
We sincerely thank all the reviewers for their helpful comments.1

Response to Reviewer #1:2

3 Q: Relationship with EfficientNet. A: Our main contributions: 1) Our4

method provides a general pipeline for shrinking neural networks, in con-5

trast to EfficientNet that enlarges CNNs. 2) We found that “resolution and6

depth are more important than width for tiny networks” which is different7

from EfficientNet. 3) Different to the giant formula in EfficientNet that is8

handcrafted, the proposed data-driven formula twists the three dimensions9

based on the observation of frontier models. 4) The obtained TinyNets10

show outstanding performance.11

Q: Typo. A: The actual accuracy is 75.8%, not 78.5%. We’ll fix it.12

Q: More FLOPs in Fig.6. A: We include more FLOPs as shown in Fig⇒13

Response to Reviewer #2:14

Q: Why Gaussian process regression. A: In Fig.3, the curves are not simple linear regression and unknown to us. We15

utilize Gaussian process regression to fit the curves for its effectiveness and nonparametric property.16

Q: Relationship with NAS. A: The main differences: 1) Our method gives principle to obtain smaller models which17

can be interpretable and general, while NAS only results in several architectures which are hard to understand. 2) The18

formula in our method can output the configurations for any FLOPs, while NAS only search for predefined FLOPs.19

Q: Setting of RandAugment. A: We set the magnitude of RandAugment to be 9 with a std as 0.5 in all networks.20

Response to Reviewer #3:21

Q: Just a supplement for EfficientNet. A: Thanks for this comment. In fact, resolution, depth and width are three key22

dimensionalities for the performance and computational cost of neural networks. This paper aims to transfer the success23

of EfficientNets for enlarging models to tiny models with higher performance. We found that “resolution and depth are24

more important than width for tiny networks” which is different from EfficientNet. Besides, we present a data-driven25

algorithm for finding the optimal tiny formula by twisting the three dimensions based on the observation of frontier26

models. The performance of TinyNets is about 0.3-3.8% higher than that of EfficientNet with similar computational27

complexity, which is a significant improvement on ImageNet.28

Q: Why resolution & depth > width. A: Basically, The resolution contain the raw information of images, e.g. the average29

resolution of ImageNet images is 482x418 pixels, so changing too much of resolution will cause severe information loss30

to the objects. The depth directly controls the times of nonlinear transformation and the receptive field of CNNs, which31

is important for extracting hierarchical features from images. As for width, the channels contains more redundancy32

as shown in many pruning methods, so the width is not so important as resolution and depth. More discussions and33

visualizations will be included in the final version.34

Q: Evolutionary searching. A: Thanks for this nice concern. Random sampling here provides a simple yet effective35

approach for TinyNets with higher performance and compact architectures. We also agree that the evolutionary36

algorithm can provide better results which can be explored as an extension of our method.37

Q: CAM in Fig.4. A: We follow the EfficientNet paper and show these class activation map figures. These visualizations38

only mean that models with better performance can focus on the more relevant regions.39

Q: Training cost. A: Different from NAS which gives several ‘strange’ architectures, our method provides general and40

interpretable formula for shrinking CNNs. We randomly sample 100 models and train them on a ImageNet subset with41

cost of 10.4 GPUdays, compared to 3800 GPUdays@MnasNet, 8.3 GPUdays@ProxylessNAS, 9 GPUdays@FBNet.42

Q: Hyper-parameters to train EfficientNet. A: We use the thirdparty Pytorch code which reproduces the official43

Tensorflow code with similar performance (diff≤0.1%). All the TinyNets and EfficientNets are trained under the same44

settings, so the results and conclusion are fairly given.45

Response to Reviewer #4:46

Q: The gains are marginal. A: Thanks for this nice concern. We have hilighted the accuracy gains of our TinyNets47

with similar FLOPs to those of EfficientNets in Table R1. Considering that the ImageNet is still a difficult benchmark48

for modern lightweight CNNs, these gains are exactly significant improvements. For example, MobileNetV2 is about49

0.5% higher than that of ShuffleNetV1 (SOTA of that time).50

Q: A study on different tasks. A: The comparsion experiments on COCO dataset as shown in Table R2 illustrate that our51

TinyNet can also surpass the conventional EfficientNet on the Faster RCNN framework.52

Q: Related work. A: We will cite and discuss about the width scaling methods used in these recent excellent networks53

including ESPNetv2, ShuffleNetv1-v2, MobileNets.54

Q: Generalizability. A: Thanks for this constructive comment. This paper is mainly focusing on tiny models for55

computer vision tasks. To apply our method to NLP models, some topics need to be explored accordingly, e.g. how to56

define ‘resolution’ in NLP models. More discussion on future work and broader impact will be included.57

Table R1. ImageNet gains of TinyNet over EfficientNet.
FLOPs/M 339 202 97 52 24

Acc gain/% 0.5 0.3 0.6 1.9 3.8

Table R2. COCO performance of TinyNet & EfficientNet.
EfficientNet (Backbone FLOPs/mAP) 387M/30.4% 98M/18.5%

TinyNet (Backbone FLOPs/mAP) 339M/30.5% 97M/19.8%

https://github.com/rwightman/pytorch-image-models
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

