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(a) Accuracy curves of model trained using ERM.

0 50 100 150 200
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Corrupted labels

0 50 100 150 200
Epoch

Gaussian

0 50 100 150 200
Epoch

Random pixels

0 50 100 150 200
Epoch

Shuffled pixels

Noisy Training Set
Noisy Validation Set
Clean Training Set
Clean Validation Set

(b) Accuracy curves of model trained using our method.

Figure 7: Accuracy curves of model trained on noisy CIFAR10 training set with 80% noise rate. The
horizontal dotted line displays the percentage of clean data in the training sets. It shows that our
observations in Section 2 hold true even when extreme label noise injected.

A Experimental Setups

A.1 Double descent phenomenon

Following previous work [12], we optimize all models using Adam [7] optimizer with fixed learning
rate of 0.0001, batch size of 128, common data augmentation, weight decay of 0 for 4,000 epochs.
For our approach, we use the hyper-parameters Es = 40, α = 0.9 for standard ResNet-18 (width
of 64) and dynamically adjust them for other models according to the relation of model capacity
r = 64

width as:
Es = 40× r; α = 0.9

1
r . (1)

A.2 Adversarial training

[17] reported that imperceptible small perturbations around input data (i.e., adversarial examples) can
cause ERM trained deep neural networks to make arbitrary predictions. Since then, a large literature
devoted to improving the adversarial robustness of deep neural networks. Among them, adversarial
training algorithm TRADES [21] achieves state-of-the-art performance. TRADES decomposed
robust error (w.r.t adversarial examples) to sum of natural error and boundary error, and proposed to
minimize:

Ex,y

{
CE(p(x),y) + max

‖x̃−x‖∞≤ε
KL(p(x),p(x̃))/λ

}
, (2)

where p(·) is the model prediction, ε is the maximal allowed perturbation, CE stands for cross entropy,
KL stands for Kullback–Leibler divergence. The first term corresponds to ERM that maximizes the
natural accuracy; the second term pushes the decision boundary away from data points to improve
adversarial robustness; the hyper-parameter 1/λ controls the trade-off between natural accuracy and
adversarial robustness. We evaluate self-adaptive training on this task by replacing the first term of
Equation (2) with our approach.

Our experiments are based on the official open-sourced implementation1 of TRADES [21]. Con-
cretely, we conduct experiments on CIFAR10 dataset [8] and use WRN-34-10 [19] as base classifier.
For training, we use initial learning rate of 0.1, batch size of 128, 100 training epochs. The learning
rate is decayed at 75-th, 90-th epoch by a factor of 0.1. The adversarial example x̃i is generated
dynamically during training by projected gradient descent (PGD) attack [11] with maximal `∞
perturbation ε of 0.031, perturbation step size of 0.007, number of perturbation steps of 10. The hyper-
parameter 1/λ of TRADES is set to 6 as suggested by original paper, Es, α of our approach is set to 70,

1https://github.com/yaodongyu/TRADES
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Figure 8: Accuracy curves on different portions of the CIFAR10 training set (with 40% label noise)
w.r.t. correct labels. We split the training set into two portions: 1) Untouched portion, i.e., the
elements in the training set which were left untouched; 2) Corrupted portion, i.e., the elements in
the training set which were indeed randomized. It shows that ERM fits correct labels in the first few
epochs and then eventually overfits the corrupted labels. In contrast, self-adaptive training calibrates
the training process and consistently fits the correct labels.

0.9, respectively. For evaluation, we report robust accuracy 1
n

∑
i 1{argmax p(x̃i) = argmax yi},

where adversarial example x̃ is generated by white box `∞ untargeted PGD attack with ε of 0.031,
perturbation step size of 0.007, number of perturbation steps of 20.

A.3 ImageNet

We use ResNet-50 [4] as base classifier. Following original paper [4] and [10, 2], we use SGD to
optimize the networks with batch size of 768, base learning rate of 0.3, momentum of 0.9, weight
decay of 0.0005 and total training epoch of 95. The learning rate is linearly increased from 0.0003
to 0.3 in first 5 epochs (i.e., warmup), and then decayed using cosine annealing schedule [10] to 0.
Following common practice, we use random resizing, cropping and flipping augmentation during
training. The hyper-parameters of our approach are set to Es = 50 and α = 0.99 under standard
setup, and are set to Es = 60 and α = 0.95 under 40% label noise setting. The experiments are
conducted on PyTorch [13] with distributed training and mixed precision training2 for acceleration.

A.4 Selective classification

The experiments are base on official open-sourced implementation3 of Deep Gamblers to ensure fair
comparison. We use the VGG-16 network [15] with batch normalization [6] and dropout [16] as
base classifier in all experiments. The network is optimized using SGD with initial learning rate of
0.1, momentum of 0.9, weight decay of 0.0005, batch size of 128, total training epoch of 300. The
learning rate is decayed by 0.5 in every 25 epochs. For our method, we set the hyper-parameters
Es = 0, α = 0.99.

B Additional Experimental Results & Discussions

B.1 ERM may suffer from overfitting of noise

In [20], the authors showed that the model trained by standard ERM can easily fit randomized data.
However, they only analyzed the generalization errors in the presence of corrupted labels. In this
paper, we report the whole training process and also consider the performance on clean sets (i.e., the
original uncorrupted data). Figure 1a shows the four accuracy curves (on clean and noisy training,
validation set, respectively) for each model that is trained on one of four corrupted training data. Note
that the models can only have access to the noisy training sets (i.e., the red curve) and the other three
curves are shown only for the illustration purpose. We conclude with two principal observations
from the figures: (1) The accuracy on noisy training and validation sets is close at beginning and the
gap is monotonously increasing w.r.t. epoch. The generalization errors (i.e., the gap between the
accuracy on noisy training and validation sets) are large at the end of training. (2) The accuracy on

2https://github.com/NVIDIA/apex
3https://github.com/Z-T-WANG/NIPS2019DeepGamblers
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Figure 9: Generalization error and clean validation error under four kinds of random noise (represented
by different colors) for ERM (the dashed curves) and our approach (the solid curves) on CIFAR10
when data augmentation is turned off. We zoom-in the dashed rectangle region and display it in the
third column for clear demonstration.
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Figure 10: Self-adaptive training vs. ERM on the error-epoch curve. We train the standard ResNet-18
networks (i.e., width of 64) on the CIFAR10 dataset with 15% randomly-corrupted labels and report
the test errors on the clean data. The dashed vertical line represents the initial epoch Es of our
approach. It shows that self-adaptive training has significantly diminished epoch-wise double-descent
phenomenon.

clean training and validation set is consistently higher than the percentage of clean data in the noisy
training set. This occurs around the epochs between underfitting and overfitting.

Our first observation poses concerns on the overfitting issue of ERM training dynamic which has
also been reported by [9]. However, the work of [9] only considered the case of corrupted labels and
proposed using early-stop mechanism to improve the performance on clean data. On the other hand,
our analysis of the broader corruption schemes shows that the early stopping might be sub-optimal and
may hurt the performance under other types of corruptions (see the last three columns in Figure 1a).

The second observation implies that, perhaps surprisingly, model predictions by ERM can capture
and amplify useful signals in the noisy training set, although the training dataset is heavily corrupted.
While this was also reported in [20, 14, 3, 9] for the case of corrupted labels, we show that similar
phenomenon occurs under other kinds of corruptions more generally. This observation sheds light on
our approach, which incorporates model predictions into training procedure.

B.2 Improved generalization of self-adaptive training on random noise

Training accuracy w.r.t. correct labels on different portions of data For more intuitive demon-
stration, we split the CIFAR10 training set (with 40% label noise) into two portions: 1) Untouched
portion, i.e., the elements in the training set which were left untouched; 2) Corrupted portion, i.e.,
the elements in the training set which were indeed randomized. The accuracy curves on these two
portions w.r.t correct training labels is shown in Figure 8. We can observe that the accuracy of ERM
on the corrupted portion first increases in the first few epochs and then eventually decreases to 0. In
contrast, self-adaptive training calibrates the training process and consistently fits the correct labels.

Study on extreme noise We further rerun the same experiments as in Figure 1 of main text by
injecting extreme noise (i.e., noise rate of 80%) into CIFAR10 dataset. We report the corresponding
accuracy curves in Figure 7, which shows that our approach significantly improves the generalization
over ERM even when random noise dominates training data. This again justify our observations in
Section 2 of the main body.

Effect of data augmentation All our previous studies are performed with common data augmenta-
tion (i.e., random cropping and flipping). Here, we further report the effect of data augmentation.
We adjust introduced hyper-parameters as Es = 25, α = 0.7 due to severer overfitting when data
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Table 5: Parameters sensitivity to different datasets and noise rates.

CIFAR10 (80% Noise) CIFAR100 (40% Noise)
α 0.8 0.9 0.95 0.8 0.9 0.95

Fix Es=60 75.60 78.58 75.44 70.36 71.38 68.57

Es 40 60 80 40 60 80

Fix α=0.9 68.27 78.58 78.65 70.30 71.38 67.32

Table 6: Test Accuracy (%) on CIFAR datasets with various levels of uniform label noise injected to
training set. We show that considerable gains can be obtained when combined with SCE loss.

CIFAR10 CIFAR100

Method Label Noise Rate Label Noise Rate
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

SCE [18] 90.15 86.74 80.80 46.28 71.26 66.41 57.43 26.41
Ours 94.14 92.64 89.23 78.58 75.77 71.38 62.69 38.72
Ours + SCE 94.39 93.29 89.83 79.13 76.57 72.16 64.12 39.61

augmentation is absent. The Figure 9 shows the corresponding generalization errors and clean
validation errors. We observe that, for both ERM and our approach, the errors clearly increase when
data augmentation is absent (compared with those in Figure 2). However, the gain is limited and the
generalization errors can still be very large, with or without data augmentation for standard ERM.
Directly replacing the standard training procedure with our approach can bring bigger gains in terms
of generalization regardless of data augmentation. This suggests that data augmentation can help but
is not of essence to improve generalization of deep neural networks, which is consistent with the
observation in [20].

B.3 Epoch-wise double descent phenomenon

Prior work [12] reported that, for sufficient large model, test error-training epoch curve also exhibits
double-descent phenomenon, which they termed epoch-wise double descent. In Figure 10, we
reproduce the epoch-wise double descent phenomenon on ERM and inspect self-adaptive training.
We observe that our approach (the red curve) exhibits slight double-descent due to overfitting starts
before initial Es epochs. As the training targets being updated (i.e., after Es = 40 training epochs),
the red curve undergoes monotonous decrease. This observation again indicates that double-descent
phenomenon may stem from overfitting of noise and can be avoided by our algorithm.

B.4 Cooperation with symmetric cross entropy

Prior work [18] showed that Symmetric Cross Entropy (SCE) loss is robust to underlying label noise
in training data. Formally, given training target ti and model prediction pi, SCE loss is defined as:

Lsce = −w1

∑
j

ti,j log pi,j − w2

∑
j

pi,j log ti,j , (3)

where the first term is the standard cross entropy loss and the second term is the reversed version. In
this section, we show that self-adaptive training can cooperate with this noise-robust loss and enjoy
further performance boost without extra cost.

Setup The most experiments settings are kept the same as Section 3.2. For the introduced hyper-
parameters w1, w2 of SCE loss, we directly set them to 1, 0.1, respectively, in all our experiments for
simplicity.

Results We summarize the results in Table 6. We cam see that, although self-adaptive training
already achieves very strong performance, considerable gains can be obtained when equipped with
SCE loss. Concretely, the improvement is as large as 1.5% when label noise of 60% injected to
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Table 7: Average Accuracy (%) on CIFAR10 test set and out-of-distribution dataset CIFAR10-C at
various corruption levels.

Method CIFAR10 Corruption Level@CIFAR10-C

1 2 3 4 5

ERM 95.32 88.44 83.22 77.26 70.40 58.91
Ours 95.80 89.41 84.53 78.83 71.90 60.77

CIFAR100 training set. It also indicates that our approach is flexible and is ready to cooperate with
alternative loss functions.

B.5 Out-of-distribution generalization

In this section, we consider out-of-distribution (OOD) generalization, where the models are evaluated
on unseen test distributions outside the training distribution.

Setup To evaluate the OOD generalization performance, we use CIFAR10-C benchmark [5] that
constructed by applying 15 types of corruption to the original CIFAR10 test set at 5 levels of severity.
The performance is measure by average accuracy over 15 types of corruption. We mainly follow the
training details in Section 3.2 and adjust α = 0.95,Es = 80.

Results We summarize the results in Table 7. Regardless the presence of corruption and corruption
levels, our method consistently outperforms ERM by a considerable margin, which becomes large
when the corruption is more severe. The experiment indicates that self-adaptive training may provides
implicit regularization for OOD generalization.

B.6 Cost of maintaining probability vectors

Take the large-scale ImageNet dataset [1] as an example. The ImageNet consists of about 1.2 million
images categorized to 1000 classes. The storage of such vectors in single precision format for the
entire dataset requires 1.2× 106× 1000× 32 bit ≈ 4.47GB, which is acceptable since modern GPUs
usually have no less than 11GB memory. Moreover, the vectors can be stored on CPU memory or
even disk and loaded along with the images to further reduce the cost.
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