
R1 We appreciate your very constructive comments. Good point. Some new experiments comparing COPT distance1

to SOTA GW distance: With 6 classes of synthetic graphs, 18 queries on 60 graphs, with nearest-neighbors-based2

classifier, COPT achieves acc. 83.5±3.4, and GW 62.2±6.6. This is repeated 20 times. Will expand and include these.3

(The existing vectorize-and-retrieve experiments were designed to be highly practical on GPUs, leveraging the benefits4

of COPT during the vectorization preprocessing.) • Will update paper to emphasize distance aspect as you suggest.5

Algorithm#1 indeed already computes the COPT distance as the objective during optimization. • Indeed interesting6

to vary optimizer. To sketch a 20-node graph down to 5, currently each iteration takes 3.7±.05 ms, after updating7

to LBFGS, each iteration takes 128±3 ms. Likely because LBFGS is a second order method, and may evaluate the8

forward pass multiple times per iteration. Will try others. • There are in fact interesting relations to graph edit distance:9

in COPT, the matrix P allows continuous (e.g. partial) flow between vertices, while edit distance involves matching the10

vertices one-to-one (plus insertions & deletions). Edit distance gives the same cost to delete an arbitrary edge, while11

COPT distance is higher if the edges deleted were important to the graph spectrum (i.e. edges connecting distinct12

clusters). A continuous relaxation of edit distance would resemble [LFF+15] more than COPT for this reason. • Added13

the fact the measure of variance is standard deviation, number of times 5.2 is repeated, will update broader impact &14

add details to README. Thanks for these. [LFF+15: Lyzinski et al, Graph matching: Relax at your own risk. 2015.]15

R2 We thank you for your points. Indeed Batson-Spielman-Srivastava and related works from TCS are fascinating.16

The primary reason for choosing the included literature was an alignment in goals. COPT was designed to reduce the17

number of vertices, producing dense Laplacians; BSS and related works reduce the number of edges, producing sparse18

Laplacians. One benefit of dense data is that they are well-suited for efficient processing on GPUs, such as in many19

ML applications. • BSS focuses on proving theoretical guarantees on constructing graph sparsifiers, it uses a discrete20

optimization method where one edge is added to the sparse graph per step (though weights are chosen continuously);21

COPT uses a continuous optimization method where every variable can change at every time step. Though discrete22

optimization can more readily produce provable guarantees, continuous optimization is often preferred in practice, e.g.23

continuous relaxations of discrete problems such as LP relaxation. • Another effect of the proof-driven construction24

is that the constructed sparsifier may not be useful for applications such as graph classification. E.g. BSS sparsifies25

complete graphs to sparse expander graphs, which have intricate structures not present in original graph. Attempts to26

classify the sparsifier could see this structure instead of properties of the original graph. COPT empirically reduces27

complete graphs to complete or nearly-complete graphs. • We will add these. • Similarly, the approach (e.g. in28

Jambulapati-Sidford) of defining multiple randomized sketches and then taking the median to obtain a good Laplacian29

approximation may not be practical for applications. • Good call on motivating §3.2 with downstream applications,30

metric approximations are good for applications where shortest paths between nodes are important, e.g. classifying road31

networks, classifying graphs arising from physical objects where edge lengths carry geometric information. Spectral32

approximations are useful for when the number of paths matter more, e.g. graph partitioning, where one aims to33

minimize the number of edges cut (one way is to iteratively coarsen graphs and find cuts on smaller graphs). Similarly34

COPT is applicable to graph clustering. • Will state nonconvexity earlier in the paper; comment on the theoretical fast35

matrix multiplication methods vs practice (indeed the theoretical fastest method is not practical); add references as36

suggested; comment on runtimes; and fix typos. • The only change to work with weighted graphs is to use the weighted37

Laplacian instead of ordinary Laplacian. The proofs only use the fact that LX is a symmetric PSD matrix. We brought38

in the additional concept of weightings only when needed, but the potential for applications to weighted graphs is a39

good point.40

R3 In Eq. (4), we define a loss function for a transport map between RX and RY , as a generalization of the loss in GOT41

from permutations to arbitrary matrices P . A priori this is just a formula, but in Lemma 3.1, we prove it is equal to a42

distance in RX × RY , after embedding RX and RY into RX×Y , which we use to calculate it. In the special case when43

P is a permutation, these embeddings have the same image, reducing the formula to optimal transport in just RX or44

RY as in GOT. • §3.2 compares COPT with GW, and discusses how COPT preserves paths-counting in relation to the45

spectrum. • f is a free variable in the domain of integration, i.e. the space of functions on R. Will specify this in the46

paper. Thanks.47

R4 Thanks much for your comments. It is indeed useful to compare with the WL kernel. Some new experiments: On 6048

synthetic graphs across 6 categories with 18 query graphs, using exact nearest-neighbor search with COPT as a distance:49

acc. 83.7±3.9; SVM with WL kernel: 80.5±9.0. This is repeated 20 times. • Choosing between the two depends on50

the task and the dataset: For a large dataset of size N , we expect a WL kernel-based SVM to be more practical than51

using linear scan with COPT distance. As an SVM can be trained during preprocessing, allowing constant time query52

classification, whereas exact nearest-neighbor search requires time linear in N . • For small datasets, COPT distance53

can be advantageous: with only three samples per class, using nearest-neighbor classification with COPT distance gives54

accuracy 90.7±5.2, and the WL kernel-based SVM gives 77.8±7.1. • For tasks such as predicting continuous attributes,55

an SVM with WL kernel can’t readily be applied, but a nearest-neighbors classifier with COPT distance still can. • Will56

expand on these and add to the paper.57


