
We appreciate all the reviewers for the constructive comments, and our responses are as below:1

R1.1: concerns on compared methods and datasets. We fully understand the concern about our baselines since2

we are the first to improve certified robustness of metric learning. Therefore, as Reviewer 4 suggested, we add3

experiments comparing with neural networks certification methods, including ordinary neural networks certified by4

CROWN [48] and randomized-smoothing neural networks [11]. The results are shown in Figure i. Our method5

outperforms randomized-smoothing networks for a wide range of `2 perturbations, and we will add these baselines to6

the paper. As mentioned in the review, these two datasets are often used for evaluating robustness of neural networks, so7

surpassing a very recently proposed defensive network (RandSmooth) suggests the potential high impact of this work.8

Regarding the datasets, such UCI datasets are actually commonly used for performance evaluation in previous metric9

learning papers in various settings (Perrot and Habrard, NeurIPS’15; Zadeh et al., ICML’16; Chen et al., IJCAI’18).10

0 1 2 3 4
Radius `2

0.0

0.2

0.4

0.6

0.8

1.0

C
et

ifi
ed

ro
b

u
st

er
ro

r

NCA

LMNN

ARML (Ours)

Neural network

RandSmooth

(a) MNIST.

0 1 2 3 4
Radius `2

0.2

0.4

0.6

0.8

1.0

C
et

ifi
ed

ro
b

u
st

er
ro

r

NCA

LMNN

ARML (Ours)

Neural network

RandSmooth

(b) Fashion-MNIST.

Figure i: Certified robust errors of Mahalanobis 1-NN
compared with ordinary neural networks and randomized-
smoothing neural networks (RandSmooth).

R2.1: computational cost. In general, computational11

cost is not an issue for ARML. The average runtime12

(of 5 trials) of LMNN, ITML, NCA and ARML, are13

66.4s, 95.2s, 480.9s and 146.1s respectively, on USPS14

for 100 iterations. To make the comparison fair, all of15

the methods are run on CPU (Xeon(R) E5-2620 v4 @16

2.10GHz). In fact, ARML is highly parallelizable and17

our implementation also supports GPU: when running18

on GPU (one Nvidia TITAN Xp), the average runtime of19

ARML is only 10.6s. We will add detailed discussions.20

R2.2: classification error. We did report the classifi-21

cation error. The classification error is equivalent to the22

empirical robust error at radius 0 in both Table 1 and Table 2. (Note that the certified robust error in Table 1 is equivalent23

to the empirical robust error.) One of the major advantages of ARML over existing metric learning methods is that it24

could improve the classification error and robust error simultaneously. We will highlight them in these two tables.25

R2.3 & R3.1: missing papers and existing metric learning methods against adversarial examples. Thanks for26

mentioning these related work. Both Chen et al. (2018) and Duan et al. (2018) introduced the adversarial framework27

as a mining strategy aiming to improve classification accuracy of metric learning, and Zheng et al. (2019) made28

an improvement upon them; Li et al. (2019) proposed an attack method for K-NN via a differentiable substitute;29

Mao et al. (2019) used a metric learning loss as a regularization to improve empirical robustness of deep learning30

models; A concurrent paper (Yang et al., 2020), made public after the NeurIPS deadline, proposed a similar training31

method to ours, but still lacks formal robustness verification like our Theorem 1 and Algorithm 2, and therefore did32

not certify robustness formally. In contrast, as we underscore in our paper, we propose the first certified defense based33

on metric learning. We will add a paragraph in the related work section to talk further about adversarial robustness of34

metric learning with additional references.35

R3.2: loss function in Eq. (12). The loss functions in Eq. (11) and Eq. (12) are the same to the one in Eq. (5): a36

monotonically non-increasing function. In our implementation, we simply use the “negative” loss, i.e., `(ε) = −ε. We37

will make it clear in the paper.38

R3.3: efficiency issue concerning sampling instances. Sampling from neighborhood instead of computing kthmax39

and kthmin is indeed a crucial technique of ARML to help improve training efficiency. We will clarify it.40

R4.1: compare with robust deep learning. We have compared with robust neural networks (see R1.1).41

R4.2: Eq. (6) and Eq. (13). It is noteworthy that Eq. (6) involves two layers of optimization, and it is correct that42

I and J are fixed for the inner optimization. The constraints assure that at most k − 1 = (K + 1)/2 − 1 “positive”43

training instances, i.e., instances in I, are in the K-size neighborhood of xtest + δ(I,J), by means of not constraining44

(xtest + δ(I,J))’s distances from these “positive” training instances; it is a necessary condition for a successful attack.45

Interestingly and not surprisingly, for Mahalanobis 1-NN — the case where we have K = 1 and k = (K + 1)/2 = 1,46

and hence I is an empty set, and J has only one element — Eq. (6) is exactly reduced to Eq. (13).47

R4.3: selection of x+ in Eq. (7) (or xi in Eq. (10)). It is an insightful question. In theory, enumerating every48

{i : yi = ytest} in Eq. (10) will derive the tightest lower bound of the minimal adversarial perturbation. Nevertheless, in49

practice, only selecting a subset of {i : yi = ytest} of which xi is “close” to xtest usually suffices to derive a satisfying50

lower bound. In the robustness evaluation phase, to derive certification bounds as tight as possible, we did not employ51

this strategy. We will add more discussions for Theorem 1.52

R4.4: how the radius is determined in experiments. The radius is only used to show the experimental results, and is53

not a hyperparameter. In fact, we could also plot the certified robust error curve across “all” radii as in Figure i.54


