 52,1
R forany W € H (a.s.). Let p = m andb = 2B+ % Then, for A} = 4log(ﬁ(‘gi“1°)/il)_6))5

and Cy, = [V + 1] + @ where 0 < § < 1 satisfying § = Q(exp(—O(poly(A\~1)B))), b =

max{b, 1}, k = b+1and V = 4b/(\/(1+p'/7)/2—p"/") (where V = 4b/( [(+exp(—2))/2—exp(— )
forn = 0), and for any 0 < a < 1/4, the following convergence bound holds for almost sure
observation D,,: for either L = Lor L =L,

ﬁnl/Q—a .=
A '
where C' is a constant depending only on c,,, B, L,Cy, a, R (independent of 0, k, 3, \).

[Ewinmi [LWr)] = Ewer [LW)]| < C1 | Cw exp(=Agnk) +

We utilized the theories of [43] as the core technique to show this proposition. Its complete proof
is given in Appendix |[Al We can see that as k£ goes to infinity the first term of the right hand side
converges exponentially, and as the step size 7 goes to 0, the second term converges arbitrary close
to the rate of /7. It is known that the convergence rate with respect to 7 is optimal [[15)]. Therefore,
if we choose sufficiently small 1 and sufficiently large k£, we can sample W}, that obeys nearly
the invariant measure m.,. As we will see later, sample from 7., has a nice property in terms
of generalization. As we have remarked in Remark [T} the convergence is guaranteed even for the
finite width neural network setting, i.e., po is a discrete distribution in the model (@). This is much
advantageous against existing framework such as mean field analysis and NTK.

The above proposition gives a bound on the expectation of the loss of the solution W}, instead of a
high probability bound. However, due to the geometric ergodicity of the dynamics, by running the
algorithm for sufficiently large steps, we can show that the probability that there does not appear
Wi in the trajectory that has a loss such that L(W}) — Ew . [L(W)] < O(E})) approaches 0
with exponential rate. Since this direction requires much more involved mathematics, we consider
a simpler one as described above.

4 Generalization error analysis

Generalization gap bound Here, we analyze the generalization error of the solution of W} ob-
tained by the dynamics (6).



Theorem 1. Assume Assumption|[l|holds with 3 > 1, and assume that the loss function is bounded,
i.e., there exits R > 0 such that VW € H, 0 < L(Y, fw (X)) < R (a.s.). Then, forany 1 > 6 > 0,
with probability 1 — 0, the generalization error is bounded by

28 1+ eR*/2

The proof is given in Appendix [B] To prove this, we used a PAC-Bayes stability bound [52]]. From
this theorem, we have that the generalization error is bounded by O(1/+/n) and the optimiza-
tion error =;. The O(1/4/n) term is the generalization gap for the stationary distribution, and
as k goes to infinity, the total generalization gap converges to this one. [44] also showed a PAC-
Bayesian stability bound for a finite dimensional Langevin dynamics (roughly speaking, their bound
is O(4/BB?%/(n)))), but their proof technique is quite different from ours. Our proof analyzes the
generalization error under the stationary distribution of the dynamics and bounds the gap between
the stationary distribution and the current solution, while [44]] evaluated the bound by “accumulat-
ing” the error through the updates without analyzing the stationary distribution.

Ew, [£(W)] < Bu, [£(Wi)] + 55

+ 2Z5.

Excess risk bound: fast learning rate Next, we bound the excess risk. Unlike the O(1/+/n)
convergence rate of the generalization gap bound, we can derive a fast learning rate which is faster
than O(1/4/n) in a setting of realizable case, i.e., a student-teacher model, for the excess risk instead
of the generalization gap. As a concrete example, we keep the following two layer neural network
model in our mind. For a map W : R% — R%, let a “clipped map” W be W (w) := R x
tanh(W (w)/R), where R > 1 is a constant and tanh is applied elementwise. Then, the following
two layer neural network model falls into our analysis:

Jw () = [o, pa Wy (a)o (Wi (w) " x)dpo(a, w) 8

for a measurable map W = (W, Ws) : R x R — R? x R and an activation function ¢ that is
1-Lipschitz continuous and included in a Hélder class C3(R). Here, we used the clipping operation
only for a technical reason because the current convergence analysis of the infinite dimensional
Langevin dynamics requires a boundedness condition. This could be removed if we could show its
convergence under more relaxed conditions. The fast learning rate analysis is not restricted to the
two layer model, but it can be applied as long as the following statement is satisfied (e.g., ResNet).

Lemma 1. For the model B), if ||z|| < D forany x € supp(Px), then it holds that || fw — fw |l co <

(1+ RD)[[W = W[z, (py) where [W = W'|[L, ) = [ [[W((a,w)) = W'((a,w))|*dpo(a, w).
(po)

The proof is given in Appendix |[Cl This lemma indicates that to estimate a function fyy«, its esti-
mation error can be bounded by the estimation error of the parameter W. To ensure the smooth
gradient assumption (Assumption and precisely characterize the estimation accuracy by the
model complexity, we consider an RKHS with “smoothness” parameter v as the model of W.
Let T : H — 7 be a linear bounded operator such that (T h,h')y = Y ;o urakey, for
h=>,arepand ' =", o) ey. Let the range of power of Tx be Hi+ = {f = T;/Qh | h € H}
for v > 0 which is equipped with the inner product (h,h/)3,., = > peq iy k. We can see
that v = 1 corresponds to H x and ~ controls the “complexity” of Hx~, that is, if v < 1, then

Hyi — Hx~, and otherwise, H g~ — Hx. We consider a problem of optimizing L (fw)or L(fw)
with respect to W in the model H x~. To so so, by noticing that any g € H x~ can be written as

g = T;/ W for W € H, we write the empirical and population risk with respect to W € H as
LW) = E(fTQ/ZW)’ LW) = E(fT;/QW). Let f* € argmin; £(f) where min is taken over all
measurable functions and we assume the existence of the minimizer.
Assumption 2 (Bernstein condition and predictor condition [73\ [7]]). The Bernstein condition is
satisfied: there exist Cp > 0 and s € (0, 1] such that for any fwr (W € H),

E[(0(Y, fw (X)) = (Y, £*(X)))*] < C(L(fw) — L))",
Moreover, we assume that, for any h : R* — R and = € supp(Px), it holds that

By x=s[exp (= (Y h(z)) = (Y, f*(2))))] < 1.



The first assumption is called Bernstein condition. We can show that this condition is satisfied by
the logistic loss and the squared loss with bounded fy and f* (Theorem[3)). The second assumption
is called predictor condition [[13] and can be satisfied if ¢ is a log-likelihood function and the model
is correctly specified (that is, the true conditional probability density (or probability mass) p(y|x)
is expressed as p(y|x) ~ exp(—£(y, f*(x)))). To extend the theory to misspecified situations, we
need the second assumption. For example, if we use a squared loss in a regression problem whereas
the label noise is not Gaussian, then it is a misspecified situation but if the noise has a light tail (such
as sub-Gaussian), then the assumption can be satisfied [[73].

Our analysis is valid even if f* cannot be represented by fy for W € . This model misspecifi-
cation can be incorporated as bias-variance trade-off in the excess risk bound. This trade-off can be
captured by the following concentration function. Let H i = H g~+1, and the Gaussian process law

of T}/ W for W ~ vg be Ug. Then, define the concentration function as

= i 2 - % : <
O3a(Q) = Lt BN, —log7s({h € H: Al < o)) + log(2),

where, if there does not exist h € H  satisfying the condition in inf, then we set ¢ »(€) = oo.

Theorem 2. Assume that Assumption 2| holds, ||z|| < D (Vx € X), v > 1/2, 8 > nand 3 < n.
Assume that the loss function ((y, ) is included in C3(R) for any y € supp(Py) and there exists
B > 0 such that |88—1;€(y,u)| < B (Yu € Rst. |ul < R, Yy € supp(Py), k = 1,2,3).
Assume also that 0 < ((Y, f(X)) < R (a.s.) forany f = fw (W € H)and f = f*, and
l2(u) := By |x—,[((Y,u)] satisfies \%(u) — %(u'ﬂ < Lju — /| (Vu,u’ € R,Vx € X) fora
constant L > 0. Let & := 1/{2(y+1)} and 0 be an arbitrary real number satisfying 0 < 0 < 1—a.
We define €* := inf{e > 0 : ¢ (€) < B} V n~ 7. Then, the expected excess risk is bounded as

1 26/0 1]
Epn [Ew, [L(Wr)] = £(f7)] < 0[6*2 V (e 4 T TRTT (AB) T ) T ﬂ +E 9
where C'is a constant independent of n, B, \, 0, k.

The proof is given in Appendix [D.2] It is proven by using the technique of nonparametric Bayes
contraction rate analysis [25} 71, [72]. However, we cannot adapt these existing techniques because
(1) the loss function is not necessarily the log-likelihood function, (ii) the inverse temperature is
generally different from the sample size. In that sense, our proof is novel to derive an excess risk
for (i) a misspecified model, and (ii) a randomized estimator with a general inverse temperature
parameter.

The bound is about expectation of the excess risk instead of high probability bound. However, a
high probability bound is also provided in the proof and the expectation bound is derived from the
high probability bound.

If the bias is not zero, i.e., infyyey L(W) — L(f*) = 6 > 0, then we may choose €** = O(dp)
because ¢, (€) is finite for €2 > &, and infinite for €2 < dy. Thus, a misspecified setting is covered.

(i) Example of fast rate: Regression Here, we apply our general result to a nonparametric re-
gression problem by the neural network model. We consider the following nonparametric regression
model: y; = fw«(x;) + €;, for W* € H where ¢; is an i.i.d. noise with mean 0 and |¢;| < C' < oo
(a.s.). To estimate fy -, we employ the squared loss £(y, f) = (y — f)?. Then, we can easily
confirm that f* is achieved by fy - via a simple calculation: argmin; £(f) = fw-. Moreover,
for the squared loss, s = 1 is satisfied as remarked just after Assumption 2] Moreover, we further
assume that W* € Hov+1) for @ < 1 — a. Then, the “bias” and “variance” terms can be evalu-

. _2(1=6) ~
ated as lnfhe’)'-lk:ll(h)f[l(f*)gé /\ﬂ”hH%k < Ae o and —loguﬁ({h cH: HhHH < 6}) <

(e/(AB)Y 2)_1%. Accordingly, we can show the following excess risk bound:

Epr By, [L(We)] — £(f*)] < max {(A8)TFa7on w678 A=58=1 A% 1/n} + 5, (10)

(see Appendix [D.4|for the derivation). In particular, if 5 = A~ = n, then this convergence rate can
pp p g

be rewritten as max{n"~ a7 ,n"% =n"% (-0 < 1- &), which can be faster than 1//n and is
controlled by the “difficulty” of the problem & and 6.



Remark 2. As an example, if the RKHS Hy is a Sobolev space W' +d/ 2(IRd) with regularity pa-
rameter a + d/2 (more precisely, each output W;(-) is a member of a Sobolev space) and H is
Lo(po), then we can set & = %—kd' If the true parameter W* is included in another Sobolev space
W2(R?) for b < a, then we may choose 0 = 2b/(2a + d) and the convergence rate is bounded

by n—20/(atd) \phich coincides with the posterior contraction rate of Gaussian process estimator
derived in [72)]. It is known that, if a = b, this achieves the minimax optimal rate /[78]].

(ii) Example of fast rate: Classification (exponential convergence) Here, we consider a binary
classification problem y € {£1}. We employ the logistic loss function £(y, f) = log(14+exp(—yf))
fory € {£1} and f € R. Corresponding to the loss function, we define the expected loss condi-
tioned by X = x as h(ulz) = E[{(Y,u)|X = z]. Note that h(0|z) = log(2). We assume that the
strength of noise of this binary classification problem is low as follows.

Assumption 3 (Strong low noise condition). Let h*(x) := inf,cg h(u|x). Assume that there exists
d > 0 such that h*(x) <log(2)—d (Y € X). Moreover, there exists W* € H such that f* = fy~,

that is, SUD e qupp(Py) |h(fw=(z)|z) — h*(z)| = 0.

The first assumption is satisfied if the label probability is away from the even probability 1/2:

|P(Y|X = x) — 1/2| > Q(V/). This condition means that the class label has less noisy than
completely random labeling. In that sense, we call this assumption the strong low noise condition,
which has been analyzed in [36, 4} |49]]. A weaker low noise condition was introduced by [70] as
Tsybakov’s low noise condition. The second assumption can be relaxed to the existence of W only
for some € > cod with sufficiently small ¢y, but we don’t pursuit this direction for simplicity.

Assumption 4. Assume X (= supp(Px)) C [0,1]% and X is a minimally smooth domain in a sense
of [l61]. Px has a density p(x) which is lower bounded as p(x) > ¢y (Vx € supp(Px)) on its
support. For 2m > d and m > 3, the activation function satisfies o € C™(R) and f* is included in
the Sobolev space Wi (X)) defined on X (see [21)] for its definition).

The following theorem gives an upper-bound of the probability of “perfect classification” for the
estimator. More specifically, it shows the error probability converges in an exponential rate.

Theorem 3. Under Assumptions [3| and H} the convergence in Theorem |2 holds for s = 1. Let
g*(x) = sign(P(Y = 1|X = x) — 1/2) be the Bayes classifier. If the sample size n is sufficiently
large and \, B are appropriately chosen, then the classification error converges exponentially with
respect to 3 and k:

Blme({We € H | Px(sign(fw, (X)) = 6" (X)) # 1) § e o+ exp(~</ 56707,

The proof is given in Appendix[D.3] This theorem states that if we choose the step size 7 sufficiently
small, then the error probability converges exponentially as k£ and ( increase. Even if the first term
of the right hand side is larger than the second term, we can make this as small as the second term
by running the algorithm several times and picking up the best one with respect to validation error
if 2, < 1 (see Appendix [D.3]for this discussion).

5 Conclusion

In this paper, we have formulated the deep learning training as a transportation map estimation and
analyzed its convergence and generalization error through the infinite dimensional Langevin dynam-
ics. Unlike exiting analysis, our formulation can incorporate spatial correlation of noise and achieve
global convergence without taking the limit of infinite width. The generalization analysis reveals
the dynamics achieves a stable estimator with O(1/+/n) convergence of generalization error and
shows fast learning rate of the excess risk. Finally, we have shown a convergence rate of excess risk
for regression and classification. The rate for regression recovers the minimax optimal rate known
in Bayesian nonparametrics and that for classification achieves exponential convergence under the
strong low noise condition.



Broader impact

Benefit Since deep learning is used in several applications across broad range of areas, our theoret-
ical analysis about optimization of deep learning would influence wide range of areas in terms of
understanding of the algorithmic behavior. One of the biggest criticisms on deep learning is its poor
explainability and interpretability. Our work on optimization analysis of deep learning can much im-
prove explainability and would facilitate its usage. This is quite important step toward trustworthy
machine learning.

Potential risk On the other hand, this is purely theoretical work and thus would not directly bring
on severe ethical issues. However, misunderstanding of theoretical work would cause misuse of its
statement to conduct an intensional opinion making. To avoid such a potential risk, we made our
best effort to minimize technical ambiguity in our paper presentation.
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