
We thank the reviewers for their careful reading and constructive comments. We will include their suggestions in the1

final version, and we will release our code. In the remainder, we want to address the main points raised in the reviews.2

"It is not true that this is the first algorithm where the sketch-size depends only on the effective dimension [reference]."3

Thank you for pointing us this reference. We will include a detailed comparison. However, we believe that our work4

provides the first sketching algorithm with sketch size no larger than the effective dimension and without a priori5

knowledge or estimation of the latter. In the reference, Algorithm 2 takes as input a sketch size m ≈ de log de, which6

requires estimation of de. The latter can be done efficiently, but in the restricted setting de ≤ (n+d)
1
3 /poly(log(n+d))7

(please see, for instance, Theorem 60 in [2]). We believe that our method is more simple, and, has the advantage of8

starting with an arbitrarily small sketch size. As illustrated in Figure 1, the sketch size can also remain smaller than9

O(de/ρ). Lastly, our method applies to both the overdetermined and undetermined cases (please see Appendix B for10

the latter).11

"The guarantee [of Theorem 7] can be trivially found [using CG with a randomized preconditioner]." We emphasize12

that our key contribution is to propose an adaptive sketch size algorithm. Using the IHS, we are able to monitor the13

progress of our algorithm and adapt the sketch size accordingly. Extending such ideas to different methods based on14

preconditioning + iterative refinement is an open question beyond the scope of our work.15

"The algorithm [...] doesn’t exploit the sparsity of the data." Although we aim to address the case of dense data matrices16

which is standard in the literature, our method can be extended to sparse embeddings, for which similar concentration17

bounds exist in the literature. We will include these additional results in the final version.18

"Many hyperparameters.", "Choice of step sizes?", "Choice of target improvement rate c∗?", "K might be very large if19

η gets close to 1 or ρ to 0" We emphasize that ρ and η are the only users’ choice parameters, which will be clarified in20

the revision with suggested values. Other hyperparameters are chosen as in Theorem 5, and specified by the values of ρ21

and η. One should choose a small η for the concentration bounds to be tighter, and a typical value which preserves a22

small failure probability is η = o(1/
√
m). If one picks a small ρ to get a fast convergence rate, then, to avoid many23

rejection steps (which cannot exceed O(log(de/ρ)) according to Theorem 5), one can either choose a larger initial24

value of m, or, multiply m by a constant larger than 2 at each rejection. In numerical experiments, we chose ρ = 0.225

for MNIST and ρ = 0.5 for CIFAR10, and η = 0.05 which results in at most 5 sketch size rejections.26

"[Unclear] benefits of switching between GD and Polyak steps", "Is it really advantageous to run Gradient-IHS27

and Polyak-IHS in parallel?", "Can we have a graph that compares the best methods?". We emphasize that the28

Polyak-IHS update is guaranteed to perform at least as well as the gradient-IHS update, at the expense of just one29

gradient computation but theoretically guaranteed convergence. We have carried out additional numerical comparisons30

of the time and flops of running both in parallel, for both Gaussian and SRHT embeddings. In a nutshell, we typically31

observe that either most Polyak steps are accepted, or, most of them are rejected, and this holds for both embeddings.32

Based on all our numerical evaluations, the hybrid method with SRHT embeddings is most often the most efficient both33

in terms of time and memory (RAM) usage as well as provably convergent with the specified sharp rate.34

"How does the sketch size evolve during iterations?", "Could you compare with IHS with fixed sketching dimension35

chosen heuristically and in hindsight?" Figures 1.(e-h) show how the adaptive sketch size changes throughout the36

algorithm. Importantly, it can remain much smaller than the effective dimension. Without adaptation, for small sketch37

sizes, the IHS fails to converge. We will include a detailed numerical comparison.38

"Is the preconditioning [of pCG] done from scratch for each value of the penalty ν?" We leverage previous iterates for39

the preconditioning as we move along the regularization path.40

"In Figure 3, [are there] error bars?" Error bars are reported on Figures 3(a–d). We will make them more readable.41

"How does a(ρ, η) appears in the bounds when applying Theorem 3 in the proof of Theorem 5." In the proof of Theorem42

5, we apply Theorem 3 with m greater than de a(ρ, η)/ρ. We will make these details clearer.43

"It seems to me that theoretical claims no longer hold for [the improvement ratio] Ct." Our algorithm is guaranteed44

to converge by monitoring the ratio ct, although there is indeed a gap between the Ct and ct, which is controlled by45

the condition number of the matrix CS . Consequently, we pay an additional factor (1 + σ2
1/ν

2) in the convergence46

guarantee. Please see the proof of Theorem 5 for more details.47

"Formulas for de in lines 63 and 83 are different" We define formally de on line 83. We will clarify this.48

"Similar theorems are already known when de is replaced with d." We will highlight differences between our analysis49

techniques which result in sharper bounds and existing ones.50

"Precise reference for [...] m = d log(d)/ρ for p-CG ?" Given a target convergence rate ρ, Lemma 1 in [24] specifies51

m = d2/ρ for the SRHT. Tighter (and more recent) concentration bounds on the SRHT (see Lemma 3.4 [26]) suggest52

to use m = d log d/ρ.53


