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Abstract

In real-world classification tasks, each class often comprises multiple finer-grained
“subclasses.” As the subclass labels are frequently unavailable, models trained using
only the coarser-grained class labels often exhibit highly variable performance
across different subclasses. This phenomenon, known as hidden stratification,
has important consequences for models deployed in safety-critical applications
such as medicine. We propose GEORGE, a method to both measure and mitigate
hidden stratification even when subclass labels are unknown. We first observe
that unlabeled subclasses are often separable in the feature space of deep models,
and exploit this fact to estimate subclass labels for the training data via clustering
techniques. We then use these approximate subclass labels as a form of noisy
supervision in a distributionally robust optimization objective. We theoretically
characterize the performance of GEORGE in terms of the worst-case generalization
error across any subclass. We empirically validate GEORGE on a mix of real-world
and benchmark image classification datasets, and show that our approach boosts
worst-case subclass accuracy by up to 14 percentage points compared to standard
training techniques, without requiring any information about the subclasses.

1 Introduction

In many real-world classification tasks, each labeled class consists of multiple semantically distinct
subclasses that are unlabeled. Because models are typically trained to maximize global metrics
such as average performance, they often underperform on important subclasses [52, 40]. This
phenomenon—recently termed hidden stratification—can lead to skewed assessments of model
quality and result in unexpectedly poor performance when models are deployed [36]. For instance, a
medical imaging model trained to classify between benign and abnormal lesions may achieve high
overall performance, yet consistently mislabel a rare but critical abnormal subclass as “benign” [17].

Modern robust optimization techniques can improve performance on poorly-performing groups when
the group identities are known [43]. However, in practice, a key obstacle is that subclasses are
often unlabeled, or even unidentified. This makes even detecting such performance gaps—let alone
mitigating them—a challenging problem. Nevertheless, recent empirical evidence [36] encouragingly
suggests that feature representations of deep neural networks often carry information about unlabeled
subclasses (see Figure 1). Motivated by this observation, we propose a method for addressing hidden
stratification, by both measuring and improving worst-case subclass performance in the setting where
subclass labels are unavailable. Our work towards this is organized into four main sections.

First, in Section 3 we propose a simple generative model of the data labeling process. Using this
model, we show that when label annotations are insufficiently fine-grained—as is often the case in
real-world datasets—hidden stratification can naturally arise. For instance, an image classification
task might be to classify birds vs. frogs; if labels are only provided for these broad classes, they may
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fail to capture visually meaningful finer-grained, intra-class variation (e.g., “bird in flight” versus
“bird in nest”). We show that in the setting of our generative model, standard training via empirical
risk minimization (ERM) can result in arbitrarily poor performance on underrepresented subclasses.

Figure 1: Benign class examples in the fea-
ture space of a model classfying skin lesions
as benign or malignant. Benign examples
containing a brightly colored patch (blue) and
those without a patch (red) are separable in
model feature space, even though the labels
do not specify the presence of patches.

Second, in Section 4 we use insights from this gen-
erative model to motivate GEORGE, a two-step pro-
cedure for alleviating hidden stratification by first
estimating the subclass labels and then exploiting
these estimates to train a robust classifier. To esti-
mate subclass labels, we train a standard model on
the task, and split each class (or “superclass,” for
clarity) into estimated subclasses via unsupervised
clustering in the model’s feature space. We then ex-
ploit these estimated subclasses by training a new
model to optimize worst-case performance over all
estimated subclasses using group distributionally ro-
bust optimization (GDRO [43]). In this way, our
framework allows ML practitioners to automatically
detect poorly-performing subclasses and improve per-
formance on them, without needing to resort to ex-
pensive manual relabeling of the data.

Third, in Section 5 we use our generative framework
to prove that—under conditions on the data distribution and the quality of the recovered clusters—
GEORGE can reduce the subclass performance gap, attaining the same asymptotic sample complexity
rates as if the true subclass labels were known.

Fourth, in Section 6 we empirically validate the ability of GEORGE to both measure and mitigate
hidden stratification on four image classification tasks, comprising both robustness benchmarks
and real-world datasets. We show that the first step of GEORGE—training an ERM model and
clustering the superclass features—often recovers clusters that align closely with true subclasses. We
evaluate the ability of these clusters to measure the worst-case subclass (i.e., “robust”) performance:
on average, the gap between worst-case cluster performance and worst-case subclass performance
is less than 40% of the gap between overall and worst-case subclass performance, indicating that
GEORGE enables more accurate measurement of robust performance. Next, we show that the second
stage of GEORGE—retraining a robust model using cluster assignments as proxy subclass labels—
reduces average worst-case subclass error rates by over 23%. For comparison, the state-of-the-art
“oracle” GDRO method that does require subclass labels [43] reduces average worst-case subclass
error rates by 50%. As an extension, we show that leveraging recent pretrained image embeddings
[27] for clustering can substantially further improve the robust performance of GEORGE, in some
cases to match the performance of GDRO trained using the true subclass labels.

2 Background

2.1 Related Work

Our work builds upon prior work from three main areas: robust optimization, representation learning,
and unsupervised clustering. We provide a more extensive discussion of related work in Appendix A.

Distributionally Robust Optimization Robustness and fairness is an active research area in machine
learning [4, 21, 30, 26]. Distributionally robust optimization (DRO) attempts to guarantee good
performance in the presence of distribution shift, e.g., from adversarial perturbations [49, 47] or
evaluation on arbitrary subpopulations [16]. Because these notions of robustness can be pessimistic
[23], others investigate group DRO (GDRO), which optimizes worst-case performance over a known
set of subgroups [23, 43]. A major obstacle to applying GDRO methods in practice is that subgroup
labels are often unavailable; in our work, we aim to address this issue in the classification setting.

Representation Learning & Clustering Our approach relies on estimating unknown subclass labels
by clustering a feature representation of the data. Techniques for learning semantically useful image
features include autoencoder-based methods [32, 46], the use of unsupervised auxiliary tasks [2, 9],
and pretraining on massive datasets [27]. Such features may be used for unsupervised identification
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of classes, either using clustering techniques [6] or in an end-to-end approach [25, 18]. It has also
been observed that when a model is trained on coarse-grained class labels, the data within each class
can often be separated into distinct clusters in model feature space [36]. While we focus on the latter
approach, we also evaluate the utility of pretrained embeddings as a source of features for clustering.

2.2 Problem Setup

We are given n datapoints x1, . . . , xn ∈ X and associated superclass labels y1, . . . , yn ∈ {1, . . . , B}.
In addition, associated with each datapoint xi is a latent (unobserved) subclass label zi ∈ {1, . . . , C}.
We assume that {1, . . . , C} is partitioned into disjoint sets S1, . . . , SB such that if zi ∈ Sb, then
yi = b; in other words, the subclass label zi determines the superclass label yi. Let Sb denote the set
of all subclasses comprising superclass b, and S(c) denote the superclass corresponding to subclass c.

Our goal is to classify examples from X into their correct superclass. Given a function class F , it is
typical to seek a classifier f ∈ F that maximizes overall population accuracy:

argmax
f∈F

E(x,y) [1(f(x) = y)] . (1)

By contrast, we seek to maximize the robust accuracy, defined as the worst-case expected accuracy
over all subclasses:

argmax
f∈F

min
c∈{1,...,C}

E(x,y)|z=c [1(f(x) = y)] . (2)

Note that y is fixed conditional on the value of z. As we cannot directly optimize the population
accuracy, we select a surrogate loss function ` and attempt to minimize this loss over the training data.
For instance, the standard ERM approach to approximate (1) minimizes the empirical risk R(f):

argmin
f∈F

{
R(f) := 1

n

n∑
i=1

`(f(xi), yi)

}
. (3)

To approximate (2), if we knew z1, ..., zn we could minimize the worst-case per-subclass training
risk by solving:

argmin
f∈F

{
Rrobust(f) := max

c∈{1,...,C}
1
nc

n∑
i=1

1(zi = c)`(f(xi), yi)

}
, (4)

where nc =
∑n
i=1 1(zi = c) is the number of training examples from subclass c. Rrobust(f) is the

“robust loss” achieved by f . Our goal is to learn a model f̃ ∈ F such thatRrobust(f̃)−min
f∈F

(Rrobust(f))

is small with high probability. When the zi’s are known, Eq. (4) can be tractably optimized using
group distributionally robust optimization (GDRO) [23, 43]. However, we do not assume access to
the zi’s; we seek to approximately minimize Rrobust without knowledge of the subclass labels.

3 Modeling Hidden Stratification

In Section 3.1, we introduce a generative model of the data labeling process. In Section 3.2, we use
this model to explain how hidden stratification can occur, and show that in the setting of this model
ERM can attain arbitrarily poor robust risk compared to DRO.

3.1 A Model of the Data Generating and Labeling Process

In real datasets, individual datapoints are typically described by multiple different attributes, yet often
only a subset of these are captured by the class labels. For example, a dataset might consist of images
labeled “cat” or “dog.” These coarse class labels may not capture other salient attributes (color, size,
breed, etc.); these attributes can be interpreted as latent variables representing different subclasses.

We model this phenomenon with a hierarchical data generation process. First, a binary vector
~Z ∈{−1,+1}k is sampled from a distribution p(~Z). Each entry Zi is an attribute, while each unique
value of ~Z represents a different subclass. Then, a latent “feature vector” ~V ∈ Rk is sampled from a
distribution conditioned on ~Z, where, when conditioned on Zi, each individual feature Vi is Gaussian
and independent of Zj for j > i. Finally, the datapoint X ∈ X is determined by the latent features
~V via a fixed map g : Rk → X . Meanwhile, the superclass label Y is a fixed discrete-valued
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Figure 2: (a) Generative model of hidden stratification: attributes Z determine features ~V and labels
Y ; mapping g transforms ~V to yield observed data X . (b) On the Waterbirds dataset [43], attributes
(Z1, Z2) denote species and background type respectively; the label Y is the species type.

function h(~Z) of ~Z. In particular, h may only depend on a subset of the Zi’s; the Zi’s which do
not influence the label Y correspond to hidden subclasses. X,Y are observed, while ~V , ~Z are not.
Fig. 2a illustrates this generative process; Fig. 2b presents an analogue on the Waterbirds dataset [43].

Importantly, rather than attempting to enforce good performance on all possible subsets of the data,
we assume some meaningful structure to the subclasses. We model this via the Gaussian assumption
on p(Vi|~Z), which is similar to that often made for the latent space of GANs [5]. Consequently, the
data distribution is a mixture of Gaussians in “feature space,” which facilitates further theoretical
analysis (Section 5). Our generative model also bears similarity to that of [23], who use a hierarchical
data-generation model to analyze the behavior of DRO methods in the presence of distribution shift.

3.2 What Causes Hidden Stratification, and When Can It Be Fixed?

We now use our generative model to help understand why hidden stratification can occur, and present
a simple example in which ERM is provably suboptimal in terms of the robust risk.

ERM decision boundary

GDRO decision boundary

Rare subclass

Rare subclass

Figure 3: As α→0 in Example 3.1, top-left &
lower-right subclasses get rarer and are mis-
classified by ERM (black boundary), whereas
GDRO learns the optimal robust boundary
(green) to classify red vs. blue superclasses.

We distinguish between two main causes of hidden
stratification: inherent hardness and dataset imbal-
ance. First, certain subclasses are “inherently harder”
to classify because they are more similar to other su-
perclasses. We define the inherent hardness of a task
as the minimum attainable robust error; inherent hard-
ness thus lower bounds the worst-case subclass error
of any model. See Appendix D for more discussion.

Second, imbalance in subclass sizes can cause ERM
to underserve rare subclasses, since it optimizes for
average-case performance. We provide a simple con-
crete example (3.1) below. Unlike inherent hardness,
robust performance gaps arising from dataset imbal-
ances can be resolved if subclass labels are known,
by using these labels to minimize Eq. (4) via GDRO.

Example 3.1 Fig. 3 depicts an example distribution generated by the model in Sec. 3.1. In this
example, the binary attribute vector ~Z has dimension 2, i.e., ~Z = (Z1, Z2), while only Z2 determines
the superclass label Y , i.e., Y = Z2. The latent attribute Z1 induces two subclasses in each
superclass, each distributed as a different Gaussian in feature space, with mixture proportions α and
1− α respectively. (See Appendix D.1 for the specific parameters of the per-subclass distributions
in this example.) For linear models with regularized logistic loss, as the proportion α of the rare
subclasses goes to 0, the worst-case subclass accuracy of ERM is only O(α), while that of GDRO is
1−O(α). (Proof in Appendix D.1.)

Example 3.1 illustrates that when the dataset is imbalanced—i.e., the distribution of the underlying
attributes ~Z is highly nonuniform—knowledge of subclass labels can improve robust performance.
We thus ask: how well can we estimate subclass labels if they are not provided? In the extreme, if
two subclasses of a superclass have the same distribution in feature space, we cannot distinguish
them. However, the model must then perform the same on each subclass, since its prediction is a
fixed function of the features! Conversely, if one subclass has higher average error, it must lie “further
across” the decision boundary, meaning that the two subclasses must be separable to a degree; the
larger the accuracy gap, the more separable the subclasses are. We formalize this in Appendix D.3.
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Figure 4: Schematic describing GEORGE. The inputs are the datapoints and superclass labels. First, a
model is trained with ERM on the superclass classification task. The activations of the penultimate
layer are then dimensionality-reduced, and clustering is applied to the resulting features to obtain
estimated subclasses. Finally, a new model is trained using these clusters as groups for GDRO.

4 GEORGE: A Framework for Mitigating Hidden Stratification

Inspired by the insights of Sec. 3, we propose GEORGE, an algorithm to mitigate hidden stratification.
A schematic overview of GEORGE is provided in Figure 4.

Under the generative model of Section 3.1, each subclass is described by a different Gaussian in
latent feature space. This suggests that a natural approach to identify the subclasses is to transform
the data into feature space, and then cluster the data into estimated subclasses. To obtain this feature
space, we leverage the empirical observation that feature representations of deep neural networks
trained on a superclass task can carry information about unlabeled subclasses [36]. Next, to improve
performance on these estimated subclasses, we minimize the maximum per-cluster average loss, by
using the clusters as groups in the GDRO objective [43]. We provide more details below, and detailed
pseudocode in Appendix B (Algorithm 1).

4.1 Step 1: Estimating Approximate Subclass Labels

In the first step of GEORGE, we train an ERM model on the superclass task and cluster the feature
representations of each superclass to generate proxy subclass labels. Formally, we train a deep neural
network L ◦ fθ to predict the superclass labels, where fθ : X → Rd is a parametrized “featurizer”
and L : Rd → ∆B outputs classification logits. We then cluster the features output by fθ for the
data of each superclass into k clusters, where k is chosen automatically. To each datapoint xi in the
training and validation sets, we associate its cluster assignment z̃i ∈ {1, . . . , k}; we use the z̃i’s as
surrogates for the true subclass labels zi.

4.1.1 Clustering Details

In practice, we apply UMAP dimensionality reduction [33] before clustering, as we find it improves
results (Appendix B). Additionally, based on the insight of Section 3.2 that subclasses with high loss
differences are more separable, we also use the loss component (i.e., the component of the activation
vector orthogonal to the decision boundary) as an alternative representation.

We first tried using standard clustering methods (such as k-means and Gaussian mixture model
clustering) in our work. By visual inspection, we found that these methods often failed to capture
smaller clusters, even if they were well-separated. However, missing small clusters like this is
problematic for GEORGE, since these small clusters frequently correspond to rare, low-performing
subclass. Additionally, these methods require specification of k. We apply over-clustering (clustering
using a larger k) to remedy this problem in an efficient manner. Naive overclustering also has
drawbacks as it still requires manual specification of k, and if k is set too large, several clusters
can be spurious and result in overly pessimistic and unstable measurements of robust performance
(as we explore in Appendix C.2.6). Thus, we develop a fully automated criterion based on the
commonly used Silhouette (SIL) criterion [42] to search for the number of clusters k, over-cluster
to find smaller clusters that were missed, and filter out the spurious overclusters. Empirically, our
clustering approach significantly improves performance over “vanilla” clustering; we hope that it
may be of independent interest as well. We describe our procedures in more detail in Appendix B.

k and other clustering and representation hyperparameters are selected automatically based on an
unsupervised SIL criterion [42] as described further in Appendix B.

4.2 Step 2: Exploiting Approximate Subclass Labels

In the second step of GEORGE, we use the GDRO algorithm from [43] and our estimated subclass
labels z̃i to train a new classifier with better worst-case performance on the estimated subclasses.
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Given data {(xi, yi, ti)}ni=1 and loss function `, GDRO minimizes max
t∈T

E
x,y∼P̂t

[`((L ◦ fθ)(x), y)]

w.r.t. parameters (L, θ), where T is the discrete set of groups and P̂t is the empirical distribution of
examples from group t. This coincides with the true objective (4) when the true subclass labels zi
are used as the group labels ti. In our case, we use the cluster assignments z̃i as the group labels
instead, i.e., minimize max

1≤z̃≤k
E

x,y∼P̂z̃
[`(L ◦ fθ)(x), y)]. In Appendix D, we present an extension to

the GDRO algorithm of [43] to handle the case where the group assignments z̃i can be probabilistic
labels in ∆k, instead of hard labels in {1, . . . , k}.

5 Analysis of GEORGE

We now analyze a simple mixture model data distribution, based on the generative model in Sec-
tion 3.1. We show that in this setting, unlike ERM, GEORGE converges to the optimal robust risk
at the same sample complexity rate as GDRO when it is able to recover the true latent features
~Z. Specifically, Example 3.1 shows that the robust risk of ERM can be arbitrarily worse than that
of GDRO for data generated according to the generative model in Section 3.1. By contrast, if the
subclass labels estimated by GEORGE are sufficiently accurate, then the objective minimized in Step
2 of GEORGE well approximates the true GDRO objective (4). In Theorem 1, we use this to show
that, when each subclass is described by a different Gaussian in feature space, GEORGE achieves the
same optimal asymptotic sample complexity rates as GDRO trained with true subclass labels. We
sketch the argument below; full proofs are deferred to Appendix D.

First, suppose we could compute the true data distribution P(x, y, z). Our goal is to minimize the
maximum per-subclass loss by solving Eq. (4). Even with infinite data, we cannot estimate the
individual zi’s to arbitrary accuracy, so we cannot directly compute the objective in (4). However, we
can estimate the per-subclass losses as follows: for each example (xi, yi), we use P to compute the
probability that it came from subclass c, and use that to weight the loss corresponding to that example.
In Lemma 1, we show that this yields an unbiased estimate of the average per-subclass empirical risk.

Lemma 1. Let Rc be the sample average loss of examples in subclass c. Let w(x, c) := P(x|z=c)
P(x|y=S(c)) .

Let R̃c be the sample average of w(xi, c)`(f(xi), yi) over all examples xi with superclass label
yi = S(c). Then R̃c is an unbiased estimate of Rc, and their difference converges to 0 at O(1/

√
n).

In practice, we do not have access to P and estimate it with P̂ , computed from data. Thus, the
weights w(x, c) are replaced by weights ŵ(x, c) estimated from P̂ , leading to an estimate R̂c of R̃c.
Nevertheless, if we can bound the total variation estimation error of P̂ , we can use this to bound the
error in this loss estimate, as shown in Lemma 2 (Appendix D). In Theorem 1, we leverage Lemma 2
and recent results on learning Gaussian mixtures [3] to show that, when each subclass is described by
a different Gaussian, P̂ can be estimated well enough so that the minimizer of the perturbed robust
loss converges to the minimizer of the true robust loss at the optimal sample complexity rate.

Theorem 1. Let R̂robust := maxc R̂c. Suppose `, f are Lipschitz, f has bounded parameters, and
P(x|z = c) is Gaussian and unique for each subclass c. Then, if we estimate P̂ using the algorithm
from [3], f̂ := min

f∈F
R̂robust(f) satisfies Rrobust(f̂)−min

f∈F
Rrobust(f) ≤ Õ(

√
1/n) w.h.p.

Theorem 1 implies that if each subclass is Gaussian in feature space, and we have access to this
feature space (i.e., we can invert the mapping g from features ~Z to dataX), we can cluster the features
to estimate P̂ , and the robust generalization performance of the model that minimizes the resulting
perturbed training loss R̂robust scales the same as does that of the minimizer of the true robust training
loss Rrobust, in terms of the amount of data required. This underscores the importance of recovering a
“good” feature space; empirically, we show in Appendix C that the choice of model architecture can
indeed dramatically impact the model feature space and thus the ability to recover subclasses.

6 Experiments

We empirically validate that GEORGE can mitigate hidden stratification across four datasets. In Sec-
tion 6.2, we show that when subclass labels are unavailable, GEORGE improves robust performance
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Table 1: Robust and overall performance for ERM, GEORGE, and subclass-GDRO (i.e., GDRO
with true subclass labels). Performance metric is accuracy for all datasets but ISIC, which uses
AUROC. Bolded values are best between ERM and GEORGE, which do not require subclass labels.
Sub-columns for ISIC represent two different definitions of the ISIC subclasses; see Section 6.3.

Method Requires Metric Waterbirds U-MNIST ISIC CelebA
Subclass Labels? Type Non-patch Histopath.

ERM 7 Robust 63.3(±1.6) 93.9(±0.6) .920(±.007) .872(±.010) 41.1(±2.3)
Overall 97.2(±0.1) 98.2(±0.1) .956(±.003) 95.7(±0.1)

GEORGE (ours) 7 Robust 76.2(±2.0) 95.7(±0.6) .918(±.009) .881(±.005) 52.4(±1.3)
Overall 95.5(±0.6) 97.9(±0.2) .935(±.007) 94.8(±0.2)

Subclass-GDRO 3 Robust 90.7(±0.4) 96.8(±0.4) .922(±.007) .876(±.005) 85.9(±2.5)
Overall 92.0(±0.4) 98.0(±0.3) .934(±.010) 93.6(±0.2)

over standard methods. In Section 6.3, we analyze the clusters returned by GEORGE to understand the
reasons for this improvement; we confirm that GEORGE identifies clusters that correspond to poorly-
performing subclasses, which enables accurate measurement of robust performance. In Section 6.4,
we evaluate the use of recent pretrained image embeddings [27] as a source of features for GEORGE,
and find that this further improves performance of GEORGE on some applications. Additional details
on datasets, model architectures, and experimental procedures are in Appendix B.

6.1 Datasets

Waterbirds Waterbirds, a robustness benchmark introduced to evaluate GDRO in [43], contains
images of land-bird and water-bird species on either land or water backgrounds. The task is to
classify images into land-bird vs. water-bird; however, 95% of land (water)-birds are on land (water)
backgrounds, causing ERM to often misclassify both land-birds on water and water-birds on land.

Undersampled MNIST (U-MNIST) We design U-MNIST as a modified version of MNIST [28],
where the task is to classify digits as “<5” and “≥5” (digits 0-9 are the subclasses). In addition, we
remove 95% of ‘8’s; due to its rarity, it is challenging for ERM to perform well on the ‘8’ subclass.

CelebA CelebA is a common face classification dataset also used as a robustness benchmark in [43].
The task is to classify faces as “blond” or “not blond.” Because only 6% of blond faces are male,
ERM performs poorly on this rare subclass.

ISIC The ISIC skin cancer dataset [12] is a public real-world dataset for classifying skin lesions as
“malignant” or “benign.” 48% of benign images contain a colored patch. Of the non-patch examples,
49% required histopathology (a biopsy) to diagnose. We report AUROC for ISIC, as is standard [41].

6.2 End-to-End Results

We first show that GEORGE substantially improves the worst-case subclass accuracy, while modestly
affecting overall accuracy. (Recall that we refer to worst-case subclass accuracy as “robust accuracy”
[Eq. (2)].) We train models on each dataset in Sec. 6.1 using (a) ERM, (b) GEORGE, and (c)
GDRO with true subclass labels (“subclass-GDRO”), and report both robust and overall performance
metrics in Table 1. Compared to ERM, training with GEORGE improves robust accuracy by up to 14
points, and closes up to 62% of the gap between the robust error of the ERM model and that of the
subclass-GDRO model—despite the fact that GEORGE does not require subclass labels.1

On Waterbirds, U-MNIST, and CelebA, GEORGE significantly improves worst-case subclass accuracy
over ERM. On ISIC, GEORGE increases the clinically meaningful histopathology subclass AUROC
over ERM, while all methods perform similarly on the non-patch subclass. On CelebA, although
GEORGE improves upon ERM, it substantially underperforms subclass-GDRO. However, this gap
can be closed when improved features are used: if we cluster pretrained BiT embeddings [27] rather
than ERM features and use the resulting cluster assignments for the second stage of GEORGE, the
robust accuracy improves to match that of subclass-GDRO. We describe this experiment in Sec. 6.4.

1In Appendix C, we show that GEORGE also outperforms other subclass-agnostic baselines, such as GDRO
trained using the superclasses as groups.
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In terms of overall performance, ERM generally performs best (as it is designed to optimize for
average-case performance), followed by GEORGE and then subclass-GDRO. However, this difference
is generally much smaller in magnitude (less than 5 points) than the increase in robust performance.

6.3 Clustering Results

Step 1 of GEORGE is to train an ERM model and cluster the data of each superclass in its feature
space. We analyze these clusters to better understand GEORGE’s behavior. First, we show that
GEORGE finds clusters that align well with poorly-performing human-labeled subclasses. This helps
explain why the second step of GEORGE, running GDRO using the cluster assignments as groups,
improves performance on these subclasses (as in Section 6.2). Next, we show that GEORGE can
discover meaningful subclasses that were not labeled by human annotators. Finally, we show that the
worst-case performance measured on the clusters returned by GEORGE is a good approximation of
the true robust performance.

Subclass Recovery We evaluate the ability of GEORGE to identify clusters that correspond to the true
subclasses. We focus on identification of poorly-performing subclasses, as these determine robust
performance. In Table 2, we compute the precision and recall of the cluster returned by GEORGE that
most closely aligns with each given subclass. Precision is the fraction of cluster examples with that
subclass label; recall is the fraction of subclass examples assigned to the cluster. For each poorly-
performing subclass, GEORGE identifies a cluster with high recall and better-than-random precision.

We note that the lower recall on ISIC is because the no-patch subclass is often split into two clusters;
in fact, this subclass is actually composed of two semantically distinct groups as discussed below. If
these two clusters are combined, their precision and recall at identifying no-patch examples is ≥0.99.

Unlabeled Subclass Discovery In addition to yielding clusters aligned with human-annotated sub-
classes, our procedure can identify semantically meaningful subclasses that were not specified in the
human-provided schema. On U-MNIST, 60% of trials of GEORGE partition the “7” subclass into
two subclusters, each containing stylistically different images (Fig. 8c, App. C). On ISIC, 60% of
GEORGE trials reveal two distinct benign clusters within the no-patch subclass (see Fig. 8h). In these
trials, 77% of images in one no-patch cluster required histopathology (biopsy & pathologist referral),
while such images made up <7% of the other cluster. In other words, the no-patch subclass split
into “histopathology” and “non-histopathology” clusters, where the former datapoints were harder
for clinicians to classify. We comment on the real-world importance of this result in Broader Impacts.

Table 2: Alignment of clusters with poorly-performing subclasses on the train set. We run Step 1 of
GEORGE over multiple random seeds (i.e., train multiple ERM models and cluster their activations).
In col. 4, we report the percentage of these trials with a cluster above the given precision and recall
thresholds (cols. 5, 6) for identifying the subclass in col. 2. We report the proportion of examples
from that subclass within its superclass in col. 3.

Task Subclass Subclass Prevalence % of trials Precision Recall

U-MNIST “8” digit 0.012 100 0.81 0.80
Waterbirds Water-birds on land 0.05 100 0.15 0.95
Waterbirds Land-birds on water 0.05 100 0.30 0.93
ISIC No-patch 0.48 100 0.99 0.60
CelebA blond males 0.06 100 0.13 0.90

Estimating Robust Accuracy We show that the clusters returned by GEORGE enable improved
measurement of worst-case subclass performance. Specifically, we measure the worst-case perfor-
mance across any cluster returned by GEORGE (which we call the “cluster-robust” performance) and
compare this to the true robust performance and the overall performance. We present results for both
ERM and GEORGE in Table 3. In most cases, the cluster-robust performance is much closer to the true
robust performance than the overall performance is. On ISIC, cluster-robust performance even yields
a better estimate of robust performance on the histopathology subclass than does performance on the
patch/no-patch subclass labels. By comparing cluster-robust performance to overall performance, we
can detect hidden stratification (and estimate its magnitude) without requiring subclass labels.
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Table 3: Comparison of overall, cluster-robust, and robust performance.2(Conventions as in Table 1.)

Method Metric Waterbirds U-MNIST ISIC CelebA
Type Non-patch Histopath.

ERM Robust 63.3(±1.6) 93.9(±0.6) .920(±.007) .872(±.010) 41.1(±2.3)
Cluster-Robust 76.8(±1.6) 92.3(±2.5) .894(±.031) 59.1(±1.1)

Overall 97.3(±0.1) 98.2(±0.1) .956(±.003) 95.7(±0.1)

GEORGE Robust 76.2(±2.0) 95.7(±0.6) .918(±.009) .881(±.005) 52.4(±1.3)
Cluster-Robust 93.5(±0.5) 93.5(±1.9) .904(±.020) 71.8(±0.2)

Overall 95.5(±0.6) 97.9(±0.2) .935(±.007) 94.8(±0.2)

In addition, improvements in robust performance from GEORGE compared to ERM are accompanied
by increases in cluster-robust performance; by comparing the cluster-robust performance of ERM
and GEORGE, we can estimate how much GEORGE improves hidden stratification.

6.4 Extension: Leveraging Pretrained Embeddings

As an alternative to training an ERM model, we assess whether recent pretrained image embeddings
(BiT, [27]) can provide better features for Step 1 of GEORGE. Specifically, we modify Step 1 of
GEORGE to compute BiT embeddings for the datapoints, cluster these, and use the cluster assignments
as estimated subclass labels in Step 2 of GEORGE. This modification dramatically improves robust
accuracy on CelebA to 86.0%, matching subclass-GDRO. The CelebA BiT clusters align much better
with the true subclasses, which helps explain this (e.g., for the “blond male” subclass, precision
improves to 0.15 and recall to 0.98). However, GEORGE with BiT clustering performs worse than the
default GEORGE implementation on Waterbirds, suggesting that BiT is not a panacea; on Waterbirds,
the task-specific information contained in the representation of the trained ERM model is important
for identifying meaningful clusters. See App. B.3.4 for additional evaluations and discussion.
Extending Step 1 of GEORGE to enable automatically selecting between distinct representations (e.g.,
BiT vs. ERM) is a compelling future topic.

7 Conclusion

We propose GEORGE, a two-step approach for measuring and mitigating hidden stratification without
requiring access to subclass labels. GEORGE’s first step, clustering the features of an ERM model,
identifies clusters that provide useful approximations of worst-case subclass performance. GEORGE’s
second step, using these cluster assignments as groups in GDRO, yields significant improvements in
worst-case subclass performance. We analyze GEORGE in the context of a simple generative model,
and show that under suitable assumptions GEORGE achieves the same asymptotic sample complexity
rates as if we had access to true subclass labels. We empirically validate GEORGE on four datasets,
and find evidence that it can reduce hidden stratification on real-world machine learning tasks.

2We note that if reweighting is not applied to the Waterbirds validation/test sets (see Appendix B.2.2 for
explanation), the cluster-robust performance is significantly closer to the true robust performance (within 2
accuracy points, for both ERM and GEORGE); true robust performance for GEORGE also increases to 82.6%,
while other methods are relatively unaffected by this reweighting.
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Broader Impact

The potential real-world impact of GEORGE, the approach we present in this work, is that it would
allow machine learning practitioners to both measure and mitigate hidden stratification without
requiring any additional prior information. Concretely, this means that users would be able to
leverage clusters identified in Step 1 of GEORGE to measure performance gaps between unlabeled
subclasses, and that they would subsequently be able to reduce that subclass performance gap via
Step 2 of GEORGE. We hope that GEORGE could serve as a drop-in replacement for standard ERM-
based techniques in situations where ensuring good performance across many potentially unknown
subclasses is important, as it is simple to implement and can be generically applied: all that is required
to apply GEORGE to an existing model is (a) clustering within the representation space of a trained
model and (b) retraining using a GDRO objective with the cluster assignments used as groups.

As an example of how GEORGE could be important for meaningful practical applications, we consider
our results presented on the ISIC dataset in a real-world context. Naively, the overall AUROC on the
ISIC dataset obtained using an ERM-trained model is 0.956, which suggests a high-performing model;
however, our clustering (Step 1 of GEORGE) reveals that a large fraction of the benign images contain
a “spurious” brightly colored patch, which makes them very easy to classify. The model performs
substantially worse for cases without such a patch, and worse still on cases for which a clinician
would also have required a histopathology examination to make a diagnosis. Thus, if deployed in
practice with a target sensitivity value in mind, the appropriate way to set an operating point for
this model is in fact cluster-dependent; if a single operating point were set using the aggregate ROC
curve, the true sensitivity on the histopathology subclass would be substantially lower than intended.
This means that even just measuring hidden stratification via Step 1 of GEORGE can provide crucial
information that would help avoid spurious false negatives at test time—the worst type of error a
medical screening application can make.

As shown in the paper, Step 2 of GEORGE can improve performance on underperforming subclasses.
Our approach thus provides additional value via a simple retraining procedure that can reduce the
amount of hidden stratification exhibited by the model. While our approach will certainly not provide
substantial gains in every possible case—for instance, if performance gaps between subclasses are
already minimal—we also do not expect it to cause substantial performance degradation. Indeed,
even if the clusters returned by GEORGE are random groupings of points that do not align well
with the true subclasses, we still expect a model trained to be robust across such groups to perform
similarly to a standard ERM model (as in this case the average per-cluster losses are likely to be close
to the overall loss on the superclass). This conclusion is empirically supported by the random-GDRO
results of Appendix B, which are generally comparable to ERM.

In summary, we hope that GEORGE will have broader impacts by (a) enabling better measurement
of hidden stratification via Step 1, even without knowledge of the subclasses, and (b) potentially
improving performance on underserved subclasses with Step 2, with only modest additional effort
required compared to normal training procedures (i.e., clustering + retraining with GDRO). In addition
to medical imaging tasks such as ISIC, subclasses could represent a large number of important
categories including race, gender, and others on which one would generally want to ensure good
performance on all subclasses, rather than optimizing for average performance while underserving
certain categories. If successful, GEORGE can help to detect and mitigate such important performance
differences before models are deployed in practice. To support these potential impacts, we have
released a complete implementation of our code,3 with an easily usable PyTorch API. We look
forward to engaging with the broader community to improve our work and deploy it on real-world
applications.

Acknowledgments and Disclosure of Funding

We thank Arjun Desai, Pang Wei Koh, Shiori Sagawa, Charles Kuang, Karan Goel, Avner May,
Esther Rolf, and Sharon Li for helpful discussions and feedback.

We gratefully acknowledge the support of DARPA under Nos. FA86501827865 (SDH) and
FA86501827882 (ASED); NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR under No.

3https://github.com/HazyResearch/hidden-stratification/

10

https://github.com/HazyResearch/hidden-stratification/


N000141712266 (Unifying Weak Supervision); the Moore Foundation, NXP, Xilinx, LETI-CEA,
Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm,
Analog Devices, the Okawa Foundation, American Family Insurance, Google Cloud, Swiss Re, the
HAI-AWS Cloud Credits for Research program, the Schlumberger Innovation Fellowship program,
and members of the Stanford DAWN project: Teradata, Facebook, Google, Ant Financial, NEC,
VMWare, and Infosys. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views, policies, or endorsements, either expressed or implied, of DARPA, NIH,
ONR, or the U.S. Government.

References
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-

mization. arXiv preprint arXiv:1907.02893, 2019.

[2] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. A critical analysis of self-supervision,
or what we can learn from a single image. In International Conference on Learning Representa-
tions (ICLR), 2020.

[3] Hassan Ashtiani, Shai Ben-David, Nick Harvey, Christopher Liaw, Abbas Mehrabian, and Yaniv
Plan. Near-optimal sample complexity bounds for robust learning of gaussian mixtures via
compression schemes. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[4] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

[5] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Optimizing the latent
space of generative networks. In International Conference on Machine Learning (ICML), 2018.

[6] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 132–149, 2018.

[7] Krzysztof Chalupka, Pietro Perona, and Frederick Eberhardt. Visual causal feature learning. In
Uncertainty in Artificial Intelligence (UAI), 2015.

[8] Beidi Chen, Weiyang Liu, Zhiding Yu, Jan Kautz, Anshumali Shrivastava, Anshumali Shri-
vastava, Animesh Garg, and Anima Anandkumar. Angular visual hardness. In International
Conference on Machine Learning (ICML), 2020.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International Conference on Machine
Learning (ICML), 2020.

[10] Vincent Chen, Sen Wu, Alexander J Ratner, Jen Weng, and Christopher Ré. Slice-based
learning: A programming model for residual learning in critical data slices. In Advances in
Neural Information Processing Systems, pages 9392–9402, 2019.

[11] Sasank Chilamkurthy, Rohit Ghosh, Swetha Tanamala, Mustafa Biviji, Norbert G Campeau,
Vasantha Kumar Venugopal, Vidur Mahajan, Pooja Rao, and Prashant Warier. Deep learning
algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet, 392
(10162):2388–2396, December 2018.

[12] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David
Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (ISIC). arXiv preprint arXiv:1902.03368, 2019.

[13] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between
high-dimensional Gaussians. arXiv preprint arXiv:1810.08693, 2018.

11

http://www.fairmlbook.org


[14] Jian Dong, Qiang Chen, Jiashi Feng, Kui Jia, Zhongyang Huang, and Shuicheng Yan. Looking
inside category: subcategory-aware object recognition. IEEE Transactions on Circuits and
Systems for Video Technology, 25(8):1322–1334, 2014.

[15] Jian Dong, Qiang Chen, Jiashi Feng, Kui Jia, Zhongyang Huang, and Shuicheng Yan. Looking
inside category: Subcategory-aware object recognition. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, 25:1322–1334, 08 2015. doi: 10.1109/TCSVT.2014.2355697.

[16] John C Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust losses
against mixture covariate shifts. Under review, 2019.

[17] Jared A Dunnmon, Darvin Yi, Curtis P Langlotz, Christopher Ré, Daniel L Rubin, and
Matthew P Lungren. Assessment of convolutional neural networks for automated classifi-
cation of chest radiographs. Radiology, 290(2):537–544, February 2019.

[18] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and
Luc Van Gool. Learning to classify images without labels. arXiv preprint arXiv:2005.12320,
2020.

[19] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam
Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros,
Ramasamy Kim, Rajiv Raman, Philip C Nelson, Jessica L Mega, and Dale R Webster. Develop-
ment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA, 316(22):2402–2410, December 2016.

[20] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories
via deep transfer clustering. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 8401–8409, 2019.

[21] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
Advances in neural information processing systems, pages 3315–3323, 2016.

[22] Minh Hoai and Andrew Zisserman. Discriminative sub-categorization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1666–1673, 2013.

[23] Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust su-
pervised learning give robust classifiers? In International Conference on Machine Learning
(ICML), 2018.

[24] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991.

[25] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised
image classification and segmentation. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 9865–9874, 2019.

[26] Michael Kearns, Aaron Roth, and Saeed Sharifi-Malvajerdi. Average individual fairness:
Algorithms, generalization and experiments. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[27] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain
Gelly, and Neil Houlsby. Big transfer (BiT): General visual representation learning. arXiv
preprint arXiv:1912.11370, 2020.

[28] Yann LeCun and Corinna Cortes. 2010.

[29] Percy Liang and Tengyu Ma. 229t course notes, 2019. URL http://web.stanford.
edu/class/cs229t/.

[30] Zachary Lipton, Julian McAuley, and Alexandra Chouldechova. Does mitigating ml’s impact
disparity require treatment disparity? In Advances in Neural Information Processing Systems,
pages 8125–8135, 2018.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

12

http://web.stanford.edu/class/cs229t/
http://web.stanford.edu/class/cs229t/


[32] Ryan McConville, Raul Santos-Rodriguez, Robert J Piechocki, and Ian Craddock. N2d:(not
too) deep clustering via clustering the local manifold of an autoencoded embedding. arXiv
preprint arXiv:1908.05968, 2019.

[33] Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[34] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2, pages 1003–1011. Association for Computational Linguistics,
2009.

[35] Rafael Muller, Simon Kornblith, and Geoffrey Hinton. Subclass distillation. arXiv preprint
arXiv:2002.03936, 2020.

[36] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden strat-
ification causes clinically meaningful failures in machine learning for medical imaging. In
Proceedings of the ACM Conference on Health, Inference, and Learning (CHIL), 2020.

[37] Neoklis Polyzotis, Steven Whang, Tim Klas Kraska, and Yeounoh Chung. Slice finder: Auto-
mated data slicing for model validation. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), 2019.

[38] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. The VLDB Journal, pages 1–22,
2019.

[39] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10
classifiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451, 2018.

[40] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet
classifiers generalize to ImageNet? In International Conference on Machine Learning (ICML),
2019.

[41] Laura Rieger, Chandan Singh, W. James Murdoch, and Bin Yu. Interpretations are use-
ful: penalizing explanations to align neural networks with prior knowledge. arXiv preprint
arXiv:1909.13584, 2019.

[42] Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

[43] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. In International Conference on Learning Representations (ICLR), 2020.

[44] Bernhard Schölkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

[45] Alon Scope, Michael A. Marchetti, Ashfaq A. Marghoob, Stephen W. Dusza, Alan C. Geller,
Jaya M. Satagopan, Martin A. Weinstock, Marianne Berwick, and Allan C. Halpern. The
study of nevi in children: Principles learned and implications for melanoma diagnosis. Journal
of the American Academy of Dermatology, 75(4):813 – 823, 2016. ISSN 0190-9622. doi:
https://doi.org/10.1016/j.jaad.2016.03.027. URL http://www.sciencedirect.com/
science/article/pii/S019096221630010X.

[46] Ankita Shukla, Gullal Singh Cheema, and Saket Anand. Semi-supervised clustering with neural
networks. arXiv preprint arXiv:1806.01547, 2018.

[47] Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distribu-
tional robustness with principled adversarial training. In International Conference on Learning
Representations (ICLR), 2018.

[48] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pages 4077–4087, 2017.

13

http://www.sciencedirect.com/science/article/pii/S019096221630010X
http://www.sciencedirect.com/science/article/pii/S019096221630010X


[49] Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning as a generalization of
adversarial training. In NIPS Workshop on Machine Learning and Computer Security, 2017.

[50] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global represen-
tations by penalizing local predictive power. In Advances in Neural Information Processing
Systems, pages 10506–10518, 2019.

[51] Pengtao Xie, Aarti Singh, and Eric P. Xing. Uncorrelation and evenness: a new diversity-
promoting regularizer. In International Conference on Machine Learning (ICML), 2017.

[52] Bangpeng Yao, Aditya Khosla, and Li Fei-Fei. Combining randomization and discrimination for
fine-grained image categorization. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1577–1584. IEEE, 2011.

14


	Introduction
	Background
	Related Work
	Problem Setup
	Modeling Hidden Stratification
	A Model of the Data Generating and Labeling Process
	What Causes Hidden Stratification, and When Can It Be Fixed?
	George: A Framework for Mitigating Hidden Stratification
	Step 1: Estimating Approximate Subclass Labels
	Clustering Details

	Step 2: Exploiting Approximate Subclass Labels
	Analysis of George
	Experiments
	Datasets
	End-to-End Results
	Clustering Results
	Extension: Leveraging Pretrained Embeddings


	Conclusion
	Related Work
	Experimental Details
	George Pseudocode
	Dataset Details
	Additional Experimental Results
	George results
	Additional Evaluations and Ablations
	Derivations and Proofs
	Analysis of Example 3.1.
	Proofs from Section 5











