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Abstract

We introduce COPT, a novel distance metric between graphs defined via an op-
timization routine, computing a coordinated pair of optimal transport maps si-
multaneously. This gives an unsupervised way to learn general-purpose graph
representation, applicable to both graph sketching and graph comparison. COPT
involves simultaneously optimizing dual transport plans, one between the vertices
of two graphs, and another between graph signal probability distributions. We show
theoretically that our method preserves important global structural information on
graphs, in particular spectral information, and analyze connections to existing stud-
ies. Empirically, COPT outperforms state of the art methods in graph classification
on both synthetic and real datasets.

1 Introduction

We introduce a new unsupervised method to measure the distance between a pair of graphs, and apply
it to graph sketching. This distance is based on the general notion of optimal transport distance, which
involves minimizing a loss function over transport plans between two distributions [21]. However,
our distance is defined by minimizing a loss function over pairs of simultaneous transport plans, one
between the vertices of the two graph and one between distributions defined by the Laplacian spectra
of the graphs. This allows us to compare, in a flexible way, large-scale spectral information between
the two graphs. Thus, we call it Coordinated OPtimal Transport, or COPT. We show that COPT has
desirable properties in theory, as well as empirically demonstrate its usefulness in graph sketching,
retrieval, and summarization, on both synthetic and real world datasets.

Constructing a distance metric between graphs and studying its applications come from a long, rich
line of work, due to the ubiquity of graph-structured data and the importance of graph sketching and
retrieval. We briefly highlight some recent developments in this field, while drawing more detailed
connections throughout the text.

Sketching is often defined as choosing a sequence of combinatorial operations (e.g. edge contractions)
that minimizes a measure of distance between the sketch and the original graph. For instance, [33]
contracts edges in such a way as to preserve the Laplacian spectrum. [7] removes edges and merges
vertices in a way that minimizes the Frobenius norm of changes in the psuedoinverse of the Laplacian.

Sketching has been applied to a number of different graph problems. [43] used iterated graph
sketching to find optimal orderings of the vertices of a graph. Building on this, [9] defined an
efficiently computable notion of distance on graphs. [31] used sketching to efficiently solve linear
systems involving the graph Laplacian. Generalizing ideas from electrical engineering, [16] defined
a sketch as the Schur complement of the Laplacian with respect to a subset of the nodes. [46]
generalized multiscale methods to graphs with extra structure on the nodes. We discuss further
connections to related works in §4, as well as provide empirical comparisons to competitive baselines.

Our main contributions are 1) devising a coordinated optimal transport algorithm for computing
graph distance; 2) applying COPT to graph sketching, obtaining small sketches that allow for
improved graph classfication, insightful visualization, and high quality retrieval.
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This paper is outlined as follows: In §2, we review generalities on optimal transport methods for
graph comparison and discuss prior work. In §3, we define coordinated optimal transport distance
and discuss its properties. In §3.3, we describe our approach to graph sketching. In §5, we discuss
algorithm implementations and experimental results.

2 Graph distances based on optimal transport on vertices

In general, we would like a notion of “distance" for graphs that satisfies the properties of a metric,
and in particular is zero if and only if the two graphs are isomorphic. We would also like this distance
to be reasonably computable in practice.

Because no simple complete invariant for graphs up to isomorphism is known [2], the most natural
approach to define a distance for graphs up to isomorphism is to define the distance between graphs
X and Y as a minimum, over bijections between the vertices of X and the vertices of Y , of some
quantity, which vanishes if and only if this bijection sends the edges of X to the edges of Y . For
instance, we could take the minimum over bijections of the cardinality of the symmetric difference of
the edge set. However, there are some downsides to minimizing over permutations.

First, such a distance would be hard to compute, or even approximate, in practice, as it involves a
complicated discrete optimization problem.

Second, such a distance would not be defined if our graphs X and Y have different numbers of
vertices.

To solve these problems, we can define a graph distance as a minimization over transport plans. To
define these, we first fix some notation. Let X be a graph with N vertices and Y a graph with M
vertices. We will also use X and Y to denote the set of vertices of X and Y respectively. Optimal
transport plans are functions P from X × Y to R∪ {0} such that

∑
x∈X P (x, y) = N for all y ∈ Y ,

and
∑
y∈Y P (x, y) = M for all x ∈ X . We will define distances as a minimum over transport plans

P , so their formulations will be analogous to the optimal transport, or Wasserstein, distance between
the uniform distribution on X and the uniform distribution on Y , defined as

Wp(X,Y ) = min
P :X×Y→R+∑
x∈X P (x,y)=N∑
y∈Y P (x,y)=M

(∑
x∈X

∑
y∈Y

d(x, y)pP (x, y)
)1/p

(1)

where d(x, y) is a distance function between two points.

Gromov-Wasserstein distance. However, before being able to apply (1) to graphs, there is no notion
of d(x, y) for x, y vertices in two different graphs.

To fix this, Mémoli proposed a notion of Gromov-Wassestein distance for graphs [37], as(
min

P :X×Y→R+∑
x∈X P (x,y)=N∑
y∈Y P (x,y)=M

∑
x1,x2∈X
y1,y2∈Y

(dX(x1, x2)− dY (y1, y2))pP (x1, y1)P (x2, y2)
)1/p

. (2)

In other words, given the distance dX for two vertices in the same graph, defined as the minimum
number of edges in a path connecting them, we have a natural notion of distance between two pairs
x1, x2 and y2, y2 of vertices on the two different graphs as the difference between the distances of
the individual vertices.

A generalization of this definition, along with computational methods and applications, was provided
by [42], building on computational ideas of [10]. An application to word embeddings was given by
[1]. A similar approach, but based more closely on Gromov-Hausdorff distance, was due to Sturm
[49].

Graph Optimal Transport. The recently proposed GOT [35] graph distance uses optimal transport
in a different way. This relies on a probability distribution µX , the graph signal of X [44, 15], over
functions on the vertices of X . This distribution is a multivariate Gaussian, with mean zero, whose
variance-covariance matrix is a pseudo-inverse L†X of the Laplacian LX . They then define, in the
case N = M , a distance for graphs defined by optimal transport of these probability distributions.
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Let T : RX → RY denote a transport plan and σ : X → Y a permutation, [35] defines a distance as

W2(µX , µY )2 = min
σ:X→Y
σ bijective

inf
T :RX→RY

T#µ
X=µY

∫
RX

∑
x∈X

(f(x)− (Tf)(σ(x)))2dµX(f) (3)

Here f : X → R denotes an element of the vector space RX of functions from X to R, thus Tf is a
function from Y to R. (We could work with vectors v instead of functions x, where we would write
vx − (T (v))y instead of f(x) − (Tf)(y). This would require ordering the set X of vertices, and
the entries of the vector v would then be the values of the function f . The reason we write f as a
function rather than a vector is to make clear the invariance of the definition under permutations of X
and Y , as well as making it easier to express certain constructions.)

3 Coordinated optimal transport

Our definition of a new metric on graphs builds on (3), where we replace the permutation σ with an
optimal transport plan P . Thus, our definition involves two different optimal transport plans: P, T ,
hence named coordinated optimal transport. We define our distance ∆(X,Y ) by

NM∆(X,Y )2 = min
P :X×Y→R+∑
x∈X P (x,y)=N∑
y∈Y P (x,y)=M

inf
T :RX→RY

T#µ
X=µY

∫
RX

∑
x∈X

∑
y∈Y

(f(x)−(Tf)(y))2P (x, y)dµX(f). (4)

Again, we take µX to be a Gaussian with mean zero and variance-covariance matrix L†X . In the
special case that N = M and P is a permutation, this definition reduces to the definition in [35], up
to a normalization factor of

√
N . As in [35], this distance is nonconvex. COPT is more general and

can be used between graphs of different cardinalities and for sketching.

For weighted graphs X and Y , we can define COPT exactly the same way, except that the covariance
matrix of the graph signal should be the pseudoinverse of the weighted Laplacian. This generalization
will be important in sketching, even for sketches of unweighted graphs, but we avoid it elsewhere to
simplify concepts.

3.1 Properties of COPT

We give an analytic formula for computing COPT distance ∆(X,Y ), and show ∆(X,Y ) is a metric.
See the supplementary material for full proofs.

Lemma 3.1. Let X and Y be graphs with vertex sets of size N and M respectively. Then

inf
T :RX→RY

T#µ
X=µY

∫
RX

∑
x∈X

∑
y∈Y

(f(x)− (Tf)(y))2P (x, y)dµX(f)

=M tr(L†X) +N tr(L†Y )− 2 tr(((L†Y )1/2PTL†XP (L†Y )1/2)1/2)

(5)

where P is the matrix with entries P (x, y).

Proof summary. We extend µX and µY to distributions on the space of functions on X × Y , in
such a way that the infimum we are interested in is exactly the Wasserstein distance between these
distributions. Because the extended distributions remain multivariate Gaussians, we can use the
known Wasserstein distance formula for multivariate Gaussians [50]. By calculating the variance of
these extended distributions, and using the cyclic permutation invariance of the traces of powers of a
matrix, this reduces to our stated formula.

Using this analytic formula for the minimum over T , we can approximate the coordinated optimal
transport distance by using gradient descent to compute the minimum only over P .

Lemma 3.2. ∆(X,Y ) is a metric on the set of isomorphism classes of finite graphs.
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Proof summary. We check each axiom from the definition of a metric separately. For each of
them, our strategy is based on the corresponding step in the proof that the Wasserstein distance
is a metric. Whatever construction must be applied to the transport map or joint measure in the
Wasserstein distance proof is applied to both P and T in our proof. For instance, to check the triangle
inequality, we compose the transport maps T and also compose P by a matrix multiplication: Given
P : X × Y → R and Q : Y × Z → R, we take 1

M

∑
y∈Y P (x, y)Q(y, z) : X × Z → R. The

calculations in each step are similar to, but more intricate than, the calculations in the Wasserstein
distance proof.

3.2 Global information: spectral vs. metric

We analyze the graph global structures that COPT preserves, and compare and contrast COPT with
the state of the art Gromov-Wasserstein (GW) distance [51, 37, 42]. The COPT metric and GW
metric are both optimal transport metrics for graphs. The main difference is in what information
about the graph they emphasize. The GW distance is defined in terms of the metric dX , and so it
measures primarily changes to the graph that change the distance function by a large amount, while
COPT is defined in terms of L†X , so it measures primarily changes to the graph that change the
eigenvectors of the Laplacian with small eigenvalue by a large amount.

To see the difference between these two concepts, consider a graph with two clusters. The distance
between a point in the first cluster and a point in the second cluster is determined mainly by the length
of the shortest path between the clusters. Adding new paths between the clusters will not change the
distance much, while lengthening all paths will change the distance drastically. On the other hand, the
entries of the matrix L†X with row in the first cluster and column between the cluster is determined
more by the number of paths between these clusters. As we add more and more paths, these entries
of L†X will get less and less negative, up until the number of paths between the clusters is almost as
large as the number of paths within a cluster. However, lengthening the paths will affect L†X less. 1

To see the relationship between the graph Laplacian and counting short paths, it is convenient to use
the following geometric series expansion:

L†X = (DX −AX)−1 = D−1X +D−1X AXD
−1
X +D−1X AXD

−1
X AXD

−1
X + . . .

where AX is the adjacency matrix and DX is a diagonal matrix whose diagonal entries are the
degrees of each vertex. Thus, each entry of the Laplacian pseudoinverse is a formal series counting
paths, where for instance the entries of D−1X AXD

−1
X AXD

−1
X are a weighted count of paths of length

two. (As long as X is connected and not bipartite, this sum converges once we orthogonally project
each term onto the complement of the all 1s matrix, as doing this removes the influence of the all 1s
eigenvector, and then we can use the convergence of the geometric series.)

3.3 COPT for graph sketching

Motivation. Graph sketching replaces a graph with a structurally similar graph with a smaller number
of vertices. Many sketching methods focus on preserving the spectrum of the graph, but the best
similarity metric may depend on the task. Graph sketching techniques have wide applications, beyond
what is discussed in §1, it has also been used to reduce computational load and memory footprint
[25], as part of graph convolution networks to learn a hierarchical scaling of graph representations
and reduce overfitting [47, 8, 12, 11], and as a key subroutine in graph partitioning [18, 22, 27, 14].

Using the COPT distance function between graphs, we define a method to sketch a graph by reducing
it to a low-dimensional matrix, i.e. the sketched Laplacian. The sketched Laplacian preserves key
spectral information about the graph. Given a graph X on N vertices and a target size M , we search
for the graph Y on M vertices that minimizes our distance function ∆(X,Y ). In theory, this graph
would be the M -vertex graph that best approximates X , and therefore should share many of the same
features (e.g. clusters or the lack thereof), but with fewer vertices.

1Consequently, for downstream applications, metric approximations are perhaps better suited when shortest
paths between nodes are important, e.g. classifying road networks, classifying graphs arising from physical
objects where edge lengths carry geometric information. Spectral approximations are likely more useful when
the number of paths matter more, for instance graph clustering, or graph partitioning, where one aims to minimize
the number of edges cut (one way is to iteratively coarsen graphs and find cuts on smaller graphs).
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Algorithm 1 COPT graph sketching and graph distance
Input: Graph X of size N , target sketch dimension M
Initialize: L†X ← inverse Laplacian of X
Initialize: (LY )′: the M(M − 1)/2 strict upper triangular entries of LY , drawn from N (0, 1)
Initialize: P (x, y) for x ∈ X, y ∈ Y , sampled from Uniform(1, 2)
for i = 1 to n_iter do

Set P (x, y) = abs(P (x, y))
Normalize P (x, y) by 5 iterations of Sinkhorn-Knopp algorithm
Ensure Laplacian properties: for y1 < y2, (LY )y2y1 ← −(L′Y )2, (LY )y1y2 ,← (LY )y2y1 ,

(LY )y1y1 ,← −
∑
y2 6=y1 Ly1y2

Minimize COPT distance ∆(X,Y ) in Eq (4):
I: Compute gradient of Eq (5) evaluated at LY and P (x, y)
II: Update L′Y and P (x, y) using gradient

Return: LY : Laplacian of sketched graph; ∆(X,Y ): distance between graphs X and Y ; P (x, y):
the transport plan

Method. However, there are two problems with reducing to a smaller graph: 1) this is a discrete
optimization problem, and continuous optimization problems are often computationally simpler; 2)
the number of isomorphism classes of graphs on a small vertex set is relatively small, so smaller
graphs cannot preserve much information.

Both of these problems disappear if we reduce to a smaller weighted graph - choosing the weights
to minimize the distance is a continuous optimization problem, and the weights can provide more
information than simply whether an edge exists or not. Since our distance function depends only
on the Laplacian LY of Y , it is convenient to describe this optimization in terms of the Laplacian
LY that minimizes the distance. We choose LY subject to the conditions typical of the Laplacian
matrix of a (weighted) graph - it is symmetric, its off-diagonal entries are nonpositive, and its row
and column sums vanish.

Formally, the sketch of the graph X is given by the LY which attains the minimum

min
LY ∈MY (R)

(LY )y1y2
=(LY )y2y1

(LY )y1y2
≤0 if y1 6=y2∑

y2
Ly1y2=0

min
P :X×Y→R+∑
x∈X P (x,y)=N∑
y∈Y P (x,y)=M

(
M tr(L†X) +N tr(L†Y )− 2 tr(((L†Y )1/2PTL†XP (L†Y )1/2)1/2)

)

(6)

In practice, we use a gradient descent algorithm on both P and LY simultaneously to find an
approximate minimum.

Note that this use of sketching refers to reducing the number of vertices in a graph, as opposed to
reducing the number of edges as in Laplacian sketching [4, 20], where one finds graph sparsifiers by
building a spectrally similar graph with the same number of vertices but a reduced number of edges.

3.4 Implementation

Algorithm 1 describes the COPT routine for both computing graph distance and finding the optimal
sketch - the only difference being that, when computing the distance between two graphs X and Y ,
L′Y is given as input and not updated in step II.

As outlined in Algorithm 1, the values of the transport plan P are initially uniformly sampled from
the interval [1, 2]. At the beginning of each iteration, we normalize P so its row and column sums are
equal, by using the Sinkhorn-Knopp algorithm [10]. This ensures that P is a transport plan.

L′Y corresponds to the upper triangular part of LY , as that entirely determines the Laplacian. L′Y
is initialized from the standard Gaussian. At the start of each iteration, LY is obtained by taking
its upper triangular part to be −(L′Y )2, then symmetrized, and diagonal terms filled, to ensure it’s a
Laplacian matrix.

Gradient descent is used to minimize the analytic formulation Eq (5), where L′Y and P are updated
at each step, with the Adam optimizer [23] with a multistep learning rate scheduler that reduces
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the learning rate multiplicatively at regular intervals. When using COPT to determine the distance
between two graphs with Laplacians LX and LY , only P is optimized over in each iteration. Our
implemention uses PyTorch and one P100 GPU, on a 2.60GHz six-core Intel CPU machine.

As sanity checks, we confirm that 1) the sketched Laplacian LY converges to the original graph’s
Laplacian LX when the target sketch dimension is that of the original graph, and 2) the distance
converges to 0 when LX and LY are fixed to be equal. The effects of P as a transport plan can be
seen from the node labels in sketched graphs in Figure 4.

3.5 Time complexity

We estimate the coordinated optimal transport distance by a gradient descent algorithm. The time
complexity is given by (number of iterations × time to calculate each iteration). We are unaware of a
general method to estimate the number of iterations needed to converge (in practice ∼150 iterations
suffice to sketch 50-node to 15-node graphs, and ∼1000 iterations to sketch 1000-node to 200-node
graphs), so we focus on estimating the time per iteration, where the bottleneck is evaluating

M tr(L†X) +N tr(L†Y )− 2 tr(((L†Y )1/2PTL†XP (L†Y )1/2)1/2)

and its derivative with respect to P . This can be done in matrix multiplication time
O(max(N,M)ω) ≤ O(max(N,M)2.373) [29]. To see this, note that computing the inverse of
a matrix can be done in matrix multiplication time, and that these pseudoinverses can be computed
by orthogonally projecting onto the complement of the all 1s vector and then taking a usual inverse.
Furthermore, the trace of the square root of a matrix is the sum of the square roots of the eigenvalues,
and the eigenvalues can be computed in matrix multiplication time [40], noting that we do not need
the most computationally difficult step (c) of [40], which computes the eigenvectors. Using back-
propagation, computing the gradient has the same time complexity as computing the function. Note
quantities such as L†X in the above equation can be cached as they do not change across iterations.

4 Connections to prior work

The closest analogue of COPT is [36], which also builds on GOT. One difference is that COPT
ensures that the mass of the larger graph is evenly distributed over the smaller graph, while [36] allow
different vertices to carry different amounts of mass. [36] also does not use the resulting distance for
sketching, like COPT does.

It is important to distinguish between graph distances defined using convex optimization, such as those
defined in [5], and nonconvex optimization, such as COPT. Both can be relaxations of optimization
problems over permutations. For one natural loss function, [34] showed that a nonconvex relaxation
better approximates the optimum permutation than a convex relaxation - in fact, with high probability,
the convex relaxation is not a permutation at all. While the loss function in [34] is somewhat different
from COPT’s, we expect the same distinction between convex and nonconvex optimization to apply
in our case.

However, the specific distance studied by [34] is very different from COPT. That distance, which was
also used by [54], is formally similar to GW, but it uses the adjacency matrices directly instead of
the graph metrics dX , dY . Thus, the distance between a graph G and G together with one additional
edge e will be similar regardless of the location of e, while in COPT and GW it will be larger if e
connects two clusters that were far apart in G. This makes it analogous to the classical graph edit
distance, where the cost to add an edge is independent of the location of the edge, and is defined
using discrete permutations instead of continuous transport maps.

The graph signal, as used in COPT, can be compared to a graph embedding. In fact, the graph
signal defines an embedding of the set of vertices into a vector space of random variables. This
space has coordinates given by the eigenvectors of the graph Laplacian, with the distance along
the i coordinate weighted by λ−1/2i (where λi is the ith eigenvalue). This can be compared to the
graph embedding based on the first k eigenvectors of the Laplacian, which is equivalent to weighting
the first k coordinates by 1 and all other coordinates by 0. [39] used this embedding to define a
graph distance. Unlike COPT, this distance is not invariant under changes of coordinates and thus is
discontinuous as a function of the adjacency matrix whenever an eigenvalue has multiplicity > 1.
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The first k eigenvalues of the Laplacian were used to measure similarities between graphs by both [30]
and [32], although they were not viewed as coordinates of a graph embedding in those papers. These
papers construct a sketch by searching for a smaller graph that optimizes their spectral similarity
measures, subject to combinatorial restrictions on the structure of the graph sketch. COPT performs a
similar search but without combinatorial restrictions.

Along similar lines but even further from COPT is [33], which defines a sketch as a purely combina-
torial process where randomly chosen edges are contracted. Still, [33] proves upper bounds on the
difference between the spectra of the original graph and the sketch with high probability.

Graph embeddings that are not necessarily based on the eigenfunctions of the Laplacian have also
been used to compare graphs, such as in the work of [55], which combines arbitrary graph embeddings
with Gromov-Wasserstein distance.

Sketching based on optimal transport was also used in [17], which chooses the sketch to be a subgraph
of the original graph, unlike COPT where the sketch is a new graph. Because of this, it can use
the usual Wasserstein optimal transport distance as a distanct function. Like the GW distance, this
approach preserves largely metric, rather than spectral, information on graphs.

5 Experiments

COPT can be used both for sketching when given one graph, and finding the distance when given two
graphs. Here we demonstrate its effectiveness on a variety of tasks: sketching, retrieval, classification,
and summarization. Additional experiments, such as using low-dimensional COPT sketches to
visualize relations between graphs, and an extensive comparison with GOT [35], can be found in the
supplementary material.

5.1 Graph Sketching

We measure COPT sketching quality and compare with state of the art techniques: OTC [17], an
OT-based compression method that uses Boolean relaxations to create a compressed graph that’s a
subgraph of the original graph; variation neighborhood (Variation) [32], a combinatorial optimization
approach to graph coarsening; REC [33], a randomized edge contraction algorithm that preserves the
spectrum; algebraic distance (Algebraic) [9, 43], which contracts edges based on weights calculated
using the Jacobi method; affinity (Affinity) [31], a vertex proximity heuristic; and heavy edge
matching (HeavyE) [13], an edge contraction algorithm based on the weight of an edge and the
degrees of its joining vertices.

We determine the sketching quality by measuring the graph classification accuracy on sketched
graphs. Specifically, for each of the benchmark algorithms and each dataset, we first sketch the
graphs by a given compression factor, then use 70% of the sketched graphs to train an SVM with the
multiscale Laplacian graph kernel [24, 26, 52], a kernel able to incorporate structural information of
neighborhoods in the graph over a range of sizes. Finally we test the classification accuracy on the
remaining 30% of sketched graphs. This is done for both 2- and 4-fold compression.

This is done on four benchmark datasets over diverse domains: Proteins [6], BZR_MD [26], MSRC_9
[38], and Enzymes [45]. The SVM is trained with parameters found using 3-fold cross validation on
the training set, using a fast approximation of the multiscale Laplacian kernel (using the Nyström
Method [53]). Each accuracy measurement is repeated five times. As shown in Table 1, COPT
performs competitively across datasets for both 2- and 4-fold vertex reduction. In particular, the fact
that COPT performs strongly in the 4X compression case could be due to the fact that COPT achieves
a continuous, not discrete, relaxation with a weighted Laplacian.

5.2 Fast Graph Retrieval

It is often useful to reduce a set of graphs to the same number of vertices rather than by the same
compression factor (reducing to different numbers of vertices), such as for fast similarity measure
between graphs using a simple l1 or l2 distance; or for neural network training, where batched
operations are the norm and common operations such as MLP require the input dimensions be the
same across samples. Uniformized dense data can also be processed more efficiently on GPUs than
sparse data [56].
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2X compression 4X compression
BZR_MD MSRC_9 Proteins Enzymes BZR_MD MSRC_9 Proteins Enzymes

OTC 60.7±4.0 80.9±4.5 72.8±.8 29.1±4.6 64.3±2.7 84.8±6.7 66.7±1.8 25.2±2.7
HeavyE 61.7±4.8 79.7±6.3 72.3±3.3 27.8±2.3 55.0±4.7 76.1±7.9 72.2±2.7 24.9± 1.9
Variation 60.2±4.4 75.5±2.7 72.1±1.2 31.7±1.5 59.3±3.2 78.5±3.8 72.4±.75 27.7±2.1
Algebraic 57.4±5.2 77.0±8.9 70.1±2.7 35.1±2.3 53.4±2.5 75.2±6.9 69.1±1.8 24.3±2.7
Affinity 58.5±5.0 80.1±3.0 71.2±2.5 25.2±1.5 53.4±3.5 75.8±6.2 70.9±2.3 23.5±4.0

REC 60.9±7.3 82.4±1.9 71.1±1.5 34.7±2.4 54.5±2.7 77.9±3.7 71.5±1.0 28.9±1.8
COPT 67.6±4.0 86.3±1.3 74.0±1.3 32.2±3.3 68.4±5.0 81.2±4.8 73.7±1.5 33.1±4.2

Table 1: Graph classification accuracy (mean ± standard deviation) comparison with state of the art
techniques on datasets across diverse domains, when the number of vertices is reduced by 2- and
4-fold. Accuracies reported in %.

Synthetic dataset. We test the quality of COPT sketching to equal number of vertices by graph
retrieval quality, as judged by accuracy of the class of the nearest neighbor. Specifically, we take the
dataset {GX} and queries {GQ} to be 600 and 180 randomly generated 50-node graphs, respectively,
each evenly distributed amongst six classes: random geometric [41], block-2 , block-3, block-4 [19],
Barabasi-Albert [3], and random regular graphs [48]. We vectorize each graph G in two ways: 1)
sketch G to 15 nodes with COPT, and flattening the upper triangular part of the sketched Laplacian
to obtain a 120-dimensional vector, 2) take the spectral projection of G’s Laplacian, specifically
the eigenvectors corresponding to the three smallest non-zero eigenvalues (the zero eigenvalue
corresponds to the constant eigenvector), yielding a 150-dimensional vector. Smallest eigenvalues
are taken as the lower spectrum corresponds to global structure. Given a query graph vector vq, we
take its predicted class to be the class of its nearest neighbor, where the distance is determined with l1
distance for COPT sketches, and l2 for spectral projections.

Results. When taking the nearest neighbor’s class as the predicted class, COPT sketching achieves
97.8± 1.1% accuracy, which is 15.7% higher on average than the spectral projections accuracy of
82.8 ± .6%. This is repeated three times. To illustrate the speed advantage of equi-dimensional
sketching, note that retrieval accuracy on COPT sketches trails only 2.0% behind the GW accuracy of
99.8± .3% on the original, non-reduced graphs, while being 2000X faster: 1.81± .07 ms compared
to 3.69± .07 s. Thus COPT is ideally suited for situations where fast execution speed is critical, e.g.
as a component in a pipeline.

Combining in pipeline. In practice, a faster, but coarser, algorithm is often used to filter out
candidates for a more accurate but time-consuming method [28], so we report accuracies for pipelines
that 1) does either l1 retrieval on COPT sketches or l2 retrieval on spectral projections to filter out
unlikely candidates, and 2) runs GW on the remaining candidates. Retrieval using COPT sketched
Laplacians significantly outperforms spectral projections of original Laplacians, For instance, when
the fast algorithm is allowed to filter out all but the top 3 candidates, COPT+GW pipeline achieves
98.7± 0.3% accuracy, compared with 89.4± 2.4% for spectral projections+GW, with comparable
timings as the compute bottleneck lies in the GW component of the pipeline. See appendix for the
full comparison.

Real dataset. We also compare reduction to equal dimensions on the real dataset BZR_MD, with
on average 21.3 nodes per graph. When reduced to 7 nodes per graph and the upper triangular part
of the reduced Laplacian taken as above, COPT achieves 57.2± 4.9% accuracy in the class of the
nearest neighbor, compared to 52.2± 5.5% for OTC [17]. Here 100 of the 306 graphs in the dataset
are sampled to query the remaining 206 graphs. This is repeated 20 times.

5.3 Graph Summarization

Figure 4 visually demonstrate that COPT preserves the most relevant global structures on graphs,
across graphs of varying global structures. The sketched graph visualizations are obtained from
Algorithm 1 by declaring an entry in the sketched Laplacian LY an edge if it lies above a given
threshold, where the threshold is determined based on a gap in the values distribution of LY . The
node labels on the sketched graphs are determined using the transport plan P , specifically the label on
a node contains the two top-weighted nodes in the original graph whose mass flowed into that node.
This shows that 1) COPT preserves important global graph structures, and 2) structurally similar

8



Figure 1: Barbell. Figure 2: Wheel. Figure 3: Ladder.

Figure 4: Orginal graphs (top) and their sketched graphs. The node labels on the sketched graphs are
determined using the transport plan P , specifically the label on a node contains the two top-weighted
nodes in the original graph whose mass flowed into that node. COPT sketches structurally similar
nodes in the original graph to the same or nearby nodes.

nodes in the original graph are sketched to the same or nearby nodes. See supplementary material for
more examples.

6 Conclusion

COPT is a novel framework for creating new graphs based on existing graphs and drawing relations
amongst graphs, leveraging key graph structural information. This work opens the door to a variety
of exciting future directions. For instance, in additional to the graph spectral information, additional
information that often materializes in real world data can be leveraged, such as node attribute
information. Currently, a naive way to incorporate node attributes is to use the transport plan P , for
sketching this means deriving the attribute of a node in the sketch from the attributes of the nodes in
the original graph whose mass flowed to that node in the sketch. For graph comparison this means
comparing the similarity of attributes of nodes in the origin and target graphs that are matched by
P , taking this attribute similarity into account per iteration when optimizing P . There are perhaps
more organic ways of doing this, for instance one can conceive of ways to fuse COPT with another
construct, such as the Gromov-Wasserstein distance. Another interesting and important direction is to
scale up COPT, for instance computing COPT iterations for a batch of graphs simultaneously, which
is nontrivial currently, as the transport map joint optimization is specific for a given pair of graphs.
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Broader Impact

Graph-structured data are ubiquitous, thus fast and accurate graph retrieval and comparison is an
important application. COPT improves upon state of the art methods on real world datasets such as
Proteins and Enzymes, this can be useful for both scientific research and medical applications, such
as comparing a novel synthesized protein with existing ones or trying to identify a molecule. As the
COPT metric can be used to compare graphs with different numbers of vertices and is invariant under
permutations of the vertices, it can be applied to a broad spectrum of graphs. In addition, the fact
that equidimensional COPT sketches achieve competitive retrieval accuracy at a fraction of the time
compared to state of the art methods makes it suitable for retrieval in large-scale datasets. However,
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caution is warranted to avoid over-interpreting COPT or other graph distances - if the distance is low,
that only implies structural similitary, not necessarily semantic similarity.
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