
No Subclass Left Behind: Fine-Grained Robustness in
Coarse-Grained Classification Problems

Nimit Sohoni‡, Jared A. Dunnmon†, Geoffrey Angus†, Albert Gu†, and Christopher Ré†

†Department of Computer Science, Stanford University
‡Institute for Computational and Mathematical Engineering, Stanford University
{nims, jdunnmon, gdlangus, albertgu, chrismre}@cs.stanford.edu

Abstract

In real-world classification tasks, each class often comprises multiple finer-grained
“subclasses.” As the subclass labels are frequently unavailable, models trained using
only the coarser-grained class labels often exhibit highly variable performance
across different subclasses. This phenomenon, known as hidden stratification,
has important consequences for models deployed in safety-critical applications
such as medicine. We propose GEORGE, a method to both measure and mitigate
hidden stratification even when subclass labels are unknown. We first observe
that unlabeled subclasses are often separable in the feature space of deep models,
and exploit this fact to estimate subclass labels for the training data via clustering
techniques. We then use these approximate subclass labels as a form of noisy
supervision in a distributionally robust optimization objective. We theoretically
characterize the performance of GEORGE in terms of the worst-case generalization
error across any subclass. We empirically validate GEORGE on a mix of real-world
and benchmark image classification datasets, and show that our approach boosts
worst-case subclass accuracy by up to 14 percentage points compared to standard
training techniques, without requiring any information about the subclasses.

1 Introduction

In many real-world classification tasks, each labeled class consists of multiple semantically distinct
subclasses that are unlabeled. Because models are typically trained to maximize global metrics
such as average performance, they often underperform on important subclasses [52, 40]. This
phenomenon—recently termed hidden stratification—can lead to skewed assessments of model
quality and result in unexpectedly poor performance when models are deployed [36]. For instance, a
medical imaging model trained to classify between benign and abnormal lesions may achieve high
overall performance, yet consistently mislabel a rare but critical abnormal subclass as “benign” [17].

Modern robust optimization techniques can improve performance on poorly-performing groups when
the group identities are known [43]. However, in practice, a key obstacle is that subclasses are
often unlabeled, or even unidentified. This makes even detecting such performance gaps—let alone
mitigating them—a challenging problem. Nevertheless, recent empirical evidence [36] encouragingly
suggests that feature representations of deep neural networks often carry information about unlabeled
subclasses (see Figure 1). Motivated by this observation, we propose a method for addressing hidden
stratification, by both measuring and improving worst-case subclass performance in the setting where
subclass labels are unavailable. Our work towards this is organized into four main sections.

First, in Section 3 we propose a simple generative model of the data labeling process. Using this
model, we show that when label annotations are insufficiently fine-grained—as is often the case in
real-world datasets—hidden stratification can naturally arise. For instance, an image classification
task might be to classify birds vs. frogs; if labels are only provided for these broad classes, they may
34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

fail to capture visually meaningful finer-grained, intra-class variation (e.g., “bird in flight” versus
“bird in nest”). We show that in the setting of our generative model, standard training via empirical
risk minimization (ERM) can result in arbitrarily poor performance on underrepresented subclasses.

Figure 1: Benign class examples in the fea-
ture space of a model classfying skin lesions
as benign or malignant. Benign examples
containing a brightly colored patch (blue) and
those without a patch (red) are separable in
model feature space, even though the labels
do not specify the presence of patches.

Second, in Section 4 we use insights from this gen-
erative model to motivate GEORGE, a two-step pro-
cedure for alleviating hidden stratification by first
estimating the subclass labels and then exploiting
these estimates to train a robust classifier. To esti-
mate subclass labels, we train a standard model on
the task, and split each class (or “superclass,” for
clarity) into estimated subclasses via unsupervised
clustering in the model’s feature space. We then ex-
ploit these estimated subclasses by training a new
model to optimize worst-case performance over all
estimated subclasses using group distributionally ro-
bust optimization (GDRO [43]). In this way, our
framework allows ML practitioners to automatically
detect poorly-performing subclasses and improve per-
formance on them, without needing to resort to ex-
pensive manual relabeling of the data.

Third, in Section 5 we use our generative framework
to prove that—under conditions on the data distribution and the quality of the recovered clusters—
GEORGE can reduce the subclass performance gap, attaining the same asymptotic sample complexity
rates as if the true subclass labels were known.

Fourth, in Section 6 we empirically validate the ability of GEORGE to both measure and mitigate
hidden stratification on four image classification tasks, comprising both robustness benchmarks
and real-world datasets. We show that the first step of GEORGE—training an ERM model and
clustering the superclass features—often recovers clusters that align closely with true subclasses. We
evaluate the ability of these clusters to measure the worst-case subclass (i.e., “robust”) performance:
on average, the gap between worst-case cluster performance and worst-case subclass performance
is less than 40% of the gap between overall and worst-case subclass performance, indicating that
GEORGE enables more accurate measurement of robust performance. Next, we show that the second
stage of GEORGE—retraining a robust model using cluster assignments as proxy subclass labels—
reduces average worst-case subclass error rates by over 23%. For comparison, the state-of-the-art
“oracle” GDRO method that does require subclass labels [43] reduces average worst-case subclass
error rates by 50%. As an extension, we show that leveraging recent pretrained image embeddings
[27] for clustering can substantially further improve the robust performance of GEORGE, in some
cases to match the performance of GDRO trained using the true subclass labels.

2 Background

2.1 Related Work

Our work builds upon prior work from three main areas: robust optimization, representation learning,
and unsupervised clustering. We provide a more extensive discussion of related work in Appendix A.

Distributionally Robust Optimization Robustness and fairness is an active research area in machine
learning [4, 21, 30, 26]. Distributionally robust optimization (DRO) attempts to guarantee good
performance in the presence of distribution shift, e.g., from adversarial perturbations [49, 47] or
evaluation on arbitrary subpopulations [16]. Because these notions of robustness can be pessimistic
[23], others investigate group DRO (GDRO), which optimizes worst-case performance over a known
set of subgroups [23, 43]. A major obstacle to applying GDRO methods in practice is that subgroup
labels are often unavailable; in our work, we aim to address this issue in the classification setting.

Representation Learning & Clustering Our approach relies on estimating unknown subclass labels
by clustering a feature representation of the data. Techniques for learning semantically useful image
features include autoencoder-based methods [32, 46], the use of unsupervised auxiliary tasks [2, 9],
and pretraining on massive datasets [27]. Such features may be used for unsupervised identification

2

of classes, either using clustering techniques [6] or in an end-to-end approach [25, 18]. It has also
been observed that when a model is trained on coarse-grained class labels, the data within each class
can often be separated into distinct clusters in model feature space [36]. While we focus on the latter
approach, we also evaluate the utility of pretrained embeddings as a source of features for clustering.

2.2 Problem Setup

We are given n datapoints x1, . . . , xn ∈ X and associated superclass labels y1, . . . , yn ∈ {1, . . . , B}.
In addition, associated with each datapoint xi is a latent (unobserved) subclass label zi ∈ {1, . . . , C}.
We assume that {1, . . . , C} is partitioned into disjoint sets S1, . . . , SB such that if zi ∈ Sb, then
yi = b; in other words, the subclass label zi determines the superclass label yi. Let Sb denote the set
of all subclasses comprising superclass b, and S(c) denote the superclass corresponding to subclass c.

Our goal is to classify examples from X into their correct superclass. Given a function class F , it is
typical to seek a classifier f ∈ F that maximizes overall population accuracy:

argmax
f∈F

E(x,y) [1(f(x) = y)] . (1)

By contrast, we seek to maximize the robust accuracy, defined as the worst-case expected accuracy
over all subclasses:

argmax
f∈F

min
c∈{1,...,C}

E(x,y)|z=c [1(f(x) = y)] . (2)

Note that y is fixed conditional on the value of z. As we cannot directly optimize the population
accuracy, we select a surrogate loss function ` and attempt to minimize this loss over the training data.
For instance, the standard ERM approach to approximate (1) minimizes the empirical risk R(f):

argmin
f∈F

{
R(f) := 1

n

n∑
i=1

`(f(xi), yi)

}
. (3)

To approximate (2), if we knew z1, ..., zn we could minimize the worst-case per-subclass training
risk by solving:

argmin
f∈F

{
Rrobust(f) := max

c∈{1,...,C}
1
nc

n∑
i=1

1(zi = c)`(f(xi), yi)

}
, (4)

where nc =
∑n
i=1 1(zi = c) is the number of training examples from subclass c. Rrobust(f) is the

“robust loss” achieved by f . Our goal is to learn a model f̃ ∈ F such thatRrobust(f̃)−min
f∈F

(Rrobust(f))

is small with high probability. When the zi’s are known, Eq. (4) can be tractably optimized using
group distributionally robust optimization (GDRO) [23, 43]. However, we do not assume access to
the zi’s; we seek to approximately minimize Rrobust without knowledge of the subclass labels.

3 Modeling Hidden Stratification

In Section 3.1, we introduce a generative model of the data labeling process. In Section 3.2, we use
this model to explain how hidden stratification can occur, and show that in the setting of this model
ERM can attain arbitrarily poor robust risk compared to DRO.

3.1 A Model of the Data Generating and Labeling Process

In real datasets, individual datapoints are typically described by multiple different attributes, yet often
only a subset of these are captured by the class labels. For example, a dataset might consist of images
labeled “cat” or “dog.” These coarse class labels may not capture other salient attributes (color, size,
breed, etc.); these attributes can be interpreted as latent variables representing different subclasses.

We model this phenomenon with a hierarchical data generation process. First, a binary vector
~Z ∈{−1,+1}k is sampled from a distribution p(~Z). Each entry Zi is an attribute, while each unique
value of ~Z represents a different subclass. Then, a latent “feature vector” ~V ∈ Rk is sampled from a
distribution conditioned on ~Z, where, when conditioned on Zi, each individual feature Vi is Gaussian
and independent of Zj for j > i. Finally, the datapoint X ∈ X is determined by the latent features
~V via a fixed map g : Rk → X . Meanwhile, the superclass label Y is a fixed discrete-valued

3

Figure 2: (a) Generative model of hidden stratification: attributes Z determine features ~V and labels
Y ; mapping g transforms ~V to yield observed data X . (b) On the Waterbirds dataset [43], attributes
(Z1, Z2) denote species and background type respectively; the label Y is the species type.

function h(~Z) of ~Z. In particular, h may only depend on a subset of the Zi’s; the Zi’s which do
not influence the label Y correspond to hidden subclasses. X,Y are observed, while ~V , ~Z are not.
Fig. 2a illustrates this generative process; Fig. 2b presents an analogue on the Waterbirds dataset [43].

Importantly, rather than attempting to enforce good performance on all possible subsets of the data,
we assume some meaningful structure to the subclasses. We model this via the Gaussian assumption
on p(Vi|~Z), which is similar to that often made for the latent space of GANs [5]. Consequently, the
data distribution is a mixture of Gaussians in “feature space,” which facilitates further theoretical
analysis (Section 5). Our generative model also bears similarity to that of [23], who use a hierarchical
data-generation model to analyze the behavior of DRO methods in the presence of distribution shift.

3.2 What Causes Hidden Stratification, and When Can It Be Fixed?

We now use our generative model to help understand why hidden stratification can occur, and present
a simple example in which ERM is provably suboptimal in terms of the robust risk.

ERM decision boundary

GDRO decision boundary

Rare subclass

Rare subclass

Figure 3: As α→0 in Example 3.1, top-left &
lower-right subclasses get rarer and are mis-
classified by ERM (black boundary), whereas
GDRO learns the optimal robust boundary
(green) to classify red vs. blue superclasses.

We distinguish between two main causes of hidden
stratification: inherent hardness and dataset imbal-
ance. First, certain subclasses are “inherently harder”
to classify because they are more similar to other su-
perclasses. We define the inherent hardness of a task
as the minimum attainable robust error; inherent hard-
ness thus lower bounds the worst-case subclass error
of any model. See Appendix D for more discussion.

Second, imbalance in subclass sizes can cause ERM
to underserve rare subclasses, since it optimizes for
average-case performance. We provide a simple con-
crete example (3.1) below. Unlike inherent hardness,
robust performance gaps arising from dataset imbal-
ances can be resolved if subclass labels are known,
by using these labels to minimize Eq. (4) via GDRO.

Example 3.1 Fig. 3 depicts an example distribution generated by the model in Sec. 3.1. In this
example, the binary attribute vector ~Z has dimension 2, i.e., ~Z = (Z1, Z2), while only Z2 determines
the superclass label Y , i.e., Y = Z2. The latent attribute Z1 induces two subclasses in each
superclass, each distributed as a different Gaussian in feature space, with mixture proportions α and
1− α respectively. (See Appendix D.1 for the specific parameters of the per-subclass distributions
in this example.) For linear models with regularized logistic loss, as the proportion α of the rare
subclasses goes to 0, the worst-case subclass accuracy of ERM is only O(α), while that of GDRO is
1−O(α). (Proof in Appendix D.1.)

Example 3.1 illustrates that when the dataset is imbalanced—i.e., the distribution of the underlying
attributes ~Z is highly nonuniform—knowledge of subclass labels can improve robust performance.
We thus ask: how well can we estimate subclass labels if they are not provided? In the extreme, if
two subclasses of a superclass have the same distribution in feature space, we cannot distinguish
them. However, the model must then perform the same on each subclass, since its prediction is a
fixed function of the features! Conversely, if one subclass has higher average error, it must lie “further
across” the decision boundary, meaning that the two subclasses must be separable to a degree; the
larger the accuracy gap, the more separable the subclasses are. We formalize this in Appendix D.3.

4

Figure 4: Schematic describing GEORGE. The inputs are the datapoints and superclass labels. First, a
model is trained with ERM on the superclass classification task. The activations of the penultimate
layer are then dimensionality-reduced, and clustering is applied to the resulting features to obtain
estimated subclasses. Finally, a new model is trained using these clusters as groups for GDRO.

4 GEORGE: A Framework for Mitigating Hidden Stratification

Inspired by the insights of Sec. 3, we propose GEORGE, an algorithm to mitigate hidden stratification.
A schematic overview of GEORGE is provided in Figure 4.

Under the generative model of Section 3.1, each subclass is described by a different Gaussian in
latent feature space. This suggests that a natural approach to identify the subclasses is to transform
the data into feature space, and then cluster the data into estimated subclasses. To obtain this feature
space, we leverage the empirical observation that feature representations of deep neural networks
trained on a superclass task can carry information about unlabeled subclasses [36]. Next, to improve
performance on these estimated subclasses, we minimize the maximum per-cluster average loss, by
using the clusters as groups in the GDRO objective [43]. We provide more details below, and detailed
pseudocode in Appendix B (Algorithm 1).

4.1 Step 1: Estimating Approximate Subclass Labels

In the first step of GEORGE, we train an ERM model on the superclass task and cluster the feature
representations of each superclass to generate proxy subclass labels. Formally, we train a deep neural
network L ◦ fθ to predict the superclass labels, where fθ : X → Rd is a parametrized “featurizer”
and L : Rd → ∆B outputs classification logits. We then cluster the features output by fθ for the
data of each superclass into k clusters, where k is chosen automatically. To each datapoint xi in the
training and validation sets, we associate its cluster assignment z̃i ∈ {1, . . . , k}; we use the z̃i’s as
surrogates for the true subclass labels zi.

4.1.1 Clustering Details

In practice, we apply UMAP dimensionality reduction [33] before clustering, as we find it improves
results (Appendix B). Additionally, based on the insight of Section 3.2 that subclasses with high loss
differences are more separable, we also use the loss component (i.e., the component of the activation
vector orthogonal to the decision boundary) as an alternative representation.

We first tried using standard clustering methods (such as k-means and Gaussian mixture model
clustering) in our work. By visual inspection, we found that these methods often failed to capture
smaller clusters, even if they were well-separated. However, missing small clusters like this is
problematic for GEORGE, since these small clusters frequently correspond to rare, low-performing
subclass. Additionally, these methods require specification of k. We apply over-clustering (clustering
using a larger k) to remedy this problem in an efficient manner. Naive overclustering also has
drawbacks as it still requires manual specification of k, and if k is set too large, several clusters
can be spurious and result in overly pessimistic and unstable measurements of robust performance
(as we explore in Appendix C.2.6). Thus, we develop a fully automated criterion based on the
commonly used Silhouette (SIL) criterion [42] to search for the number of clusters k, over-cluster
to find smaller clusters that were missed, and filter out the spurious overclusters. Empirically, our
clustering approach significantly improves performance over “vanilla” clustering; we hope that it
may be of independent interest as well. We describe our procedures in more detail in Appendix B.

k and other clustering and representation hyperparameters are selected automatically based on an
unsupervised SIL criterion [42] as described further in Appendix B.

4.2 Step 2: Exploiting Approximate Subclass Labels

In the second step of GEORGE, we use the GDRO algorithm from [43] and our estimated subclass
labels z̃i to train a new classifier with better worst-case performance on the estimated subclasses.

5

Given data {(xi, yi, ti)}ni=1 and loss function `, GDRO minimizes max
t∈T

E
x,y∼P̂t

[`((L ◦ fθ)(x), y)]

w.r.t. parameters (L, θ), where T is the discrete set of groups and P̂t is the empirical distribution of
examples from group t. This coincides with the true objective (4) when the true subclass labels zi
are used as the group labels ti. In our case, we use the cluster assignments z̃i as the group labels
instead, i.e., minimize max

1≤z̃≤k
E

x,y∼P̂z̃
[`(L ◦ fθ)(x), y)]. In Appendix D, we present an extension to

the GDRO algorithm of [43] to handle the case where the group assignments z̃i can be probabilistic
labels in ∆k, instead of hard labels in {1, . . . , k}.

5 Analysis of GEORGE

We now analyze a simple mixture model data distribution, based on the generative model in Sec-
tion 3.1. We show that in this setting, unlike ERM, GEORGE converges to the optimal robust risk
at the same sample complexity rate as GDRO when it is able to recover the true latent features
~Z. Specifically, Example 3.1 shows that the robust risk of ERM can be arbitrarily worse than that
of GDRO for data generated according to the generative model in Section 3.1. By contrast, if the
subclass labels estimated by GEORGE are sufficiently accurate, then the objective minimized in Step
2 of GEORGE well approximates the true GDRO objective (4). In Theorem 1, we use this to show
that, when each subclass is described by a different Gaussian in feature space, GEORGE achieves the
same optimal asymptotic sample complexity rates as GDRO trained with true subclass labels. We
sketch the argument below; full proofs are deferred to Appendix D.

First, suppose we could compute the true data distribution P(x, y, z). Our goal is to minimize the
maximum per-subclass loss by solving Eq. (4). Even with infinite data, we cannot estimate the
individual zi’s to arbitrary accuracy, so we cannot directly compute the objective in (4). However, we
can estimate the per-subclass losses as follows: for each example (xi, yi), we use P to compute the
probability that it came from subclass c, and use that to weight the loss corresponding to that example.
In Lemma 1, we show that this yields an unbiased estimate of the average per-subclass empirical risk.

Lemma 1. Let Rc be the sample average loss of examples in subclass c. Let w(x, c) := P(x|z=c)
P(x|y=S(c)) .

Let R̃c be the sample average of w(xi, c)`(f(xi), yi) over all examples xi with superclass label
yi = S(c). Then R̃c is an unbiased estimate of Rc, and their difference converges to 0 at O(1/

√
n).

In practice, we do not have access to P and estimate it with P̂ , computed from data. Thus, the
weights w(x, c) are replaced by weights ŵ(x, c) estimated from P̂ , leading to an estimate R̂c of R̃c.
Nevertheless, if we can bound the total variation estimation error of P̂ , we can use this to bound the
error in this loss estimate, as shown in Lemma 2 (Appendix D). In Theorem 1, we leverage Lemma 2
and recent results on learning Gaussian mixtures [3] to show that, when each subclass is described by
a different Gaussian, P̂ can be estimated well enough so that the minimizer of the perturbed robust
loss converges to the minimizer of the true robust loss at the optimal sample complexity rate.

Theorem 1. Let R̂robust := maxc R̂c. Suppose `, f are Lipschitz, f has bounded parameters, and
P(x|z = c) is Gaussian and unique for each subclass c. Then, if we estimate P̂ using the algorithm
from [3], f̂ := min

f∈F
R̂robust(f) satisfies Rrobust(f̂)−min

f∈F
Rrobust(f) ≤ Õ(

√
1/n) w.h.p.

Theorem 1 implies that if each subclass is Gaussian in feature space, and we have access to this
feature space (i.e., we can invert the mapping g from features ~Z to dataX), we can cluster the features
to estimate P̂ , and the robust generalization performance of the model that minimizes the resulting
perturbed training loss R̂robust scales the same as does that of the minimizer of the true robust training
loss Rrobust, in terms of the amount of data required. This underscores the importance of recovering a
“good” feature space; empirically, we show in Appendix C that the choice of model architecture can
indeed dramatically impact the model feature space and thus the ability to recover subclasses.

6 Experiments

We empirically validate that GEORGE can mitigate hidden stratification across four datasets. In Sec-
tion 6.2, we show that when subclass labels are unavailable, GEORGE improves robust performance

6

Table 1: Robust and overall performance for ERM, GEORGE, and subclass-GDRO (i.e., GDRO
with true subclass labels). Performance metric is accuracy for all datasets but ISIC, which uses
AUROC. Bolded values are best between ERM and GEORGE, which do not require subclass labels.
Sub-columns for ISIC represent two different definitions of the ISIC subclasses; see Section 6.3.

Method Requires Metric Waterbirds U-MNIST ISIC CelebA
Subclass Labels? Type Non-patch Histopath.

ERM 7 Robust 63.3(±1.6) 93.9(±0.6) .920(±.007) .872(±.010) 41.1(±2.3)
Overall 97.2(±0.1) 98.2(±0.1) .956(±.003) 95.7(±0.1)

GEORGE (ours) 7 Robust 76.2(±2.0) 95.7(±0.6) .918(±.009) .881(±.005) 52.4(±1.3)
Overall 95.5(±0.6) 97.9(±0.2) .935(±.007) 94.8(±0.2)

Subclass-GDRO 3 Robust 90.7(±0.4) 96.8(±0.4) .922(±.007) .876(±.005) 85.9(±2.5)
Overall 92.0(±0.4) 98.0(±0.3) .934(±.010) 93.6(±0.2)

over standard methods. In Section 6.3, we analyze the clusters returned by GEORGE to understand the
reasons for this improvement; we confirm that GEORGE identifies clusters that correspond to poorly-
performing subclasses, which enables accurate measurement of robust performance. In Section 6.4,
we evaluate the use of recent pretrained image embeddings [27] as a source of features for GEORGE,
and find that this further improves performance of GEORGE on some applications. Additional details
on datasets, model architectures, and experimental procedures are in Appendix B.

6.1 Datasets

Waterbirds Waterbirds, a robustness benchmark introduced to evaluate GDRO in [43], contains
images of land-bird and water-bird species on either land or water backgrounds. The task is to
classify images into land-bird vs. water-bird; however, 95% of land (water)-birds are on land (water)
backgrounds, causing ERM to often misclassify both land-birds on water and water-birds on land.

Undersampled MNIST (U-MNIST) We design U-MNIST as a modified version of MNIST [28],
where the task is to classify digits as “<5” and “≥5” (digits 0-9 are the subclasses). In addition, we
remove 95% of ‘8’s; due to its rarity, it is challenging for ERM to perform well on the ‘8’ subclass.

CelebA CelebA is a common face classification dataset also used as a robustness benchmark in [43].
The task is to classify faces as “blond” or “not blond.” Because only 6% of blond faces are male,
ERM performs poorly on this rare subclass.

ISIC The ISIC skin cancer dataset [12] is a public real-world dataset for classifying skin lesions as
“malignant” or “benign.” 48% of benign images contain a colored patch. Of the non-patch examples,
49% required histopathology (a biopsy) to diagnose. We report AUROC for ISIC, as is standard [41].

6.2 End-to-End Results

We first show that GEORGE substantially improves the worst-case subclass accuracy, while modestly
affecting overall accuracy. (Recall that we refer to worst-case subclass accuracy as “robust accuracy”
[Eq. (2)].) We train models on each dataset in Sec. 6.1 using (a) ERM, (b) GEORGE, and (c)
GDRO with true subclass labels (“subclass-GDRO”), and report both robust and overall performance
metrics in Table 1. Compared to ERM, training with GEORGE improves robust accuracy by up to 14
points, and closes up to 62% of the gap between the robust error of the ERM model and that of the
subclass-GDRO model—despite the fact that GEORGE does not require subclass labels.1

On Waterbirds, U-MNIST, and CelebA, GEORGE significantly improves worst-case subclass accuracy
over ERM. On ISIC, GEORGE increases the clinically meaningful histopathology subclass AUROC
over ERM, while all methods perform similarly on the non-patch subclass. On CelebA, although
GEORGE improves upon ERM, it substantially underperforms subclass-GDRO. However, this gap
can be closed when improved features are used: if we cluster pretrained BiT embeddings [27] rather
than ERM features and use the resulting cluster assignments for the second stage of GEORGE, the
robust accuracy improves to match that of subclass-GDRO. We describe this experiment in Sec. 6.4.

1In Appendix C, we show that GEORGE also outperforms other subclass-agnostic baselines, such as GDRO
trained using the superclasses as groups.

7

In terms of overall performance, ERM generally performs best (as it is designed to optimize for
average-case performance), followed by GEORGE and then subclass-GDRO. However, this difference
is generally much smaller in magnitude (less than 5 points) than the increase in robust performance.

6.3 Clustering Results

Step 1 of GEORGE is to train an ERM model and cluster the data of each superclass in its feature
space. We analyze these clusters to better understand GEORGE’s behavior. First, we show that
GEORGE finds clusters that align well with poorly-performing human-labeled subclasses. This helps
explain why the second step of GEORGE, running GDRO using the cluster assignments as groups,
improves performance on these subclasses (as in Section 6.2). Next, we show that GEORGE can
discover meaningful subclasses that were not labeled by human annotators. Finally, we show that the
worst-case performance measured on the clusters returned by GEORGE is a good approximation of
the true robust performance.

Subclass Recovery We evaluate the ability of GEORGE to identify clusters that correspond to the true
subclasses. We focus on identification of poorly-performing subclasses, as these determine robust
performance. In Table 2, we compute the precision and recall of the cluster returned by GEORGE that
most closely aligns with each given subclass. Precision is the fraction of cluster examples with that
subclass label; recall is the fraction of subclass examples assigned to the cluster. For each poorly-
performing subclass, GEORGE identifies a cluster with high recall and better-than-random precision.

We note that the lower recall on ISIC is because the no-patch subclass is often split into two clusters;
in fact, this subclass is actually composed of two semantically distinct groups as discussed below. If
these two clusters are combined, their precision and recall at identifying no-patch examples is ≥0.99.

Unlabeled Subclass Discovery In addition to yielding clusters aligned with human-annotated sub-
classes, our procedure can identify semantically meaningful subclasses that were not specified in the
human-provided schema. On U-MNIST, 60% of trials of GEORGE partition the “7” subclass into
two subclusters, each containing stylistically different images (Fig. 8c, App. C). On ISIC, 60% of
GEORGE trials reveal two distinct benign clusters within the no-patch subclass (see Fig. 8h). In these
trials, 77% of images in one no-patch cluster required histopathology (biopsy & pathologist referral),
while such images made up <7% of the other cluster. In other words, the no-patch subclass split
into “histopathology” and “non-histopathology” clusters, where the former datapoints were harder
for clinicians to classify. We comment on the real-world importance of this result in Broader Impacts.

Table 2: Alignment of clusters with poorly-performing subclasses on the train set. We run Step 1 of
GEORGE over multiple random seeds (i.e., train multiple ERM models and cluster their activations).
In col. 4, we report the percentage of these trials with a cluster above the given precision and recall
thresholds (cols. 5, 6) for identifying the subclass in col. 2. We report the proportion of examples
from that subclass within its superclass in col. 3.

Task Subclass Subclass Prevalence % of trials Precision Recall

U-MNIST “8” digit 0.012 100 0.81 0.80
Waterbirds Water-birds on land 0.05 100 0.15 0.95
Waterbirds Land-birds on water 0.05 100 0.30 0.93
ISIC No-patch 0.48 100 0.99 0.60
CelebA blond males 0.06 100 0.13 0.90

Estimating Robust Accuracy We show that the clusters returned by GEORGE enable improved
measurement of worst-case subclass performance. Specifically, we measure the worst-case perfor-
mance across any cluster returned by GEORGE (which we call the “cluster-robust” performance) and
compare this to the true robust performance and the overall performance. We present results for both
ERM and GEORGE in Table 3. In most cases, the cluster-robust performance is much closer to the true
robust performance than the overall performance is. On ISIC, cluster-robust performance even yields
a better estimate of robust performance on the histopathology subclass than does performance on the
patch/no-patch subclass labels. By comparing cluster-robust performance to overall performance, we
can detect hidden stratification (and estimate its magnitude) without requiring subclass labels.

8

Table 3: Comparison of overall, cluster-robust, and robust performance.2(Conventions as in Table 1.)

Method Metric Waterbirds U-MNIST ISIC CelebA
Type Non-patch Histopath.

ERM Robust 63.3(±1.6) 93.9(±0.6) .920(±.007) .872(±.010) 41.1(±2.3)
Cluster-Robust 76.8(±1.6) 92.3(±2.5) .894(±.031) 59.1(±1.1)

Overall 97.3(±0.1) 98.2(±0.1) .956(±.003) 95.7(±0.1)

GEORGE Robust 76.2(±2.0) 95.7(±0.6) .918(±.009) .881(±.005) 52.4(±1.3)
Cluster-Robust 93.5(±0.5) 93.5(±1.9) .904(±.020) 71.8(±0.2)

Overall 95.5(±0.6) 97.9(±0.2) .935(±.007) 94.8(±0.2)

In addition, improvements in robust performance from GEORGE compared to ERM are accompanied
by increases in cluster-robust performance; by comparing the cluster-robust performance of ERM
and GEORGE, we can estimate how much GEORGE improves hidden stratification.

6.4 Extension: Leveraging Pretrained Embeddings

As an alternative to training an ERM model, we assess whether recent pretrained image embeddings
(BiT, [27]) can provide better features for Step 1 of GEORGE. Specifically, we modify Step 1 of
GEORGE to compute BiT embeddings for the datapoints, cluster these, and use the cluster assignments
as estimated subclass labels in Step 2 of GEORGE. This modification dramatically improves robust
accuracy on CelebA to 86.0%, matching subclass-GDRO. The CelebA BiT clusters align much better
with the true subclasses, which helps explain this (e.g., for the “blond male” subclass, precision
improves to 0.15 and recall to 0.98). However, GEORGE with BiT clustering performs worse than the
default GEORGE implementation on Waterbirds, suggesting that BiT is not a panacea; on Waterbirds,
the task-specific information contained in the representation of the trained ERM model is important
for identifying meaningful clusters. See App. B.3.4 for additional evaluations and discussion.
Extending Step 1 of GEORGE to enable automatically selecting between distinct representations (e.g.,
BiT vs. ERM) is a compelling future topic.

7 Conclusion

We propose GEORGE, a two-step approach for measuring and mitigating hidden stratification without
requiring access to subclass labels. GEORGE’s first step, clustering the features of an ERM model,
identifies clusters that provide useful approximations of worst-case subclass performance. GEORGE’s
second step, using these cluster assignments as groups in GDRO, yields significant improvements in
worst-case subclass performance. We analyze GEORGE in the context of a simple generative model,
and show that under suitable assumptions GEORGE achieves the same asymptotic sample complexity
rates as if we had access to true subclass labels. We empirically validate GEORGE on four datasets,
and find evidence that it can reduce hidden stratification on real-world machine learning tasks.

2We note that if reweighting is not applied to the Waterbirds validation/test sets (see Appendix B.2.2 for
explanation), the cluster-robust performance is significantly closer to the true robust performance (within 2
accuracy points, for both ERM and GEORGE); true robust performance for GEORGE also increases to 82.6%,
while other methods are relatively unaffected by this reweighting.

9

Broader Impact

The potential real-world impact of GEORGE, the approach we present in this work, is that it would
allow machine learning practitioners to both measure and mitigate hidden stratification without
requiring any additional prior information. Concretely, this means that users would be able to
leverage clusters identified in Step 1 of GEORGE to measure performance gaps between unlabeled
subclasses, and that they would subsequently be able to reduce that subclass performance gap via
Step 2 of GEORGE. We hope that GEORGE could serve as a drop-in replacement for standard ERM-
based techniques in situations where ensuring good performance across many potentially unknown
subclasses is important, as it is simple to implement and can be generically applied: all that is required
to apply GEORGE to an existing model is (a) clustering within the representation space of a trained
model and (b) retraining using a GDRO objective with the cluster assignments used as groups.

As an example of how GEORGE could be important for meaningful practical applications, we consider
our results presented on the ISIC dataset in a real-world context. Naively, the overall AUROC on the
ISIC dataset obtained using an ERM-trained model is 0.956, which suggests a high-performing model;
however, our clustering (Step 1 of GEORGE) reveals that a large fraction of the benign images contain
a “spurious” brightly colored patch, which makes them very easy to classify. The model performs
substantially worse for cases without such a patch, and worse still on cases for which a clinician
would also have required a histopathology examination to make a diagnosis. Thus, if deployed in
practice with a target sensitivity value in mind, the appropriate way to set an operating point for
this model is in fact cluster-dependent; if a single operating point were set using the aggregate ROC
curve, the true sensitivity on the histopathology subclass would be substantially lower than intended.
This means that even just measuring hidden stratification via Step 1 of GEORGE can provide crucial
information that would help avoid spurious false negatives at test time—the worst type of error a
medical screening application can make.

As shown in the paper, Step 2 of GEORGE can improve performance on underperforming subclasses.
Our approach thus provides additional value via a simple retraining procedure that can reduce the
amount of hidden stratification exhibited by the model. While our approach will certainly not provide
substantial gains in every possible case—for instance, if performance gaps between subclasses are
already minimal—we also do not expect it to cause substantial performance degradation. Indeed,
even if the clusters returned by GEORGE are random groupings of points that do not align well
with the true subclasses, we still expect a model trained to be robust across such groups to perform
similarly to a standard ERM model (as in this case the average per-cluster losses are likely to be close
to the overall loss on the superclass). This conclusion is empirically supported by the random-GDRO
results of Appendix B, which are generally comparable to ERM.

In summary, we hope that GEORGE will have broader impacts by (a) enabling better measurement
of hidden stratification via Step 1, even without knowledge of the subclasses, and (b) potentially
improving performance on underserved subclasses with Step 2, with only modest additional effort
required compared to normal training procedures (i.e., clustering + retraining with GDRO). In addition
to medical imaging tasks such as ISIC, subclasses could represent a large number of important
categories including race, gender, and others on which one would generally want to ensure good
performance on all subclasses, rather than optimizing for average performance while underserving
certain categories. If successful, GEORGE can help to detect and mitigate such important performance
differences before models are deployed in practice. To support these potential impacts, we have
released a complete implementation of our code,3 with an easily usable PyTorch API. We look
forward to engaging with the broader community to improve our work and deploy it on real-world
applications.

Acknowledgments and Disclosure of Funding

We thank Arjun Desai, Pang Wei Koh, Shiori Sagawa, Charles Kuang, Karan Goel, Avner May,
Esther Rolf, and Sharon Li for helpful discussions and feedback.

We gratefully acknowledge the support of DARPA under Nos. FA86501827865 (SDH) and
FA86501827882 (ASED); NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR under No.

3https://github.com/HazyResearch/hidden-stratification/

10

https://github.com/HazyResearch/hidden-stratification/

N000141712266 (Unifying Weak Supervision); the Moore Foundation, NXP, Xilinx, LETI-CEA,
Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm,
Analog Devices, the Okawa Foundation, American Family Insurance, Google Cloud, Swiss Re, the
HAI-AWS Cloud Credits for Research program, the Schlumberger Innovation Fellowship program,
and members of the Stanford DAWN project: Teradata, Facebook, Google, Ant Financial, NEC,
VMWare, and Infosys. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views, policies, or endorsements, either expressed or implied, of DARPA, NIH,
ONR, or the U.S. Government.

References
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-

mization. arXiv preprint arXiv:1907.02893, 2019.

[2] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. A critical analysis of self-supervision,
or what we can learn from a single image. In International Conference on Learning Representa-
tions (ICLR), 2020.

[3] Hassan Ashtiani, Shai Ben-David, Nick Harvey, Christopher Liaw, Abbas Mehrabian, and Yaniv
Plan. Near-optimal sample complexity bounds for robust learning of gaussian mixtures via
compression schemes. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[4] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

[5] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Optimizing the latent
space of generative networks. In International Conference on Machine Learning (ICML), 2018.

[6] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 132–149, 2018.

[7] Krzysztof Chalupka, Pietro Perona, and Frederick Eberhardt. Visual causal feature learning. In
Uncertainty in Artificial Intelligence (UAI), 2015.

[8] Beidi Chen, Weiyang Liu, Zhiding Yu, Jan Kautz, Anshumali Shrivastava, Anshumali Shri-
vastava, Animesh Garg, and Anima Anandkumar. Angular visual hardness. In International
Conference on Machine Learning (ICML), 2020.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International Conference on Machine
Learning (ICML), 2020.

[10] Vincent Chen, Sen Wu, Alexander J Ratner, Jen Weng, and Christopher Ré. Slice-based
learning: A programming model for residual learning in critical data slices. In Advances in
Neural Information Processing Systems, pages 9392–9402, 2019.

[11] Sasank Chilamkurthy, Rohit Ghosh, Swetha Tanamala, Mustafa Biviji, Norbert G Campeau,
Vasantha Kumar Venugopal, Vidur Mahajan, Pooja Rao, and Prashant Warier. Deep learning
algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet, 392
(10162):2388–2396, December 2018.

[12] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David
Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (ISIC). arXiv preprint arXiv:1902.03368, 2019.

[13] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between
high-dimensional Gaussians. arXiv preprint arXiv:1810.08693, 2018.

11

http://www.fairmlbook.org

[14] Jian Dong, Qiang Chen, Jiashi Feng, Kui Jia, Zhongyang Huang, and Shuicheng Yan. Looking
inside category: subcategory-aware object recognition. IEEE Transactions on Circuits and
Systems for Video Technology, 25(8):1322–1334, 2014.

[15] Jian Dong, Qiang Chen, Jiashi Feng, Kui Jia, Zhongyang Huang, and Shuicheng Yan. Looking
inside category: Subcategory-aware object recognition. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, 25:1322–1334, 08 2015. doi: 10.1109/TCSVT.2014.2355697.

[16] John C Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust losses
against mixture covariate shifts. Under review, 2019.

[17] Jared A Dunnmon, Darvin Yi, Curtis P Langlotz, Christopher Ré, Daniel L Rubin, and
Matthew P Lungren. Assessment of convolutional neural networks for automated classifi-
cation of chest radiographs. Radiology, 290(2):537–544, February 2019.

[18] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and
Luc Van Gool. Learning to classify images without labels. arXiv preprint arXiv:2005.12320,
2020.

[19] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam
Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros,
Ramasamy Kim, Rajiv Raman, Philip C Nelson, Jessica L Mega, and Dale R Webster. Develop-
ment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA, 316(22):2402–2410, December 2016.

[20] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories
via deep transfer clustering. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 8401–8409, 2019.

[21] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
Advances in neural information processing systems, pages 3315–3323, 2016.

[22] Minh Hoai and Andrew Zisserman. Discriminative sub-categorization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1666–1673, 2013.

[23] Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust su-
pervised learning give robust classifiers? In International Conference on Machine Learning
(ICML), 2018.

[24] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991.

[25] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised
image classification and segmentation. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 9865–9874, 2019.

[26] Michael Kearns, Aaron Roth, and Saeed Sharifi-Malvajerdi. Average individual fairness:
Algorithms, generalization and experiments. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[27] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain
Gelly, and Neil Houlsby. Big transfer (BiT): General visual representation learning. arXiv
preprint arXiv:1912.11370, 2020.

[28] Yann LeCun and Corinna Cortes. 2010.

[29] Percy Liang and Tengyu Ma. 229t course notes, 2019. URL http://web.stanford.
edu/class/cs229t/.

[30] Zachary Lipton, Julian McAuley, and Alexandra Chouldechova. Does mitigating ml’s impact
disparity require treatment disparity? In Advances in Neural Information Processing Systems,
pages 8125–8135, 2018.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

12

http://web.stanford.edu/class/cs229t/
http://web.stanford.edu/class/cs229t/

[32] Ryan McConville, Raul Santos-Rodriguez, Robert J Piechocki, and Ian Craddock. N2d:(not
too) deep clustering via clustering the local manifold of an autoencoded embedding. arXiv
preprint arXiv:1908.05968, 2019.

[33] Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[34] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2, pages 1003–1011. Association for Computational Linguistics,
2009.

[35] Rafael Muller, Simon Kornblith, and Geoffrey Hinton. Subclass distillation. arXiv preprint
arXiv:2002.03936, 2020.

[36] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden strat-
ification causes clinically meaningful failures in machine learning for medical imaging. In
Proceedings of the ACM Conference on Health, Inference, and Learning (CHIL), 2020.

[37] Neoklis Polyzotis, Steven Whang, Tim Klas Kraska, and Yeounoh Chung. Slice finder: Auto-
mated data slicing for model validation. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), 2019.

[38] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. The VLDB Journal, pages 1–22,
2019.

[39] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10
classifiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451, 2018.

[40] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet
classifiers generalize to ImageNet? In International Conference on Machine Learning (ICML),
2019.

[41] Laura Rieger, Chandan Singh, W. James Murdoch, and Bin Yu. Interpretations are use-
ful: penalizing explanations to align neural networks with prior knowledge. arXiv preprint
arXiv:1909.13584, 2019.

[42] Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

[43] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. In International Conference on Learning Representations (ICLR), 2020.

[44] Bernhard Schölkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

[45] Alon Scope, Michael A. Marchetti, Ashfaq A. Marghoob, Stephen W. Dusza, Alan C. Geller,
Jaya M. Satagopan, Martin A. Weinstock, Marianne Berwick, and Allan C. Halpern. The
study of nevi in children: Principles learned and implications for melanoma diagnosis. Journal
of the American Academy of Dermatology, 75(4):813 – 823, 2016. ISSN 0190-9622. doi:
https://doi.org/10.1016/j.jaad.2016.03.027. URL http://www.sciencedirect.com/
science/article/pii/S019096221630010X.

[46] Ankita Shukla, Gullal Singh Cheema, and Saket Anand. Semi-supervised clustering with neural
networks. arXiv preprint arXiv:1806.01547, 2018.

[47] Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distribu-
tional robustness with principled adversarial training. In International Conference on Learning
Representations (ICLR), 2018.

[48] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pages 4077–4087, 2017.

13

http://www.sciencedirect.com/science/article/pii/S019096221630010X
http://www.sciencedirect.com/science/article/pii/S019096221630010X

[49] Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning as a generalization of
adversarial training. In NIPS Workshop on Machine Learning and Computer Security, 2017.

[50] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global represen-
tations by penalizing local predictive power. In Advances in Neural Information Processing
Systems, pages 10506–10518, 2019.

[51] Pengtao Xie, Aarti Singh, and Eric P. Xing. Uncorrelation and evenness: a new diversity-
promoting regularizer. In International Conference on Machine Learning (ICML), 2017.

[52] Bangpeng Yao, Aditya Khosla, and Li Fei-Fei. Combining randomization and discrimination for
fine-grained image categorization. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1577–1584. IEEE, 2011.

14

Appendix

A Related Work

Our work builds on several active threads in the machine learning literature.

Hidden Stratification Our motivating problem is that of hidden stratification, wherein models
trained on superclass labels exhibit highly variable performance on unlabeled subclasses [36]. This
behavior has been observed in a variety of studies spanning both traditional computer vision [52, 39,
14, 22] and medical machine learning [36, 17, 19, 11]. Of note is the work of [39], who propose that
the existence of “distribution shift" at the subclass level may substantially affect measures of test
set performance for image classification models on CIFAR-10. They use a simple mixture model
between an “easy” and a “hard” subclass to demonstrate how changes that would not be detectable at
the superclass level could affect aggregate performance metrics. [8] extend these ideas by developing
notions of visual hardness, and suggest that better loss function design would be useful for improving
the performance of machine learning models on harder examples. [37] study how to automatically
find large, interpretable underperforming data slices in structured datasets.

Our approach is also inspired by the literature on causality and machine learning, and in particular by
the common assumption that the data provided for both training and evaluation are independent and
identically distributed (IID) [44]. This is often untrue in real-world settings; in particular, classes in
real-world datasets are often composed of multiple subclasses, and the proportions of these subclasses
may change between training and evaluation settings—even if the overall class compositions are
the same. Many of the guarantees from statistical learning theory break down in the presence of
such non-IID data [7], suggesting that models trained using traditional Empirical Risk Minimization
(ERM) are likely to be vulnerable to hidden stratification. This motivates the use of the maximum
(worst-case) per-subclass risk, rather than the overall average risk, as the objective to be optimized.

Neural Representation Clustering The first stage of the technique we propose for addressing
hidden stratification relies heavily on our ability to identify latent subclasses via unsupervised
clustering of neural representations learned via ERM. This has been an area of substantial recent
activity in machine learning, and has provided several important conclusions upon which we build in
our work. The work of [32] and [46], for instance, demonstrate the utility of a simple autoencoded
representation for performing unsupervised clustering in the feature space of a trained model. While
the purpose of these works is often to show that deep clustering can be competitive with semi-
supervised learning techniques, the mechanics of clustering in model feature space explored by
these works are important for our present study. Indeed, we directly leverage the conclusion of [32]
that Uniform Manifold Approximation and Projection (UMAP) [33] works well as a dimensionality
reduction technique for deep clustering in the current study.

Further, the fact that work such as [20] directly uses neural representation clustering to estimate
the presence of novel classes in a given dataset provides an empirical basis for our approach,
which uses a model trained with ERM to approximately identify unlabeled subclasses within each
superclass. Similarly, [25] demonstrate excellent semi-supervised image classification performance
by maximizing mutual information between the class assignments of each pair of images. Their
work demonstrates not only the utility of a clustering-style objective in image classification, but
also suggests that overclustering – using more clusters than naturally exist in the data – can be
beneficial for clustering deep feature representations in a manner that is helpful for semi-supervised
classification.

A related, but different, approach is that of [14], who explicitly attempt to identify subcategories of
classes via a graph and SVM-based “subcategory mining” framework in order to improve overall task
performance. The subcategory mining algorithm is quite complicated and uses manually extracted
features (rather than automatically learned features, e.g., from CNNs); in addition, this work is geared
towards improving overall performance, rather than ensuring good performance on all subcategories.
Nevertheless, it is an important piece of prior literature.

Distributionally Robust Optimization The second stage of our proposed approach depends on
our ability to optimize the worst-case classification loss over existing subgroups, otherwise known as
the Distributionally Robust Objective (DRO). This formulation draws a clear connection between

15

our work and the literature on fairness in machine learning [4], which is at least partially concerned
with ensuring that trained models do not disadvantage a particular group in practice. While there
exist a wide variety of definitions for algorithmic fairness [21, 30, 26], the common idea that models
should be optimized such that they respect various notions of fairness is closely related to the DRO
formulation.

A multitude of recent studies have explored optimizing the DRO objective in slightly different
contexts. [16], for instance, consider the general case of optimizing the worst-case loss over any
possible subgroup of the data; while conceptually important, their results do not assume a learned
feature representation, and the necessary assumptions are quite restrictive. Perhaps most relevant to
the current work is the study of [43], who propose the group DRO algorithm for training classifiers
with best worst-case subgroup performance. Crucially, this algorithm demonstrates improved worst-
case subclass performance in cases where triplets (x, y, g) are known for every data point, with x
is the input data, y is the true label, and g is a true subgroup label. While [43] present preliminary
evidence that group DRO can work well in the presence of imperfect g, the efficacy of the algorithm
in this setting remains functionally unexplored. We leverage the group DRO algorithm as an optimizer
for solving the DRO objective with respect to our approximately identified subclasses.

Other relevant techniques include invariant risk minimization, which attempts to train classifiers
that are optimal across data drawn from a mixture of distributions (i.e., a non-IID setting) [1];
methods from slice-based learning that learn feature representations optimized for ensuring high
performance on specific subsets, or “slices" of the data [10]; mixture-of-experts models, which
explicitly handle learning models for multiple different subsets of data [24]; and techniques for
building robust classifiers via domain adaptation [50].

While our work is closely related to these directions, a major difference is that we handle the setting
where the different subclasses (i.e., groups, environments, slices, etc.) are unidentified.

Representation Learning with Limited or Noisy Labels A final research thread that is closely
related to the work presented here focuses on deep representation learning in the absence of ground
truth labels. Our methods are similar in spirit to those from weak supervision [34, 38], which focuses
on training models using noisy labels that are often provided programmatically. Our work can be
seen as analyzing a new form of fine-grained weak supervision for DRO-style objectives, which
is drawn from unsupervised clustering of an ERM representation. Another related line of work is
representation learning for few-shot learning [48]; however, our work fundamentally differs in the
sense that we assume no access to ground truth subclass labels.

Other methods aim to automatically learn classes via an iterative approach. An early work of
this type is [6], which uses iterative clustering and ERM training to learn highly effective feature
representations for image classification. More recently, [18] used a self-supervised task to learn
semantically meaningful features, and then generate labels using an iteratively refining approach. Our
work differs from these in that we do assume access to ground truth superclass labels—which provide
much more information than in the fully-unlabeled setting—and use clustering within each superclass
to generate approximate labels. In addition, our primary end goal is not accurate identification of the
subclasses, but ensuring good worst-case performance among all subclasses.

Finally, other works aim to promote a notion of “diversity” among feature representations by adding
different regularizers. In [51], such a regularizer was introduced in the context of latent space
models, to better capture infrequently observed patterns and improve model expressiveness for a
given size. More recently, [35] introduced a regularizer that aims to promote diversity of the predicted
logits. They showed that this method could also lead to estimation of subclasses within a superclass,
without requiring subclass labels. However, this work focused on improving overall performance,
and specifically improvement of knowledge distillation; by contrast, our goal is to improve robust
performance. Nevertheless, integrating these recent ideas into our work is an interesting avenue for
future work, to potentially further improve the feature learning stage.

16

B Experimental Details

B.1 GEORGE Pseudocode

We provide pseudocode for GEORGE in Algorithm 1, to complement the detailed description of our
methodology in Section 4.4 Note that our model class F (as per the notation in Section 2.2) is a class
of neural networks, composed of a “featurizer” module fθ and a “linear classification head“ L that
takes the feature representation to a prediction.

Algorithm 1 “GEORGE”

Input: Data and superclass labels (x, y) = {(xi, yi)}ni=1; loss function `(xi, yi; θ); featurizer
class F(θ) parameterized by θ ∈ Rp, dimensionality reducer g, e.g., UMAP (default: identity)
Optional input: Pretrained featurizer fθ

if featurizer fθ provided then
pass

else
train model [featurizer fθ and linear classification head L] to minimize empirical risk, and
save featurizer

fθ, L← argmin
θ′∈Rp,L′

{
1
n

n∑
i=1

`(L′ · fθ′(xi), yi)
}

end if
compute feature vectors
{vi}ni=1 = g(fθ(xi)).
for b = 1 to B do

cluster features of each superclass
{ẑi} ← GET_CLUSTER_LABELS({vi : yi = b})

end for
train final model to minimize maximum per-cluster risk

fθ̂, L̂← argmin
θ′∈Rp,L′

{
max

c∈{1,...,C}
1
nc

n∑
i=1

1(ẑi = c)`(L′ ◦ fθ′(xi), yi)
}

return (fθ̂, L̂)

B.2 Dataset Details

Below, we describe the datasets used for evaluation in more detail. We provide PyTorch dataloaders
to support each one in the attached code.

Each dataset contains labeled subclasses; although the GEORGE procedure does not use the subclass
labels at any point, we use them to assess how well GEORGE (a) can estimate the subclass labels and
(b) can estimate and improve worst-case subclass performance.

We remark that while we evaluate on binary classification tasks in this work, GEORGE can readily be
applied in principle to tasks with any amount of superclasses and subclasses.

B.2.1 U-MNIST

Undersampled MNIST (U-MNIST) is a binary dataset that divides data from the standard MNIST
dataset (which has 60,000 training points) into two superclasses: numbers less than five, and numbers
greater than or equal to five. Crucially, the “8" subclass is subsampled at 5% of its usual frequency
in MNIST. The rarity of the “8” subclass makes this task much more challenging than the default
MNIST task, in terms of robust performance. We use data drawn from the original MNIST validation
set as our test set; we create a separate validation set of 12,000 points by sampling from the MNIST
training set, and use the remainder for training.

4We note that the final step of GEORGE—training a model to minimize the maximum per-cluster risk—can
also be done when “soft” (probabilistic) cluster labels are given instead of hard assignments; see Appendix D.5.

17

ER
M

GE
OR

GE

"O
ra

cle
"

SP
-G

DR
O

R-
GD

RO

Method

80

85

90

95

100

Ro
bu

st
 A

cc
ur

ac
y

(a) U-MNIST

ER
M

GE
OR

GE

"O
ra

cle
"

SP
-G

DR
O

R-
GD

RO

Method

0

20

40

60

80

100

Ro
bu

st
 A

cc
ur

ac
y

(b) Waterbirds
ER

M

GE
OR

GE

"O
ra

cle
"

SP
-G

DR
O

R-
GD

RO
Method

80

85

90

95

100

Ro
bu

st
 A

UR
OC

(c) ISIC (Histopathology)

ER
M

GE
OR

GE

G-
Bi
T

"O
ra
cle

"

SP
-G
DR

O

R-
GD

RO

Method

0

20

40

60

80

100

Ro
bu

st
 A
cc
ur
ac
y

(d) CelebA

Figure 5: Performance of ERM, Superclass-DRO (SP-DRO), Random-DRO (R-DRO), GEORGE,
and Subclass-DRO (SBC-DRO). We also show GEORGE with BiT embeddings (G-BiT) for CelebA;
however, G-BiT performed significantly worse on the other datasets.

On the validation (and test) sets, we do not actually undersample the 8’s, as this would leave only 50-
60 “8” examples; instead, we downweight these examples when computing validation/test accuracies
and losses, to mimic the rarity that would be induced by actually undersampling but still allow for
more stable accuracy measurements.

B.2.2 Waterbirds

The Waterbirds dataset (4,795 training points) used in this work was introduced in [43]. Similar to
our approach for U-MNIST, Sagawa et al. [43] create more balanced validation and test sets to allow
for stable measurements, and downweight the examples from rare subclasses during evaluation; we
follow the same procedure.

B.2.3 ISIC

The dataset from the International Skin Imaging Collaboration (ISIC) website is, at time of writing,
comprised of 23,906 images and their corresponding metadata [12]. We extract the ISIC dataset
directly from the site’s image archive, which is accessible through a public API.5 We only use images
whose metadata explicitly describe them as “benign” or “malignant.” We use these descriptors in
order to formulate the problem as a binary classification task that classifies images as either normal
or abnormal. Other possible descriptors that exist in the image metadata (which we filter out) include
“indeterminate,” “indeterminate/benign,” “indeterminate/malignant,” or no description. We created
pre-set training, validation, and test splits from these images by sampling uniformly at random
without replacement to assign 80% of examples to the training set, 10% to the validation set, and
10% to the test set.

We derive true subclass information from the image metadata. In particular, we observed that an image
belongs in the benign patch subclass if and only if it is an image from the SONIC data repository
[45]. As is detailed in the paper, we are retroactively able to identify the histopathology subclass
through analysis of the diagnosis confirmation type of each image. Images in the histopathology
subclass were explicitly mentioned as such—other possible diagnosis confirmation types include

5https://isic-archive.com/api/v1/

18

“single image expert consensus,” “serial imaging showing no change,” “confocal microscopy with
consensus dermoscopy,” or no confirmation type.

B.2.4 CelebA

The CelebA dataset [31] is a standard face classification dataset containing over 200,000 examples
(≈ 163, 000 train) of celebrity faces, each annotated with 40 different attributes. The images contain
a wide variety of poses, backgrounds, and other variations. The task is to classify faces as “blond” or
“not blond,” as in [43]. We use the standard (pre-set) train/validation/test splits for this task.

B.3 Methods

B.3.1 Baselines

In addition to ERM, we run two additional baseline methods: superclass-GDRO and random-GDRO.
Superclass-GDRO minimizes the maximum loss over each superclass, i.e., runs GDRO using the
superclasses as groups. Since we assume knowledge of the training superclass labels, this does
not require additional information at training time. Random-GDRO runs GDRO using randomly
chosen groups within each superclass, where the groups are chosen to have the same sizes as the true
subclasses. Since we do not assume the subclass sizes are known, this is not a method that would be
useful in practice; rather, it helps highlight the difference between running GDRO with labels that do
not align well with the true subclasses, and running GDRO with labels that do. (We interchangeably
refer to subclass-GDRO, superclass-GDRO, and random-GDRO as subclass-DRO, superclass-DRO
and random-DRO, respectively.) Results on each dataset are presented in Figure 5.

B.3.2 ERM Training Details

The first stage of our procedure is to train a model for each application using ERM. The activations of
the resulting model are clustered and used in the second stage of our procedure. Inspired by the results
of [43], we explored using either a standard ERM model or an ERM model with high regularization
for this stage, selecting between the two based on the quality of the resulting clustering as measured
by the Silhouette score (an unsupervised metric). Below, we detail the ERM hyperparameter settings
for each dataset.

U-MNIST Our U-MNIST model is a simple 4-layer CNN, based on a publicly available LeNet5
implementation;6 based on this implementation, we fix the learning rate at 2e-3 and use the Adam
optimizer. Each model is trained for 100 epochs. Because the original implementation does not
specify a weight decay, we search over weight decay values of [10−3, 10−4, 10−5], and choose the
setting with highest average validation accuracy over three trials with different random seeds. Our
final parameters are recorded in Table 4. Once the weight decay value is selected, we perform ten
separate trials with different random seeds for each method.

Waterbirds Our Waterbirds model uses the torchvision implementation of a 50-layer Residual
Network (ResNet50), initialized with pretrained weights from ImageNet (as done in [43]). We use
hyperparameters reported by [43]: weight decay of 1e-4, learning rate of 1e-3, SGD with momentum
0.9, and 300 epochs. We perform ten separate trials.

CelebA Our CelebA model also uses a torchvision pretrained ResNet50, as done in [43]. We
use the hyperparameters reported by [43]: weight decay of 1e-4, SGD with momentum 0.9, and 300
epochs. However, we train on 4 GPUs instead of 1. (This change does not substantially affect the
results; our ERM and subclass-GDRO results are similar to those reported in [43].) We perform three
separate trials (due to the comparatively large size of this dataset and stability of the results).

ISIC Our ISIC model also uses a torchvision pretrained ResNet50. Models were trained for
20 epochs using SGD with momentum 0.9 (as done in [41]). Because these hyperparameters were
unavailable in the literature for this architecture and task, we grid searched over weight decay values
in [0.01, 0.001, 0.0001] and learning rates in [0.0005, 0.001, 0.005, 0.01], selecting the values that
maximize the overall AUROC on the validation set, averaged over three trials per hyperparameter

6https://github.com/activatedgeek/LeNet-5

19

setting. We run five trials with the best hyperparameter setting to obtain the representations used in
the clustering step.

Rather than measuring accuracy for ISIC, we use the AUROC (area under the receiver operating
characteristic curve), as is standard on this task [41] and other medical imaging tasks [36]. The specific
metric of interest is the worst per-benign-subclass AUROC for classifying between that subclass and
the malignant superclass (e.g., benign no-patch vs. malignant AUROC). Typically, models designed to
attain high AUROC are trained by minimizing the empirical risk as usual. For our robust models, we

instead minimize max
c∈benign

{
1

nc + nmalignant

∑
x

1(zi = c OR yi = malignant)`(xi, yi; θ)

}
- in other

words, the maximum over all benign subclasses of the “modified” empirical risk where all other
benign subclasses are ignored. We do this because the worst-case loss over any benign or malignant
subclass is not necessarily a good proxy for the worst-case per-benign-subclass AUROC. Due to
the dataset imbalance (many fewer malignant than benign images), standard ERM models attain
100% accuracy on the benign superclass and much lower accuracy (and higher loss) on the malignant
superclass. By contrast, in practice a classification threshold is typically selected corresponding to a
target sensitivity value.

B.3.3 Clustering Details

We apply a consistent clustering procedure to each dataset, which is designed to encourage discovery
of clusters of varied sizes, while still being computationally efficient. We emphasize that while the
clustering procedure outlined below yields adequate end-to-end results on our datasets, optimizing
this part of the GEORGE procedure represents a clear avenue for future work. In particular, we use the
Silhouette score as a metric to select between feature representations and number of clusters; while
this is a serviceable heuristic, it has several flaws (and in the case of BiT embeddings, misleadingly
suggests that they are not a suitable representation due to their low Silhouette score).

1. Dimensionality Reduction: As recommended by [32], we use UMAP for dimensionality
reduction before clustering; clustering is faster when the data is low-dimensional, and
we find that UMAP also typically improves the results. As an alternative to UMAP, we
also use the component of the representation that is orthogonal to the decision boundary,
which we refer to as the “loss component,” as a single-dimensional representation; this
can improve clustering on datasets, especially when performance on certain subclasses is
particularly poor (as discussed further in Appendix D.3).7 When the loss component is used
to identify clusters, we find that applying higher regularization to the initial ERM model
further improves clustering quality, as this regularization “pushes examples further apart”
along the loss direction, and adopt this convention in our experiments.
In each experiment, we select the representation and the number of clusters k based on the
parameter setting that achieves the highest average per-cluster Silhouette score. (For all
experiments, we set the number of UMAP neighbors to 10 and the minimum distance to 0;
further information about these hyperparameters can be found in [33].)
The fact that simply using the “loss component” can yield reasonable results is arguably
surprising, as this essentially amounts to just picking the examples that the original network
got wrong (or closer to wrong than others). Nevertheless, especially on tasks with severe
data imbalances and “spurious features” (e.g., Waterbirds and CelebA), the rare subclasses
do tend to be misclassified at far higher rates, so simply picking the misclassified examples
can be a crude but effective heuristic.

2. Global Clustering: For each superclass, we search over k ∈ 2, . . . , 10 to find the clustering
that yields the highest average Silhouette score, using the dimensionality reduction procedure
identified above. We similarly perform a search over clustering techniques (k-means, GMM,
etc.), and find that GMM models achieve high average Silhouette scores most often in our
applications. Given that GMM clustering also aligns with our theoretical analysis, we use
this approach for all datasets. We refer to this global clustering as fC,G.

3. Overclustering: For each superclass, we take the clustering fC,G achieving the highest
average Silhouette score, and then split each cluster ci into F sub-clusters ci1, . . . , ciF ,

7We experimented with concatenating the UMAP and loss representations, but found this to reduce perfor-
mance.

20

where F denotes the “overclustering factor” (fixed to 5 for all experiments). For each sub-
cluster cij whose Silhouette score exceeds the Silhouette score of the corresponding points
in the original clustering, and which contains at least smin points (for a small threshold value
smin), the global clustering fC,G is updated to include cij as a new cluster (and its points are
removed from the base cluster ci). The overclustering factor F was coarsely tuned via visual
inspection of clustering outputs (without referencing the true subclass labels); the threshold
value smin is used to prevent extremely small clusters, as these can lead to instability when
training with GDRO and/or highly variable estimates of validation cluster-robust accuracy.
(Note: We do not apply overclustering to 1-dimensional representations, as it tends to create
strange within-interval splits.)

B.3.4 BiT Details

As an alternative to representations from a trained ERM model, we explore the use of BiT embeddings
[27], as discussed in Section 6.4. We use the ResNet-50 version of BiT embeddings; specifically, BiT
embeddings are the activations of the penultimate layer of a network pretrained on massive quantities
of image data (see [27] for more details). The remainder of GEORGE proceeds the same as usual: the
embeddings are clustered and then the cluster assignments are used in the GDRO objective.

For BiT, we experimented with both clustering the BiT embeddings directly (under the hypothesis
that the BiT embedding space itself is a good representation), and clustering after dimensionality
reduction with UMAP. We found that both generally performed similarly, although clustering raw
embeddings was slightly better (and much better for U-MNIST); thus, we show results for clustering
the raw embeddings. Due to the high dimensionality of these embeddings (2048-d), we use k-means
clustering when clustering the BiT embeddings, although the rest of our procedure remains the same.

We find that BiT embeddings significantly improve the end-to-end robust performance results on
CelebA; however, they perform worse than the standard version of GEORGE on all other datasets,
indicating that the task-specific information is important for these other tasks to learn a “good”
representation that can be clustered to find superclasses. Indeed, we find that on these other tasks, the
BiT clustering is worse than clustering the activations of the ERM model, in terms of precision and
recall at identifying poorly-performing subclasses. [For example, when BiT embeddings are used on
MNIST, the “8”s are never identified as their own cluster.]

Surprisingly, the clustered BiT embeddings uniformly have a much lower Silhouette score than the
clustered ERM embeddings, even for CelebA. Thus, our current unsupervised representation and
clustering selection technique would not have identified the BiT embeddings as better for CelebA.
Improving the representation and clustering selection metric to do a better job at automatically
choosing among different representations is an interesting avenue for future work. We note that if
a small validation set with subclass labels is available, such a set could be used to select between
different clusterings by measuring the cluster alignment with the true subclasses, or measuring which
representation eventual leads to the best validation robust accuracy; however, in general we do not
assume any prior knowledge about the subclasses in this work.

B.3.5 GDRO Training Details

In the final step of GEORGE, we train a new model (with the same architecture) using the group DRO
approach of [43] with weak subclass labels provided by our cluster assignments, and compare to
GDRO models trained using (a) superclass labels only (b) random subclass labels and (c) human-
annotated subclass labels. Each result we present is an average over multiple separate trials with
different random seeds (10 for U-MNIST, 5 for Waterbirds and ISIC, 3 for CelebA). Below, we
describe the hyperparameter search procedure for each such model and dataset.

U-MNIST In the case of U-MNIST, we ran a hyperparameter search over weight decay in [1e-
2, 1e-3, 1e-4, 1e-5], and C (the group size adjustment parameter from [43]) in [0, 1, 2].We find
performance to be fairly insensitive to the hyperparameters, so choose weight decay of 1e-5 and
C = 0 for simplicity and consistency with ERM.

Waterbirds For Waterbirds, we use hyperparameters provided by [43], so no additional hyperpa-
rameter tuning is required. These hyperparameters are presented in Table 4.

21

Dataset Training Procedure Epochs Learning Rate Batch Size Weight Decay Group Adj. Parameter
U-MNIST ERM 100 2e-3 128 1e-5 -
U-MNIST Random-DRO 100 2e-3 128 1e-5 0
U-MNIST Superclass-DRO 100 2e-3 128 1e-5 0
U-MNIST GEORGE 100 2e-3 128 1e-5 0
U-MNIST Subclass-DRO 100 2e-3 128 1e-5 0
Waterbirds ERM 300 1e-3 128 1e-4 -
Waterbirds Random-DRO 300 1e-5 128 1 2
Waterbirds Superclass-DRO 300 1e-5 128 1 2
Waterbirds GEORGE 300 1e-5 128 1 2
Waterbirds Subclass-DRO 300 1e-5 128 1 2

ISIC ERM 20 1e-3 16 1e-3 -
ISIC Random-DRO 20 1e-3 16 1e-3 0
ISIC Superclass-DRO 20 5e-4 16 1e-3 0
ISIC GEORGE 20 1e-3 16 1e-3 0
ISIC Subclass-DRO 20 5e-4 16 1e-2 0

CelebA ERM 50 1e-4 128 1e-4 -
CelebA Random-DRO 50 1e-5 128 0.1 3
CelebA Superclass-DRO 50 1e-5 128 0.1 3
CelebA GEORGE 50 1e-5 128 0.1 3
CelebA Subclass-DRO 50 1e-5 128 0.1 3

Table 4: Final hyperparameters used in experiments. (Note that for each dataset, all GEORGE runs
use the same hyperparameters regardless of whether they use BiT or ERM embeddings.)

CelebA For CelebA, we again use hyperparameters provided by [43], so no additional hyperparam-
eter tuning is required. These are presented in Table 4.

ISIC Each type of ISIC model is hyperparameter searched over the same space as the original
ERM model, in addition to searching over group size adjustment parameter C in [0, 1, 2]. We found
performance to be fairly insensitive to both. Hyperparameters with highest validation performance
were used in the final runs, and are reported in Table 4.

B.4 Hyperparameters

In Table 4, we present the selected hyperparameters for the final runs of each dataset and method.

B.5 Miscellaneous

In all result tables, ± intervals denote 95% confidence intervals (where half-width is calculated as
standard deviation times 1.96 divided by the square root of the number of trials); similarly, in all
plots, error bars denote 95% confidence intervals computed the same way.

C Additional Experimental Results

In this section, we provide additional ablation experiments.

C.1 GEORGE results

C.1.1 U-MNIST

Dimensionality reduction for this dataset used 2 UMAP components and no loss component, as
UMAP achieved higher SIL scores. Our clustering procedure consistently identifies a cluster with
a high proportion of the low-frequency “8" subclass. As detailed in the main body, we also often
observe a small additional cluster with a high concentration of “7"s written with crosses through the
main vertical bar (see Figure 8); performance on this subset is low (below 90%), which explains why
cluster-robust performance actually underestimates the true subclass performance on U-MNIST.

22

0 1 2 3 4
Trial

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Tr
ue
 R
ob
us
t A

UC
Optimization

ERM
SPC-DRO
R-DRO
GEORGE
SBC-DRO

Figure 6: Per-trial end-to-end performance on the discovered histopathology subclass of ERM,
Superclass-DRO (SPC-DRO), Random-DRO (R-DRO), GEORGE, and Subclass-DRO (SBC-DRO)
on the ISIC dataset. We observe that GEORGE fairly consistently outperforms the baselines ERM,
SPC-DRO, and R-DRO, and often outperforms SBC-DRO.

C.1.2 Waterbirds

Dimensionality reduction for this dataset used only 1 component (the loss component); this signifi-
cantly outperformed UMAP both in terms of SIL score and final robust performance. We observe
that while our procedure does not yield clusters with absolutely high frequencies of the minority
classes (as shown in Table 2), GEORGE still identifies clusters with high enough precision (i.e., high
enough proportions of the poorly-performing subclasses) such that the second stage of GEORGE can
substantially improve performance on these subclasses.

C.1.3 ISIC

Dimensionality reduction for this dataset used 2 UMAP components and no loss component. We
observe in Figure 6 that on the three trials (0, 3, and 4) where the clustering step identified a subclass
with a concentration of histopathology images (i.e., images requiring histopathology followup) that
was greater than 0.75, GEORGE either performs comparably to or outperforms patch/non-patch
subclass-DRO.

C.1.4 CelebA

Dimensionality reduction for CelebA (without BiT) used only 1 component (the loss component).
We observe that clustering does not do a good job of identifying the subclasses of either superclass;
thus, it is not surprising that the default version GEORGE (i.e., without BiT) performs poorly. In fact,
GEORGE performs poorly even compared to the non-ERM baselines. By contrast, GEORGE-BiT does
significantly better; the clustering on the (nearly balanced) non-blond superclass attains approximately
95% accuracy at distinguishing between men and women, and the clustering on the blond superclass
also significantly improves over the default version of GEORGE.

C.2 Additional Evaluations and Ablations

C.2.1 Visualizing Clusters

In Figures 8 and 9, we visualize the representations returned by GEORGE, as well as the clusters it
finds and representative examples from each cluster.

C.2.2 Comparing Cluster-Robust Performance and True Robust Performance

In addition to the results of Table 3 which show that the cluster-robust performance is a good
approximation for the true robust performance, we find that the cluster-robust performance typically
tracks closely with the true robust performance throughout training (with the exception of CelebA
without BiT clusters). For example, Figure 7 plots the validation cluster-robust accuracy and validation

23

0 50 100 150 200 250 300
Epoch

40

50

60

70

80

90

Su
bs

et
 V

al
id

at
io

n
Ac

cu
ra

cy

Average Val Acc
Cluster-Robust Val Acc
True Robust Val Acc

Figure 7: Overall accuracy, worst-case cluster accuracy, and worst-case true subclass accuracy on
the validation set during a training run of GEORGE on Waterbirds. The worst-case cluster accuracy
closely tracks the worst-case true subclass accuracy, whereas the overall accuracy is significantly
higher.8

Figure 8: True subclasses in the feature space of a trained ERM model. Left panel legend colors
points by their true subclass, and displays the validation accuracies of the ERM model on that subclass.
Middle panel colors points by the cluster index that GEORGE assigns them. Right panel displays
randomly selected examples from each cluster. Datasets: U-MNIST (row 1), Waterbirds (row 2), and
ISIC (row 3). Note that for Waterbirds, the vertical axis is the “loss component” and the horizontal
axis is the UMAP component.

Figure 9: True subclasses in BiT embedding space for CelebA, clusters (middle), and examples from
selected clusters (right).

true robust accuracy from a randomly selected training run on Waterbirds. Both metrics are quite
close to each other throughout training (while the overall accuracy is significantly higher).

C.2.3 ERM With Access to True Subclass Labels

In order to further demonstrate the performance gains attributable to GEORGE, we run an additional
set of ERM experiments, in which the criterion for selecting the best model checkpoint during training

8In this plot, validation accuracies were not reweighted as specified in Section B.2; if they are reweighted,
the cluster-robust accuracy is not as good an approximation of the true robust accuracy as before, yet is still
significantly better than overall accuracy. Nevertheless, having training and validation sets with different
distributions is realistic in some situations.

24

Dataset ERM runtime per epoch Clustering total runtime GDRO runtime per epoch
U-MNIST 3s 8m 3s

ISIC 105s 3m 105s
Waterbirds 18s 1m 18s

CelebA 175s 46m 210s

Table 5: Runtimes for different stages of GEORGE. All runtimes are reported on a machine with 8
CPUs and a single NVIDIA V100 GPU, except for CelebA which was run on a machine with 32 CPUs
and four NVIDIA V100 GPUs. Note that the clustering runtime depends on the hyperparameters
(e.g., UMAP dimension, k-means vs. GMM); we thus report the maximum clustering runtime over
all hyperparameters evaluated on the dataset.

is true robust accuracy as computed on the validation set (rather than overall accuracy). The purpose
of this experiment is to evaluate the relative contributions of (a) the GEORGE learning algorithm
and (b) the fact that GEORGE is validating against the cluster-robust accuracy, which is a more
accurate approximation of true robust accuracy than is the overall accuracy (which ERM validates
against). While we see small performance gains on U-MNIST (0.5% absolute accuracy increase) and
Waterbirds (7% absolute accuracy increase) when running ERM and validating against the true robust
accuracy, GEORGE validated against cluster-robust accuracy still demonstrates stronger performance
on the two datasets. suggesting that GEORGE contributes more to model performance than just a
better validation metric for early stopping alone. (On ISIC and CelebA, all methods perform quite
similarly regardless of validation metric.)

C.2.4 Runtime

In Table 5, we present runtimes for the standard version of GEORGE broken down by stage.

As the default implementation of GEORGE involves first training an ERM model, clustering its
activations, and then training a “robust” model, the total runtime is roughly 2-3x long as that of simply
training an ERM model. However, this can be substantially reduced by training the second robust
model for fewer epochs. On all datasets, we can recover over 70% of the worst-case performance
improvement of GEORGE even when we limit the total runtime to 1.3x that of ERM, simply by
training for fewer epochs in the second stage. (On U-MNIST, we also adjusted the LR decay schedule
so that decay would occur before the end of the shortened training.) Note that the runtime of typical
clustering algorithms scales superlinearly in the number of datapoints; while the clustering runtime
is usually less than the training time for the datasets we evaluate on, a remedy for larger datasets
could be to only use a random subset of the data for clustering (which typically does not significantly
worsen the cluster quality). In addition, we did not attempt to optimize the dimensionality reduction
and clustering routines themselves.

C.2.5 Label Noise

We ran experiments in which a fixed percentage of the data of each subclass was randomly given
an incorrect superclass label. With a minor modification (discarding small clusters), GEORGE
empirically works well in the presence of label noise when the total number of corrupted labels in
each superclass is less than the size of the smallest subclass. Up to this noise threshold, GEORGE
attains +3 points robust (i.e., worst-case) accuracy on MNIST and +4 points robust AUROC on ISIC
compared to ERM. However, ensuring subgroup-level robustness if there is a larger group of ”wrong”
examples is difficult because differentiating ”real” subclasses from noise becomes challenging. Thus,
we do not consider Waterbirds as the smallest subclass (waterbirds on land) is only 1% of the data,
and similarly the smallest subclass on CelebA (blond males) is only 3% of the data.

In fact, our clustering approach can even be used to help identify incorrectly labeled training examples.
First, if a small “gold” set of correctly labeled examples is available, the clustering found on the
training data could be evaluated on this gold set; clusters consisting of mostly incorrectly labeled
training examples should have very few members in the gold set. If such a “gold” set is not available,
the clusters still allow for much more rapid inspection of the data for incorrect labels, since a few
representative examples from each cluster can be inspected instead of a brute-force search through
all the training images for incorrectly labeled images. Finally, if one has prior knowledge on the
frequency of the rarest subclass in the training data, one can simply discard training examples
belonging to poorly-performing clusters smaller than this, treating them as incorrectly labeled.

25

Method Metric Waterbirds U-MNIST CelebA (BiT)

GEORGE SCAA 86.7 97.9 91.4
AP .967 .9986 .883

ERM SCAA 83.8 98.2 80.8
AP .984 .9991 .912

Table 6: Per-subclass averaged accuracy (SCAA) is the mean of the accuracies on each subclass. AP
denotes the average precision score (which has a maximum of 1).

C.2.6 Fixing k

If the number of clusters k is held fixed (rather than automatically chosen based on Silhouette score),
robust performance tends to initially improve with k, before decreasing as large values of k cause
fragmented clusters that are less meaningful. For example, robust accuracies on U-MNIST using 2, 5,
10, 25, and 100 clusters per superclass are 95.0%, 96.3%, 95.9%, 94.4%, 90.8% respectively. We
also observe similar trends on the other datasets.

C.2.7 Effect of Model Choice on Subclass Recovery

Figure 10: LeNet5 vs. LeNet 300-100 acti-
vations on U-MNIST with true subclass la-
bels (superclass “< 5”). A simple convolu-
tional network (LeNet5, right) separates the
true subclasses well in feature space, while
a network consisting only of fully-connected
layers (LeNet 300-100, left) does not.

As suggested in Section 4, choosing an appropriate
model class F for the featurizer fθ is important. In
particular, F should ideally contain the inverse of
the true generative function g, in order to recover the
latent features ~V from the data X . We demonstrate
the importance of model architecture on the ability
to separate subclasses in the model feature space by
comparing the feature representations of two simple
networks on a superclass of the U-MNIST dataset
(described in Section 6.1). Fig. 10 shows that the
choice of model family can strongly affect the learned
feature representation of the initial model and its abil-
ity to provide useful information about the subclass.
On this dataset, the feature space of a simple fully
connected network (Fig. 10a) yields substantially less
separation between the known subclasses than does
that of a simple convolutional network (Fig. 10b),
which displays clusters that clearly correspond to
semantically meaningful subclasses.

C.2.8 Additional Classification Metrics

In Table 6, we compare GEORGEand ERM in terms of per-subclass averaged accuracy (SCAA)
and average precision. As expected, GEORGE slightly decreases average precision, as it trades off
some average-case performance for better worst-case performance, and GEORGE typically increases
per-subclass averaged accuracy (except on U-MNIST, where there is a very slight decrease), due
to the fact that it significantly improves performance on poorly-performing subclasses while only
slightly decreasing performance on other subclasses.

C.2.9 Empirical Validation of Lemma 1

Recall that Lemma 1 says that if we know the true data distribution, we can estimate the per-subclass
loss Rc by the quantity R̃c, a reweighted average of the losses in superclass S(c) based on the ratio
of the posterior likelihood of a point given subclass c to its posterior likelihood given superclass S(c);
Lemma 1 bounds their difference in terms of the number of datapoints n. In Figure 11, we empirically
validate Lemma 1 on a synthetic mixture-of-Gaussian example (in which the true data distribution
is indeed known). We generate data in dimension d = 3 with two subclasses each containing six
subclasses each, and compute Rc and R̃c as per the formulas, using varying numbers of samples
n to observe the scaling with n. We average results over 20 trials; in each trial, new per-subclass

26

Figure 11: Comparison of theoretical and simulated convergence of R̃c −Rc.

distributions are randomly sampled and then new datapoints are sampled. Results are shown in
Figure 11. As can be observed from the log-log plot, the slope of the line corresponding to the
simulated |R̃c−Rc| value is very close to that of the predicted rate; the best fit line has a coefficient of
−0.5065, corresponding to a O(n−0.5065) rate, essentially matching Lemma 1’s predicted O(n−0.5)
rate.

D Derivations and Proofs

D.1 Analysis of Example 3.1.

We restate Example 3.1 below:

Example 3.1 The binary attribute vector ~Z has dimension 2, i.e., ~Z = (Z1, Z2), while only Z2

determines the superclass label Y , i.e., Y = Z2. The latent attribute Z1 induces two subclasses in
each superclass, each distributed as a different Gaussian in feature space, with mixture proportions
α and 1 − α respectively. For linear models with regularized logistic loss, as the proportion α of
the rare subclasses goes to 0, the worst-case subclass accuracy of ERM is only O(α), while that of
GDRO is 1−O(α).

Proof. Specifically, we consider the following distribution setup: ~Z ∈{−1,+1}2, with
P (~Z = (−1,−1)) = P (~Z = (+1,+1)) = 1−α

2 , P (~Z = (−1,+1)) = P (~Z = (+1,−1)) = α/2,
and P (V1|Z1) = N (4Z1, α

2), P (V2|Z1, Z2) = N (Z1 + 3Z2, α
2), and the label Y = h(Z1, Z2)

simply equals Z2. We assume the observed data X = (V1, V2), i.e., the observed data is the same as
the “underlying features” ~V .

Thus, the superclass Y = −1 is made up of a “big” subclass with distribution N ((−4,−4), α2I)
and relative mixture weight 1− α [corresponding to ~Z = (−1,−1)], and a “small” subclass with
distribution N ((+4,−2), α2I) and relative mixture weight α [corresponding to ~Z = (+1,−1)],
where I denotes the 2× 2 identity matrix. The superclass Y = +1 is made up of a “big” subclass
with distribution N ((+4,+4), α2I) and relative mixture weight 1 − α [corresponding to ~Z =
(+1,+1)], and a “small” subclass with distribution N ((−4,+2), α2I) and relative mixture weight α
[corresponding to ~Z = (−1,+1)].

For notational simplicity in the following analysis, we will henceforth rename the label Y =
−1 as Y = 0. The prediction of the logistic regression model on a given sample (x1, x2) is
σ(w1x1 + w2x2) = σ(wTx), where σ(x) := log(1

1+e−x) denotes the sigmoid function and w1, w2

are the weights of the model. The decision boundary is the line wTx = 0; examples with wTx < 0
are classified as Y = 0, else they are classified as Y = 1. [For simplicity of exposition, we assume
there is no bias term, and assume that we regularize the norm of the classifier so that ‖w‖2 ≤ R for
some constant R, as changing the parameter norm does not change the decision boundary. Note that
neither assumption is necessary, but they serve to simplify the analysis.]

27

The logistic loss is the negative log-likelihood, which is −
∑
i

(
yi log(1

1+e−wT x
) +

(1− yi) log(1

1−e−wT x
)
)
. Note that by symmetry, the loss on the two subclasses with Z1 = Z2 is the

same, as is the loss on the two subclasses with Z1 6= Z2. Therefore, we focus on the class Y = 1. The
expected average loss on the Y = 1 superclass is Ex|y=1[− log(1

1+e−wT x
)] = P (Z1 = 1|Z2 = 1) ·

Ex|(z1,z2)=(1,1)[− log(1

1+e−wT x
)] + P (Z1 = −1|Z2 = 1) · Ex|(z1,z2)=(−1,1)[− log(1

1+e−wT x
)].

By 1-Lipschitz continuity of the logistic loss and Jensen’s inequality,∣∣∣Ex|y=1,z=1[− log(1

1+e−wT x
)]− Ex|y=1,z=1[− log(1

1+e−wT (4,4)
)]
∣∣∣ ≤

Ex|y=1,z=1[|wTx− wT (4, 4)|] =

Ex|y=1,z=1[|w1(x1 − 4)|+ |w2(x2 − 4)|] = (|w1|+ |w2|)E[|b|],

where b is an N(0, α2) random variable. E[|b|] = α
√

2/π; so, the loss on the Z1 = 1 subclass is
bounded in the range − log(1

1+e−wT (4,4)
)± α

√
2/π · ‖w‖2.

Similarly, the loss on the Z1 = −1 subclass is bounded in the range− log(1

1+e−wT (−4,2)
)±α

√
2/π ·

‖w‖2. So, the total loss is bounded in −(1− α)log(1

1+e−wT (4,4)
)− αlog(1

1+e−wT (−4,2)
)± α

√
2/π ·

‖w‖2. When α is sufficiently small, the first term is Θ(1), while the latter two are O(α) (under
the assumption that ‖w‖2 is bounded). For a fixed value of ‖w‖2, the first term is minimized when
w/ ‖w‖2 = (1√

2
, 1√

2
), so that wT (4, 4) is as large as possible. A Θ(α)-scale perturbation to the

direction w/ ‖w‖2 results in an increase of Θ(α) to −(1− α)log(1

1+e−wT (4,4)
). Thus, whenever α

is sufficiently small, w/ ‖w‖2 must be (1√
2
, 1√

2
) + O(α) in order to minimize the loss subject to

the ‖w‖2 ≤ R constraint. In other words, the regularized ERM solution converges to (w1, w2) =
(1√

2
, 1√

2
) as α ↓ 0.

For the Z1 = −1 subclass, wTx is a normal random variable with mean −4w1 + 2w2 and variance
α ‖w‖22. When α is sufficiently small and w/ ‖w‖2 = (1√

2
, 1√

2
) +O(α), the quantity −4w1 + 2w2

is negative with magnitude O(1)—and thus, since examples with wTx < 0 are classified as Y = 0,
this means that for sufficiently small α the fraction of the subclass Z1 = −1 classified correctly as
Y = 1 is only O(α).

By contrast, the GDRO solution minimizes the maximum per-subclass loss. Since each subclass
has the same covariance α2I, the GDRO decision boundary is the line that separates the superclass
means and has maximum distance to any subclass mean. After normalization to have ‖w‖2 = 1, this
is the line (− 1√

5
, 4√

5
); the true solution will be some multiple of this (depending on α and R), giving

rise to the same boundary. As α ↓ 0, the accuracy of this decision boundary is 1−O(α), since the
variance of each subclass is O(α2I).

D.2 Proofs from Section 5

D.2.1 Proof of Lemma 1

Lemma 1. Let Rc be the sample average loss of examples in subclass c. Let w(x, c) := P(x|z=c)
P(x|y=S(c)) .

Let R̃c be the sample average of w(xi, c)`(f(xi), yi) over all examples xi with superclass label
yi = S(c). Then R̃c is an unbiased estimate of Rc, and their difference converges to 0 at O(1/

√
n).

Proof. Define #y=k :=

n∑
i=1

1(yi = k) and #z=c :=

n∑
i=1

1(zi = c). Using this notation,

Rc =
1

#z=c

n∑
i=1,zi=c

`(xi, S(c); θ), and R̃c =
1

#y=S(c)

n∑
i=1,yi=S(c)

P(xi|zi = c)

P(xi|yi = S(c))
`(xi, S(c); θ).

28

First, observe that E[R̃c] = E[Rc]: the expectation of each term in the

summation defining E[R̃c] is Ex∼[P|y=S(c)]

[
P(x|z = c)

P(x|y = S(c))
`(x, S(c); θ)

]
=∫

Rd

P(x|z = c)

P(x|y = S(c))
`(x, S(c); θ)P(x|y = S(c)) dx =

∫
Rd
P(x|z = c)`(x, S(c); θ) dx =

Ex∼[P(x|z=c)][`(x, S(c); θ)] = E[Rc], and so E[R̃c] = E[Rc].

Now, note that
P(x|z = c)

P(x|y = S(c))
≥ P(z = c|y = S(c)) ≥ π. Thus, assuming ` is bounded, each term

in the summation defining R̃c is bounded, and has mean E[Rc] as argued above; applying Hoeffding’s
inequality (to bound the probability that a sum of bounded random variables deviates from its mean by
more than a specified amount) yields that

∣∣∣R̃c − E[Rc]
∣∣∣ ≤ O(1√

n
) with high probability. Similarly,

applying Hoeffding’s inequality to Rc yields that |Rc − E[Rc]| ≤ O(1√
n

) with high probability.

D.2.2 Proof of Theorem 1

We restate Theorem 1 below:

Theorem 1. Let R̂robust := maxc R̂c. Suppose `, f are Lipschitz, f has bounded parameters, and
P(x|z = c) is Gaussian and unique for each subclass c. Then, if we estimate P̂ using the algorithm
from [3], f̂ := min

f∈F
R̂robust(f) satisfies Rrobust(f̂)−min

f∈F
Rrobust(f) ≤ Õ(

√
1/n) w.h.p.

Recall that we define R̂c to be the same as R̃c except with weights ŵ(x, c) computed from P̂ . More

precisely, R̂c :=
1

#y=S(c)

n∑
i=1,yi=S(c)

ŵ(x, c)`(xi, S(c); θ) where ŵ(x, c) :=
P̂(x|z = c)

P̂(x|y = S(c))
. [In

Appendix D.5, we provide an algorithm to minimize R̂robust = maxc R̂c.]

Our strategy to prove Theorem 1 will be as follows. First, we prove a general statement (that holds
regardless of the form of the true data distribution) that relates the total variation (TV) between the
true per-subclass distributions and the estimated per-subclass distributions to the difference between
R̃c and the perturbed loss R̂c (Lemma 2). Next, we bound the total variation between the true and
estimated per-subclass distributions in the mixture-of-Gaussians case, using the Gaussian mixture
learning algorithm from [3]. Finally, we use standard uniform convergence-type results to yield the
final high probability bound on the robust risk of the returned model f̂ .

D.2.2.1 Total variation estimation error to error in loss
Lemma 2. Let πmin be the minimum true subclass proportion and π̂min be the minimum estimated
subclass proportion. Suppose that we have estimated subclass-conditional distributions P̂(x|z) such
that for each subclass c, there exists c′ such that TV(P(x|z = c), P̂(x|z = c′)) ≤ ε. If ` is globally
bounded by M , then for fixed f , |R̂c′ − R̃c| ≤ 2MC

min{πmin,π̂min} · ε+O(1√
n

) with high probability.

Proof. First, we bound |ŵ(x, c′) − w(x, c)| =
∣∣∣ P̂(x|z=c′)
P̂(x|y=S(c))

− P(x|z=c)
P(x|y=S(c))

∣∣∣ =

1
P(x|y=S(c))

∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
· P̂(x|z = c′)− P(x|z = c)

∣∣∣. By triangle inequality, this is bounded above

by 1
P(x|y=S(c))

(∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
· P̂(x|z = c′)− P̂(x|z = c′)

∣∣∣+ |P̂(x|z = c′)− P(x|z = c)|
)

.

Note that by definition P̂(x|y = b) =
∑
i∈Sb

π̂b,iP̂(x|z = ci), where we de-

fine π̂b,i := P̂(z = ci|y = b) for each i ∈ Sb. In words, π̂b,i is the “mix-
ture weight” of subclass i within the population of superclass b. We can thus
bound

∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
− 1
∣∣∣ P̂(x|z = c′) by 1

P̂(z=c|y=S(c))

∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
− 1
∣∣∣ P̂(x|y = S(c)) =

1
P̂(z=c|y=S(c))

∣∣∣P̂(x|y = S(c))− P(x|y = S(c))
∣∣∣ ≤ 1

π̂min

∣∣∣P̂(x|y = S(c))− P(x|y = S(c))
∣∣∣.

29

So, E[|ŵ(x, c′)−w(x, c)|] ≤ 1
π̂min

E
[

1
P(x|y=S(c)) · (|P̂(x|y = S(c))− P(x|y = S(c))|+ |P̂(x|z = c′)− P(x|z = c)|)

]
= 1

π̂min

∫
Rd

1
P(x|y=S(c)) · (|P̂(x|y = S(c)) − P(x|y = S(c))| + |P̂(x|z = c′) − P(x|z = c)|) ·

P(x|y = S(c)) dx ≤ C
π̂min

ε, since
∫
Rd

∣∣∣P̂(x|z = c)− P(x|z = c)
∣∣∣ dx =

2TV (P̂ (x|z = c), P̂ (x|z = c′)) ≤ 2ε by assumption, and |P̂(x|y = S(c))− P(x|y = S(c))| is the
weighted sum of the total variations between the distributions of each subclass of S(c), of which
there are ≤ C − 1 [assuming there are at least two superclasses since otherwise the “classification
problem” is trivial].

|R̂c′ − Rc| ≤ 1
#y=S(c)

∑
i|yi=S(c)

|ŵ(xi, c
′
i) − w(xi, ci)|`(f(xi), S(c)). The expectation of each term

in the summation is ≤ 2MC
π̂min

ε, since the loss is globally bounded by M . Finally, applying Hoeffding’s
inequality yields that |R̂c′ − R̃c| ≤ 2MC

π̂min
ε+O(1√

n
) with high probability.

Total variation in estimated per-subclass distributions: Gaussian case

[3] provides an algorithm for estimating mixtures of Gaussians; they show that Õ(kd2/ε2) samples
are sufficient to learn a mixture of k d-dimensional Gaussians to within error ε in total variation.
Concretely, given n samples from a mixture-of-Gaussian distribution P and the true number of
mixture components k, the algorithm in [3] returns a k-component mixture-of-Gaussian distribution
P̂ such that TV (P, P̂) ≤ Õ(

√
1/n). To prove Theorem 1, we use this result and bound the overall

total variation error in terms of the maximum per-component total variation error. The proof depends
on the key lemma stated below (whose proof appears at the end of this section).

In order to apply Lemma 2, we relate the total variation error ε between the mixtures to the total
variation error between the individual mixture components; we show that when ε is small enough,
then the total variation error between the mixture components is O(ε) as well. We state this formally
in Lemma 3 (proved later in this section).

Lemma 3. Let P and P̂ be two k-component Gaussian mixtures, and suppose the k components of
P , denoted by p1, . . . , pk, are distinct Gaussian distributions and all have nonzero mixture weights.
Similarly denote the k components of P̂ by p̂1, . . . , p̂k. There exists a constant c(P) depending only
on the parameters of P such that for all sufficiently small ε > 0, whenever TV (P, P̂) ≤ ε it is the
case that max

1≤i≤k
min

1≤j≤k
TV (pi, p̂j) ≤ c(P) · ε.

In addition, we use the following standard result from learning theory [29] to relate the minimizer of
the estimated robust training loss R̂robust to the minimizer of the true robust training loss Rrobust.

Lemma 4. Suppose g(·, ·) ∈ [−B,B]. Let f(θ) := E(x,y)∼P [g(x, y; θ)] and let f̂(θ) :=

1

n

n∑
i=1

g(xi, yi; θ), where {(xi, yi)}ni=1 are IID samples from P . Suppose g(·, ·θ) is L-Lipschitz

w.r.t. θ, so f(θ), f̂(θ) are L-Lipschitz. Then with probability ≥ 1−O(e−p), we have

∀θ s.t. ‖θ‖ ≤ R, |f̂(θ)− f(θ)| ≤ O

(
B

√
p log(nLR)

n

)
(5)

Theorem 1 Proof

Using the preceding lemmas, we will now prove Theorem 1.

Proof. First, we estimate P̂ using the Gaussian mixture learning algorithm from [3]. With high
probability, this returns a k-component mixture-of-Gaussian distribution P̂ such that TV(P, P̂) ≤
Õ(
√

1/n). By Lemma 3, if n is large enough then this means that for each subclass c there exists

30

a subclass c′ such that TV(P(x|z = c), P̂ (x|z = c′)) ≤ Õ(1/
√
n). So, applying Lemma 2, we

have that for a fixed function f , |R̂c − R̃c| ≤ Õ(1/
√
n), for all subclasses c (WLOG we may

reorder the components of P̂ so that c = c′ for all c, for notational convenience). By Lemma 1 and
triangle inequality, |R̂c−Rc| is Õ(1/

√
n) as well. Thus, for any given f , |R̂robust(f)−Rrobust(f)| =

|maxc R̂c −maxcRc| = Õ(1/
√
n) with high probability.

LetR∗robust(f) denote the true population robust loss. Then Lemma 4 says that |Rrobust(f)−R∗robust(f)|
with high probability for all f in the hypothesis class F . Similarly, we can use an analogous uniform
convergence result to show that |R̂robust(f) − Rrobust(f)| ≤ Õ(1/

√
n) for all f in the hypothesis

class with high probability. Thus, by triangle inequality and union bound, |R̂robust(f)−R∗robust(f)| ≤
Õ(1/

√
n) for all f in the hypothesis class with high probability, and in particular this holds for the

minimizer f̂ of R̂robust.

Thus, under the given assumptions, the excess robust generalization risk (i.e., worst-case subclass
generalization risk) of the GEORGE model f̂ is Õ(1/

√
n) [which is near-optimal in terms of sample

complexity, since Ω(1/
√
n) is a generic worst-case lower bound even if the subclass labels are

known].

Note that a technical requirement of the above argument is that the samples we use to estimate
P̂ should be independent from those we use to compute the robust loss; for this to hold, we may
randomly sample half of the examples to learn the distribution P̂ (and its mixture components), and
then use the other half to minimize the robust loss. This does not change the asymptotic dependency
on the number of samples n. [In practice, however, we use all examples in both phases, to get the
most out of the data.]

Lemma 3 Proof

Before we prove Lemma 3, we first provide a simple lemma bounding the total variation distance of
two Gaussians in terms of the Euclidean distance between their parameters, directly based on the
results from [13].

Lemma 5. Let p be a d-dimensional Gaussian with mean µ and full-rank covariance matrix Σ ∈
Rd×d. Let p′ be another Gaussian with mean µ′ and covariance Σ′. Then there exists a constant
c(µ,Σ) [i.e., depending only on the parameters of p] such that for all sufficiently small ε > 0,
whenever ‖µ− µ′‖2 ≤ ε and ‖Σ− Σ′‖F ≤ ε it is the case that TV (p, p′) ≤ c(µ,Σ) · ε.

Proof. The one-dimensional case is shown in Theorem 1.3 of [13]. The higher-dimensional case
follows from Theorems 1.1 and 1.2 of [13]. Note that the constant c does not depend on ε, although it
may depend on d.

For convenience, we restate Lemma 3 below.

Lemma 3. Let P and P̂ be two k-component Gaussian mixtures, and suppose the k components of
P , denoted by p1, . . . , pk, are distinct Gaussian distributions and all have nonzero mixture weights.
Similarly denote the k components of P̂ by p̂1, . . . , p̂k. There exists a constant c(P) depending only
on the parameters of P such that for all sufficiently small ε > 0, whenever TV (P, P̂) ≤ ε it is the
case that max

1≤i≤k
min

1≤j≤k
TV (pi, p̂j) ≤ c(P) · ε.

Proof. The case k = 1 is vacuous (since the “mixture” is simply a single Gaussian); so, suppose
k > 1. Denote the mixture weights of the true distribution P as m1, . . . ,mk, and the mean and
covariance parameters of the individual distributions in P as µ1, . . . , µk,Σ1, . . . ,Σk. In other words,

for x ∈ Rd, P(x) =

k∑
i=1

miNµi,Σi(x), where mi ∈ (0, 1) and Nµ,Σ denotes the normal density

with mean µ and covariance Σ. Similarly, denote the mixture weights of the estimated distribution
P̂ by m̂1, . . . , m̂k, and the mean and covariance parameters of P̂ by µ̂1, . . . , µ̂k, Σ̂1, . . . , Σ̂k. For
simplicity assume the covariance matrices Σi of each component in the true distribution are strictly
positive definite (although this is not required).

31

Define q(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k,Σ

′
1, . . . ,Σ

′
k) =

∫
Rd

∣∣∣∣∣
k∑
i=1

miNµi,Σi(x)−
k∑
i=1

m′iNµ′i,Σ′i(x)

∣∣∣∣∣ dx.

The domain of q is constrained to have m′i ∈ [0, 1] for all 1 ≤ i ≤ k and
k∑
i=1

m′i = 1, as well

as to have Σ′i be SPD. By definition, q(m̂1, . . . , m̂k, µ̂1, . . . , µ̂k, Σ̂1, . . . , Σ̂k) is simply twice the
total variation between P and P̂ .

Note that, since we assumed the mixture components are unique and mi 6= 0 for all i, the only global
minima of q [where q evaluates to 0, which means that P and P̂ are the same distribution] are where
(m′π(i), µ

′
π(i),Σ

′
π(i)) = (mi, µi,Σi) for all 1 ≤ i ≤ k, for some permutation π—in other words, when

the two distributions have the exact same mixture components and mixture weights up to permutation.
Further, it is not hard to see that the ε-sublevel sets of q are contained within compact sets when ε is
sufficiently small, and therefore lim

ε→0
{(m′1, . . . , µ′1, . . . ,Σ′1, . . .) : q(m′1, . . . , µ

′
1, . . . ,Σ

′
1, . . .) ≤ ε}

is exactly the set of global minima of q. Finally, note that q is continuous on its domain. Thus,
for a fixed distribution P , as ε → 0, the set of points such that q(m′1, . . . , µ

′
1, . . . ,Σ

′
1, . . .) ≤ ε

is the union of sets of radius O(δ(ε)) around each of the global minima of q, where δ(ε) → 0 as
ε → 0. In other words, the set of all Gaussian mixtures P ′ with TV (P,P ′) ≤ ε is the set of all
mixtures P ′ whose parameters {m′i, µ′i,Σ′i} are O(δ(ε))-close to those of the true distribution P ,
up to permutation. In particular, if TV (P,P ′) ≤ ε, then for each individual Gaussian component
Nµi,Σi in P , there exists a component Nµ′j ,Σ′j in P ′ whose parameters are O(δ(ε))-close to it, i.e.,
|mi −mj |+

∥∥µi − µ′j∥∥2
+
∥∥Σ′i − Σ′j

∥∥
F
≤ O(δ(ε)).

We now argue that lim
ε→0

δ(ε)
ε must be a constant (i.e., δ is Θ(ε) as ε→ 0) in order for the total variation

between the two mixtures to be ≤ ε. We do so by Taylor expanding a set of quantities whose
magnitudes lower bound the total variation between P and P ′, and showing that these quantities are
locally linear in the parameter differences between P ′ and P when these differences are sufficiently
small.

By assumption, 2TV (P,P ′) = q(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k,Σ

′
1, . . . ,Σ

′
k) =∫

Rd

∣∣∣∣∣
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

∣∣∣∣∣ dx ≤ 2ε. Notice that

2TV (P,P ′) = sup
S⊆Md

∫
S

∣∣∣∣∣
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

∣∣∣∣∣ dx ≥

sup
S⊆Md

∣∣∣∣∣
∫
S

(
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

)
dx

∣∣∣∣∣, where Md denotes the collection of

all measurable subsets of Rd.

Suppose for now that d = 1. Then, sup
S⊆M

∣∣∣∣∣
∫
S

(
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

)
dx

∣∣∣∣∣ ≥
sup
cj∈R

∣∣∣∣∣
∫ cj

−∞

(
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

)
dx

∣∣∣∣∣ = sup
cj∈R
|h(P ′, cj)|, where we de-

fine h(P ′; cj) = h(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k, σ

2′
1 , . . . , σ

2′
k ; cj) :=

k∑
i=1

mi

∫ cj

−∞
Nµi,σ2

i
(x) dx −

k∑
i=1

m′i

∫ cj

−∞
Nµ′i,σ2′

i
(x) dx. So, |h(P ′; cj)| is a lower bound on twice the total variation be-

tween P and P ′, for any value of cj . Let ~v ∈ R3k denote the vector of parameters
(m1, . . . ,mk, µ1, . . . , µk, σ

2
1 , . . . , σ

2
k), and similarly for ~v′. For ease of notation we write h(~v′; cj)

interchangeably with h(P ′; cj) and h(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k, σ

2′
1 , . . . , σ

2′
k ; cj).

32

Assume TV (P,P ′) ≤ ε, so as argued before ‖~v′ − π(~v)‖2 is O(δ(ε)) for some permutation π and
some function δ with lim

x→0
δ(x) = 0. [More precisely, lim

ε→0
max

~v′:TV (P,P′)≤ε
min
π:π(k)

‖~v′ − π(~v)‖2 = 0.]

Without loss of generality, we will henceforth simply write ~v in place of π(~v). For notational
simplicity, let’s write δ := ‖~v′ − ~v‖2. As h is smooth around ~v, we can Taylor expand h about the
point ~v = ~v′ [i.e., {m′1 = m1, ..., µ

′
1 = µ1, ..., σ

2′
1 = σ2

1 , ..., σ
2′
k = σ2

k}] to get

h(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k, σ

2′
1 , . . . , σ

2′
k ; cj) = h(~v′) =

h(~v; cj) +∇h(~v; cj)
T (~v′ − ~v) +O(‖~v′ − ~v‖22) .

Note that h(~v; cj) = 0 (since ~v are the true parameters).

∇h(~v; cj)
T = (∂

∂m′1
h(~v; cj), . . . ,

∂
∂µ′1

h(~v; cj), . . . ,
∂
∂σ′1

h(~v; cj), . . .).

∂

∂m′i
h(~v; cj) =

∫ cj

−∞
pµi,σ2

i
(x) dx = 1

2 erfc
(
µi−cj√

2σi

)
. [σi denotes the positive root of σ2

i .]

∂

∂µ′i
h(~v; cj) = −mie

−(cj−µi)2/(2σ2
i)

√
2πσi

.

∂

∂σ2′
i

h(~v; cj) =
mie

−(cj−µi)2/(2σ2
i)(µi − cj)

2
√

2πσ3
i

.

Define fi(x) = 1
2 erfc

(
µi−x√

2σi

)
for 1 ≤ i ≤ k, −mie

−(x−µi)
2/(2σ2i)√

2πσi
for k + 1 ≤ i ≤ 2k, and

mie
−(x−µi)

2/(2σ2i)(µi−x)

2
√

2πσ3
i

for 2k + 1 ≤ i ≤ 3k. So∇h(~v; cj)
T = (f1(cj), . . . , f3k(cj))

T .

We have |∇h(~v; cj)
T δ + O(‖δ‖22)| ≤ 2ε for all cj ∈ R. Now, we claim that it is possible to select

c1, . . . , c3k such that the 3k × 3k matrix with rows ∇h(~v; cj)
T for 1 ≤ j ≤ 3k is nonsingular.

Proof: Suppose that there is a nonzero vector ~w ∈ R3k such that (f1(x), . . . , f3k(x))Tw = 0 for
all x ∈ R. This means that the function w1f1(x) + · · · + w3kf3k(x) is identically 0. But this
is impossible unless ~w = 0, as the fi’s form a linearly independent set of functions (which can
easily be seen by looking at their asymptotic behavior). Thus, there is no nonzero vector that is
orthogonal to every vector in the set

⋃
x∈R
{(f1(x), . . . , f3k(x))}. In particular, this means that we can

find c1, . . . , c3k ∈ R such that the matrix with rows (f1(cj), . . . , f3k(cj)) is nonsingular (i.e., has
linearly independent rows).

Call this matrixA. So ‖Aδ + η‖∞ ≤ 2ε = 2ε ‖1‖∞ where η ∈ R3k is such that ‖η‖∞ isO(‖δ‖22) =

O(‖δ‖2∞), and 1 denotes the vector of all ones in R3k. So ‖δ‖∞ −
∥∥A−1η

∥∥
∞ ≤

∥∥δ +A−1η
∥∥
∞ ≤

2ε
∥∥A−1

∥∥
∞ ‖1‖∞ = 2ε

∥∥A−1
∥∥
∞, where

∥∥A−1
∥∥
∞ is the induced ∞-norm of A−1, and the first

inequality follows from the reverse triangle inequality. Note that
∥∥A−1η

∥∥
∞ ≤

∥∥A−1
∥∥
∞ ‖η‖∞ ≤

O(‖δ‖2∞) since A−1 is defined independently of δ.

So, ‖δ‖∞ −O(‖δ‖2∞) ≤ 2ε
∥∥A−1

∥∥
∞, and thus ‖δ‖∞ [which is, by definition, the maximum error

in any parameter m1, . . . ,mk, µ1, . . . , µk, σ
2
1 , . . . , σ

2
k up to permutation] is O(ε). But then, the total

variation between each pair of mixture components Nµi,σ2
i

and Nµ′i,σ2′
i

is also O(ε), by Lemma 5.

Thus, when d = 1, if the total variation between the two Gaussian mixtures P and P̂ is O(ε), the total
variation between each mixture component must also be O(ε) [where the big-O notation suppresses
all parameters that depend on the true distribution P], as desired. (Note that total variation is always
between 0 and 1.)

Now suppose d > 1. Similarly to before, we have 2ε ≥ 2TV (P,P ′) ≥

max
S⊆Md

∣∣∣∣∣
∫
S

(
k∑
i=1

miNµi,Σi(x)−
k∑
i=1

m′iNµ′i,Σ′i(x)

)
dx

∣∣∣∣∣ ≥
max
~cj∈Rd

∣∣∣∣∣
∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞

(
k∑
i=1

miNµi,Σi(x)−
k∑
i=1

m′iNµ′i,Σ′i(x)

)
dx

∣∣∣∣∣ = max
~cj∈Rd

|h(P ′,~cj)|,

33

where we define h(P ′;~cj) as
k∑
i=1

mi

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
Nµi,Σi(x) dx −

k∑
i=1

m′i

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
Nµ′i,Σ′i(x) dx. Again, we equivalently denote this by h(~v′; cj),

where ~v′ ∈ Rk+kd+kd(d+1)/2 := (m′1, ..., vec(µ′1), ..., vec(Σ′1), ...) denotes the parameters
collected into a single vector. As before, we Taylor expand about the point ~v′ = ~v to get that
|∇h(~v;~cj)

T δ +O(‖δ‖2∞)| ≤ 2ε, where δ := ~v′ − ~v.

Now, we compute the entries of∇h(~v;~cj):
∂

∂m′i
h(~v;~cj) =

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
Nµi,Σi(x) dx =

1

(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
e−(x−µi)TΣ−1

i (x−µi)/2 dx.

∂

∂(µ′i)a
h(~v;~cj) =

mi

(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
(Σ−1

i)a · (x− µi)e−(x−µi)TΣ−1
i (x−µi)/2 dx,

where (µi)a denotes the ath entry of the vector µi and (Σ−1
i)a is the ath row of the matrix Σ−1

i .
∂

∂(Σ′i)ab
h(~v;~cj) = −

mi(Σ
′
i)
−1
ab

2(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
e−(x−µi)TΣ−1

i (x−µi)/2 dx+

mi

(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
[(Σ−1

i (x− µi))(Σ−1
i (x− µi))T]ab e

−(x−µi)TΣ−1
i (x−µi)/2 dx,

where Mab denotes the (a, b) entry of the matrix M (note that all matrices involved in this expression
are symmetric).

Once again, this set of k + kd + kd(d + 1)/2 partial derivatives, considered as functions of ~cj ,
comprise a linearly independent set of functions, since the (µi,Σi) pairs are unique. The remainder
of the proof proceeds analogously to the d = 1 case.

D.3 Subclass Performance Gaps Enable Distinguishing Between Subclasses

In this section, we give simple intuition for why a performance gap between two subclasses of a
superclass implies that it is possible to discriminate between the two subclasses in feature space to a
certain extent.

For example, suppose the setting is binary classification, and one of the superclasses has two
subclasses with equal proportions in the dataset. Suppose we have access to a model whose training
accuracy on one subclass is x, while its training accuracy on the other subclass is y, where 1 ≥ x >
y ≥ 0.

Of the correctly classified examples, x
x+y >

1
2 fraction of them are from the first subclass; similarly,

of the incorrectly classified examples, 1−y
2−x−y >

1
2 fraction of them are from the second subclass.

This means that if we just form “proxy subclasses” by splitting the superclass into the correctly
classified training examples and incorrectly classified training examples, the resulting groups can in
fact be a good approximation of the true subclasses! This is illustrated in Figure 12. For instance,
suppose x = 0.9 and y = 0.6. Then x

x+y = 0.6 and 1−y
2−x−y = 0.8 - so, 60% of the examples

in the first group are from subclass 1, and 80% of those in the second group are from subclass 2,
which is much better than randomly guessing the true subclasses (in which the concentration of each
subclass in each guessed group will approach 50% as n→∞). In the extreme case, if one subclass
has accuracy 1 and the other has accuracy 0, then the superclass decision boundary separates them
perfectly (no matter their proportions).

Combined with other information, this helps explain why looking at the way each example is classified
(such as the loss of the example or related error metrics) can be helpful to discriminate between the
subclasses.

34

Z=1

Z=0

High-accuracy subclass

Low-accuracy subclass

Superclass decision boundary
separates subclasses in the
presence of a performance gap

Figure 12: A performance gap between subclasses within the same superclass implies a corresponding
degree of separation in feature space. Green and red are true subclasses for the superclass which the
model predicts as the gray region; the decision boundary for the superclass classification task also
approximately separates the subclasses.

Figure 13: “Inherent hardness”: the red and blue superclasses overlap, making it impossible to
distinguish between them with perfect overall accuracy. The blue superclass has two subclasses; on
the leftmost subclass, the classifier can attain perfect accuracy.

D.4 Inherent Hardness

We define the “inherent hardness” of a (task, function class) pair as the minimum attainable robust
error, i.e.,

argmax
f∈F

min
c∈{1,...,C}

E(x,y)|z=c [1(f(x) = y)] ,

where the function class is denoted by F . (This can be thought of as the “Bayes robust risk.”) We
allow the function f to be stochastic: i.e., for a given input x, it may output a fixed probability
distribution over the possible labels, in which case we define 1(f(x) = y) as the probability assigned
by f to the label y, given input x. By definition, the inherent hardness lower bounds the robust
error attained by any classifier in F , regardless of how it is trained or how much data is available.
The only way to improve robust performance is therefore to either make the model class F more
expressive (i.e., include more functions in F) or to collect new data such that the covariates x include
more information that can be used to distinguish between different classes. (Of course, both of these
changes would be expected to improve overall performance as well, if sufficient data is available.)
Thus, addressing hidden stratification effects caused by “inherent hardness” is beyond the scope
of this work. A simple example of an “inherently hard” task (i.e., a task with nonzero “inherent
hardness”) is in Figure 13; no classifier can get perfect accuracy on every subclass, because the two
superclasses overlap and thus it is impossible to distinguish between them in the region of overlap.
Nevertheless, it is possible to attain perfect accuracy on some subclasses in this example, meaning
that there will still be performance gaps between the subclasses.

D.5 GDRO with soft group assignments

As shown above in Appendix D.2, we can minimize max
c∈[C]

Ex∼P̂S(c)
[ŵ(x, c)`(x, S(c); θ)] as

a surrogate for max
c∈[C]

Ex∼Pc [`(x, S(c); θ)], where P̂S(c) is the empirical distribution of train-

ing examples of superclass c and ŵ(x, c) is shorthand for
P̂(x|z = c)

P̂(x|y = S(c))
. If we define

35

the density Ac(x, z) = P̂S(c)(x)1(z = c), then max
c∈[C]

Ex∼P̂S(c)
[ŵ(x, c)`(x, S(c); θ)] =

max
c∈[C]

E(x,z)∼Ac [ŵ(x, z)`(x, S(z); θ)]. If we now define ˜̀(x, z; θ) := ŵ(x, z)`(x, S(z); θ), we see

that this falls directly within the group DRO framework of [43]. We thus obtain the following
algorithm, which is a minor modification of Algorithm 1 of [43]:

Algorithm 2 Modified Group DRO

Input: Step sizes ηq, ηθ; empirical per-superclass distributions P̂b for each superclass b ∈ [B]

Initialize θ(0) and q(0)

for t = 1, . . . , T do
c ∼ Uniform(1, . . . , c)

x ∼ P̂S(c)

q′ ← q(t−1)

q′c ← q′c · exp
(
ηq · ŵ(x, c) · `(x, S(c); θ(t−1))

)
q(t) ← q′/

∑
c q
′
c

θ(t) ← θ(t−1) − ηθ · q(t)
c · ŵ(x, c) · ∇θ`(x, S(c); θ(t−1))

end for

The weights ŵ(x, c) correspond to “soft labels” indicating the probability a particular example
came from a particular superclass; notice that that E(x,z)∼Ac [ŵ(x, z)`(x, S(z); θ)] depends on every
training example in the superclass S(c), so each training example is used in multiple terms in the
maximization.

Finally, note that if the assumptions (informally: nonnegativity, convexity, Lipschitz continuity, and
boundedness) of Proposition 2 in [43] hold for the modified loss l̃(x, z; θ), then the convergence
guarantees carry over as well, since Algorithm 2 is a specific instantiation of Algorithm 1 from [43]:
the convergence rate of Algorithm 2 is O(

√
1/T), where T is the number of iterations. [Specifically,

the average iterate achieves a robust loss that is O(1/
√
T) greater than that of the minimizer of the

robust loss.]

In our experiments, we found hard clustering to work better than soft clustering; as it also has the
advantage of simplicity, all evaluations were performed with hard clustering.

36

	Introduction
	Background
	Related Work
	Problem Setup
	Modeling Hidden Stratification
	A Model of the Data Generating and Labeling Process
	What Causes Hidden Stratification, and When Can It Be Fixed?
	George: A Framework for Mitigating Hidden Stratification
	Step 1: Estimating Approximate Subclass Labels
	Clustering Details

	Step 2: Exploiting Approximate Subclass Labels
	Analysis of George
	Experiments
	Datasets
	End-to-End Results
	Clustering Results
	Extension: Leveraging Pretrained Embeddings

	Conclusion
	Related Work
	Experimental Details
	George Pseudocode
	Dataset Details
	U-MNIST
	Waterbirds
	ISIC
	CelebA

	Methods
	Baselines
	ERM Training Details
	Clustering Details
	BiT Details
	GDRO Training Details

	Hyperparameters
	Miscellaneous
	Additional Experimental Results
	George results
	U-MNIST
	Waterbirds
	ISIC
	CelebA

	Additional Evaluations and Ablations
	Visualizing Clusters
	Comparing Cluster-Robust Performance and True Robust Performance
	ERM With Access to True Subclass Labels
	Runtime
	Label Noise
	Fixing k
	Effect of Model Choice on Subclass Recovery
	Additional Classification Metrics
	Empirical Validation of Lemma 1

	Derivations and Proofs
	Analysis of Example 3.1.
	Proofs from Section 5
	Proof of Lemma 1
	Proof of Theorem 1

	Subclass Performance Gaps Enable Distinguishing Between Subclasses
	Inherent Hardness
	GDRO with soft group assignments

