
A Additional results

A.1 Numerical experiments with synthetic datasets

Here, we consider a synthetic dataset with A having exponential spectral decay σj = 0.95j for
j = 1, . . . , d. The observation vector is generated as follows, b = Axpl + η, where xpl is a planted
vector with 1√

d
N (0, 1) independent entries and η is a vector of Gaussian noise 1√

n
N (0, In). We

also consider the similar synthetic dataset but with polynomially decaying singular values σj = 1/j
for j = 1, . . . , d. Results are reported in Figure 3.

1. 0.1 0.01 0.001 0.0001

(a) ν

100

101

T
im

e
(s

ec
on

d
s)

Exponential decay, Gaussian

GD (Ours)

Hybrid (Ours)

CG

pCG

1. 0.1 0.01 0.001 0.0001

(b) ν

100

101

102

Exponential decay, SRHT

GD (Ours)

Hybrid (Ours)

CG

pCG

1. 0.1 0.01 0.001 0.0001

(c) ν

100

101

102

Polynomial decay, Gaussian

GD (Ours)

Hybrid (Ours)

CG

pCG

1. 0.1 0.01 0.001 0.0001

(d) ν

100

101

102

Polynomial decay, SRHT

GD (Ours)

Hybrid (Ours)

CG

pCG

1. 0.1 0.01 0.001 0.0001

(e) ν

0

2000

4000

S
ke

tc
h

si
ze
m

Exponential decay, Gaussian

GD (Ours)

Hybrid (Ours)

Upper bound

pCG

1. 0.1 0.01 0.001 0.0001

(f) ν

0

10000

20000

30000

Exponential decay, SRHT

GD (Ours)

Hybrid (Ours)

Upper bound

pCG

1. 0.1 0.01 0.001 0.0001

(g) ν

0

2000

4000
Polynomial, Gaussian

GD (Ours)

Hybrid (Ours)

Upper bound

pCG

1. 0.1 0.01 0.001 0.0001

(h) ν

0

10000

20000

30000

Polynomial decay, SRHT

GD (Ours)

Hybrid (Ours)

Upper bound

pCG

Figure 3: Exponential and polynomial spectral decays: comparison of CG, pCG, Algorithm 1
and a variant of Algorithm 1 which only computes gradient-IHS updates. We consider an entire
regularization path ν ∈ {10j | j = 0, . . . ,−4}. For each algorithm, we start with the largest value
ν = 1. For j 6 3, we initialize each algorithm at the previous solution x̃ found for j + 1. For each
value of ν, we stop the algorithm once ε = 10−10-precision is met. We observe that pCG is slow at
the beginning due to forming and factoring the m× d sketched matrix S ·A with m ≈ d. In contrast,
our methods start with m = 1 and the varying sketch size remains much smaller than that of pCG.
This leads to better time and memory space performance, except for the case of Gaussian embeddings
and polynomial decays. In the latter case, our method is slowed down by Gaussian projections which
are expensive. But with the SRHT, our method has the best performance. Each run is averaged over
30 independent trials. Mean standard deviations are reported in the form of error bars.

A.2 The underdetermined case n 6 d

A dual of the problem (1) is

z∗ : = argmin
z∈Rn

{
1

2
‖A>z‖2 +

ν2

2
‖z‖2 − b>z

}
,

and one can map the optimal dual solution z∗ to the primal one using the relationship

x∗ = A>z∗ . (13)

The dual problem fits into the primal overdetermined framework we consider in the main body of this
manuscript. Indeed, we have that

z∗ = argmin
z∈Rn

{
g(z) : =

1

2
‖A>z − b̂‖2 +

ν2

2
‖z‖2

}
, (14)

where b̂ = A†b and A† is the pseudo-inverse of A. One might wonder whether b̂ needs to be
computed in order to apply the previous framework to the dual overdetermined case: this is not
the case. Indeed, in Algorithm 1, the observation vector b only appears in the gradient formula, as
∇f(xt) = A>(Axt − b). For the dual problem (14), we have

∇g(zt) = A(A>zt − b̂) = AA>zt − b .

12



That is, the gradient is easily computed and Algorithm 1 can be applied to the dual problem (14)
with the exact same guarantees for the sketch size and the number of rejected steps as in Theorems 5
and 6, while having guarantees on the error

εt : =
1

2
‖A>(zt − z∗)‖2 +

ν2

2
‖zt − z∗‖2 ,

Using the map xt = A>zt, the notation δt = 1
2‖A(xt − x∗)‖2 + ν2

2 ‖xt − x
∗‖2 and assuming that

z0 = 0 so that ε0 = f(x∗)/ν2, we obtain with Algorithm 1 that εt . ρtε0, and consequently

1

2
‖A(xt − x∗)‖2 +

ν2

2
‖xt − x∗‖2 =

1

2
‖AA>(zt − z∗)‖2 +

ν2

2
‖A>(zt − z∗)‖2

6 σ1(A)2 · εt

6
σ1(A)2f(x∗)

ν2
· ρt .

Thus, the total number of iterations to reach ε-relative accuracy for xt becomes

T = O
(

log(1/ε) + log(σ1(A)2/ν2) + log(f(x∗)/δ0))

log(1/ρ)

)
.

Under the hypothesis ε 6 ν2

ν2+σ1(A)2 of Theorem 7 and the additional hypothesis f(x∗)
δ0

6 ε−1, this
number of iterations scales as

T = O (log(1/ε)/ log(1/ρ)) .

Consequently, we obtain the same total computational complexity (both in time and space) as stated
in Theorem 7 to reach an approximate solution xt with ε-relative accuracy.

B Proof of main results

B.1 Proof of Theorems 1 and 2

We denote byA = UΣV > a singular value decomposition of the matrixA, whereU = [u1, . . . , ud] ∈
Rn×d has orthonormal columns, V = [v1, . . . , vd] ∈ Rd×d has orthonormal columns, and Σ =
diag(σ1, . . . , σd), with σ1 > . . . > σd > 0.

We denote D = diag
(

σ1√
σ2
1+ν2

, . . . , σd√
σ2
d+ν2

)
, D′ = diag

(
ν√
σ2
1+ν2

, . . . , ν√
σ2
d+ν2

)
, and further,

Ū : =

[
UD
VD′

]
, Σ̄ : = diag

(√
σ2

1 + ν2, . . . ,
√
σ2
d + ν2

)
.

Note that Ā = Ū Σ̄V >. Indeed,

Ū Σ̄V > =

[
UDΣ̄V >

V D′Σ̄V >

]
=

[
UΣV >

V (ν · Id)V >
]

=

[
A

ν · Id

]
.

Further, the columns of Ū are orthonormal, and the matrix Σ̄ is diagonal with non-negative entries,
so that Ū Σ̄V > is a singular value decomposition of Ā.

Given an embedding S ∈ Rm×n, denote by S̄ the (m+d)× (n+d) block-diagonal matrix
[
S 0
0 Id

]
.

Denote b̄ =

[
b
0

]
. We have that Ā>S̄>S̄Ā = A>S>SA+ ν2Id = HS . Consequently, given a step

size µ ∈ R and a momentum parameter β ∈ R, the update formula (2) of the Polyak-IHS method can
be equivalently written as

xt+1 = xt − µ(Ā>S̄>S̄Ā)−1Ā>(Āxt − b̄) + β(xt − xt−1) . (15)
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Multiplying the update formula (15) by Ū>Ā, subtracting Ū>Āx∗, using the normal equation
Ā>b̄ = Ā>Āx∗ and using the notation et : = Ū>Ā(xt − x∗), we obtain that

et+1 = et − µŪ>Ā(Ā>S̄>S̄Ā)−1Ā>Ūet + β(et − et−1)

=
(
I − µ(Ū>S̄>S̄Ū)−1

)
et + β(et − et−1) .

Further, unrolling the expression Ū>S̄>S̄Ū = D(U>S>SU − Id)D + Id = CS , we find the error
recursion [

et+1

et

]
=

[
(1 + β)Id − µC−1

S −βId
Id 0

]
︸ ︷︷ ︸

: =M(µ,β)

[
et
et−1

]
. (16)

B.1.1 Gradient-IHS method

For the gradient-IHS method, we have that β = 0 so that the dynamics (16) simplifies to

et+1 = (Id − µC−1
S )et .

Using the fact that δt = 1
2‖et‖

2, we obtain that for any t > 0,

δt+1

δt
6 ‖Id − µC−1

S ‖
2
2 .

The eigenvalues of the matrix Id − µC−1
S are given by 1− µ

γi
where the γi’s are the eigenvalues of

CS indexed in non-increasing order. Then,

‖Id − µC−1
S ‖2 = max

{
|1− µ

γ1
|, |1− µ

γd
|
}
.

If λ,Λ > 0 are two real numbers such that λ 6 γd 6 γ1 6 Λ, then it holds that for any µ > 0,

max

{
|1− µ

γ1
|, |1− µ

γd
|
}

6 max
{
|1− µ

Λ
|, |1− µ

λ
|
}
.

Picking µ = 2/( 1
λ + 1

Λ ) yields that

‖Id − µC−1
S ‖2 6

(
Λ− λ
Λ + λ

)
,

which is the result claimed in Theorem 1.

B.1.2 Polyak-IHS method

Using (16) and the fact that δt = 1
2‖et‖

2, we immediately find by recursion that(
δt+1 + δt
δ1 + δ0

) 1
t

6 ‖M(µ, β)t‖
2
t
2 .

From Gelfand formula, we obtain that

lim sup
t→∞

(
δt
δ0

) 1
t

6 ρ(M(µ, β))
2
,

where ρ(M(µ, β)) is the spectral radius4 of the matrix M(µ, β). Let CS = TΛT> be an eigenvalue
decomposition of the positive definite matrix CS – where Λ = diag(γ1, . . . , γd) and γ1 > . . . γd > 0
–, and define the (2d)× (2d) permutation matrix Π as

Πi,j =


1 if i odd , j = i

1 if i even , j = n+ i

0 otherwise

4The spectral radius of a complex-valued matrix is the largest module of its complex eigenvalues.
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Then, it holds that

Π

[
T 0
0 T

]>
M(µ, β)

[
T 0
0 T

]
Π> =


M1(µ, β) 0 . . . 0

0 M2(µ, β) . . . 0
...

. . .
...

0 0 . . . Md(µ, β)


where Mi(µ, β) =

[
1 + β − µγ−1

i −β
1 0

]
. That is, M(µ, β) is similar to the block diagonal matrix

with 2× 2 diagonal blocks Mi(µ, β). To compute the eigenvalues of M(µ, β), it suffices to compute
the eigenvalues of all of the Mi(µ, β). For fixed i, the eigenvalues of the 2 × 2 matrix are roots
of the equation u2 − (1 + β − µ/γi)u + β = 0. In the case that 1 > β > (1 −

√
µ/γi)

2, the
roots of the characteristics equations are imaginary, and both have magnitude

√
β. Pick µ = µ∗ :

= 4/(1/
√

Λ + 1/
√
λ)2 and β = β∗ : =

(√
Λ−
√
λ√

Λ+
√
λ

)2

, where λ,Λ > 0 are respectively any lower

and upper bounds of γd and γ1. Then, we have that β > (1−
√
µ/γi)

2 for all i = 1, . . . , d, so that
ρ(M(µ, β)) 6

√
β, and this yields the claimed result.

B.2 Proof of Theorem 5

We introduce the notation m = 5 · deρ .

Either the sketch size always remains smaller than m, which is equivalent to

K 6
log(m/minitial)

log(2)
, (17)

in which case the statements (7) and (8) of Theorem 5 on the sketch size and the number of rejected
steps hold almost surely.

Otherwise, suppose that for some iteration t > 1, we have m > m. Let t > 1 be the first such
iteration, so that m 6 2m and K 6 log(m/minitial)

log(2) + 1.

Denote S the sketching matrix sampled at time t. Let λρ/5,η and Λρ/5,η be the bounds as given in
Definition 3.1 (where ρ is replaced by ρ/5), and consider the event

Eρ/5 : =
{
λρ/5,η 6 σmin(CS) 6 σmax(CS) 6 Λρ/5,η

}
, (18)

which, according to Theorem 3 and the fact that m > m, holds with probability at least 1− 8e−deη/2.

We assume, from now on, that the event Eρ/5 holds. Let t > t be any time such that between t and
t, all updates were accepted (either Polyak- or gradient-IHS), so that the sketch size and sketching
matrix are still the same. We claim that it suffices to prove that the gradient-IHS update at time t is
accepted.

Denote xt the current iterate, δt = 1
2‖A(xt − x∗)‖2 and rt = 1

2‖C
− 1

2

S U
>
A(xt − x∗)‖2. Let

x+
gd be the gradient-IHS update of Algorithm 1, and denote δ+ : = 1

2‖A(x+
gd − x∗)‖2 and r+ : =

1
2‖C

− 1
2

S U
>
A(x+

gd − x∗)‖2. Recall from Lemma 1 that rt and r+ are also the sketched Newton
decrements at xt and x+, so that the gradient-IHS improvement ratio computed in Algorithm 1 is
equal to r+

rt
.

We need the following technical result whose proof is deferred to Appendix D.2.
Lemma 2. Suppose that ρ 6 0.18 and η 6 0.01. Then, on the event Eρ/5, it holds that

σmax(CS)

σmin(CS)
· cgd(ρ/5, η) 6 cgd(ρ, η) . (19)

We have that
δ+

δt
6
(i)
cgd(ρ/5, η) 6

(ii)

σmin(CS)

σmax(CS)
cgd(ρ, η) ,
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where inequality (i) follows from Theorem 1, and, inequality (ii) from Lemma 2. Using r+ 6 δ+

σmin(CS)

and rt > δt
σmax(CS) , it follows that

r+

rt
6
σmax(CS)

σmin(CS)
· δ

+

δt
6 cgd(ρ, η) .

Consequently, the gradient-IHS update x+
gd verifies the improvement criterion r+

rt
6 cgd(ρ, η), and

the update x+
gd is not rejected.

In summary, as soon as m > m and provided that Eρ/5 holds, future updates are not rejected. This
holds with probability at least 1− 8e−deη/2, which concludes the proof of the statements (7) and (8)
on the sketch size and the number of rejected steps.

We turn to showing statement (9). Fix any iteration t > 1. By construction of Algorithm 1, it holds
almost surely that

rt
r1

6 max{cgd(ρ, η)t−1, cp(ρ, η)t−1} = cgd(ρ, η)t−1 .

Denoting by S the sketching matrix at time t, and using that δt 6 σmax(CS)·rt and δ1 > σmin(CSinitial)·
r1, it follows that

δt
δ1

6
σmax(CS)

σmin(CSinitial)
· rt
r1

6
σmax(CS)

σmin(CSinitial)
· cgd(ρ, η)

t−1
.

On the one hand, according to Theorem 3, we have that

σmax(CS) 6
ν2

σ2
1 + ν2

+
σ2

1

σ2
1 + ν2

·

(
1 +

√
(1 + 3

√
η)2

de
minitial

)2

.

with probability at least 1− 8e−ηde/2. Using that η 6 0.01, (1 + 3
√
η) 6 3/2 and (1 +

√
de
m )2 6

4 max{1, de
minitial

}, we obtain

σmax(CS) 6 9

(
ν2

σ2
1 + ν2

+
σ2

1

σ2
1 + ν2

max{1, de
minitial

}
)
.

On the other hand, it holds almost surely that

σmin(CSinitial) > 1− ‖D‖22 =
ν2

σ2
1 + ν2

.

Combining the latter inequalities, it holds with probability at least 1− 8e−deη/2 that

δt
δ1

6 9

(
1 +

σ2
1

ν2

)
max

{
1,

de
minitial

}
cgd(ρ, η)t−1 ,

which concludes the proof.

B.3 Proof of Theorem 6

The proof for the SRHT follows steps similar to the Gaussian case. We introduce the notation

m = aρ · C(n, de)
de log(de)

ρ
, (20)

and we recall that aρ : =
1+
√
ρ

1−√ρ .

Either the sketch size always remains smaller than m. The latter is equivalent to

K 6
log(m/minitial)

log(2)
, (21)
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in which case the statements (10) and (11) of Theorem 6 on the sketch size and the number of rejected
steps hold almost surely.

Otherwise, suppose that for some iteration t > 1, we have m > m. Let t > 1 be the first such
iteration, so that m 6 2m and K 6 log(m/minitial)

log(2) + 1.

Denote S the sketching matrix sampled at time t. Define λρ/aρ : = 1−
√

ρ
aρ

and Λρ/aρ : = 1+
√

ρ
aρ

,

and consider the event

Eρ/aρ : =
{
λρ/aρ 6 σmin(CS) 6 σmax(CS) 6 Λρ/aρ

}
, (22)

which, according to Theorem 4 and the fact that m > m, holds with probability at least 1− de
9 .

We assume, from now on, that the event Eρ/aρ holds. Let t > t be any time such that between t and
t, all updates were accepted (either Polyak- or gradient-IHS), so that the sketch size and sketching
matrix are the same. We claim that it suffices to prove that the gradient-IHS update at time t is
accepted.

Denote xt the current iterate, δt = 1
2‖A(xt − x∗)‖2 and rt = 1

2‖C
− 1

2

S U
>
A(xt − x∗)‖2. Let

x+
gd be the gradient-IHS update of Algorithm 1, and denote δ+ : = 1

2‖A(x+
gd − x∗)‖2 and r+ : =

1
2‖C

− 1
2

S U
>
A(x+

gd − x∗)‖2. Recall from Lemma 1 that rt and r+ are also the sketched Newton
decrements at xt and x+, so that the gradient-IHS improvement ratio computed in Algorithm 1 is
equal to r+

rt
.

We need the following technical result whose proof is deferred to Appendix D.3.

Lemma 3. On the event Eρ/aρ , it holds that σmax(CS)
σmin(CS) 6 aρ and cgd(ρ/aρ) =

cgd(ρ)
aρ

.

We have that

δ+

δt
6
(i)
cgd(ρ/aρ) =

(ii)

cgd(ρ)

aρ
,

where inequality (i) follows from Theorem 1, and, equality (ii) from the second part of Lemma 3.
Using r+ 6 δ+

σmin(CS) and rt > δt
σmax(CS) , it follows that

r+

rt
6
σmax(CS)

σmin(CS)
· δ

+

δt
6
σmax(CS)

σmin(CS)
·
cgd(ρ)

aρ
6
(i)
aρ ·

cgd(ρ)

aρ
= cgd(ρ) ,

where inequality (i) follows from the first part of Lemma 3. Consequently, the gradient-IHS update
x+

gd verifies the improvement criterion r+

rt
6 cgd(ρ), and the update x+

gd is not rejected.

In summary, as soon as m > m and provided that Eρ/aρ holds, future updates are not rejected. This
holds with probability at least 1− 9

de
, which concludes the proof of the statements (10) and (11) on

the sketch size and the number of rejected steps.

We turn to showing statement (12). Fix any iteration t > 1. By construction of Algorithm 1, it holds
almost surely that

rt
r1

6 max{cgd(ρ)t−1, cp(ρ)t−1} = cgd(ρ)t−1 .

Denoting by S the sketching matrix at time t, and using that δt 6 σmax(CS)·rt and δ1 > σmin(CSinitial)·
r1, it follows that

δt
δ1

6
σmax(CS)

σmin(CSinitial)
· rt
r1

6
σmax(CS)

σmin(CSinitial)
· cgd(ρ)t−1 .
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On the one hand, it holds almost surely that

σmax(CS) = sup
‖x‖2=1

‖x‖22 + 〈Dx, (U>S>SU − Id)Dx〉

6
(i)

1 + sup
‖x‖261

〈x, (U>S>SU − Id)x〉

6 1 + sup
‖x‖261

〈x, U>S>SUx〉

6
(ii)

2 ,

where inequality (i) follows from the fact that ‖D‖2 6 1, and inequality (ii) from the fact that SU is
a partial orthogonal matrix so that ‖SU‖2 6 1. On the other hand, it holds almost surely that

σmin(CSinitial) > 1− ‖D‖22 =
ν2

σ2
1 + ν2

.

Combining the latter inequalities, it holds almost surely that

δt
δ0

6 2

(
1 +

σ2
1

ν2

)
cgd(ρ)t−1 ,

which concludes the proof.

B.4 Proof of Theorem 7

According to Theorem 6, we have with probability at least 1− 9
de

that over an entire trajectory, the
sketch size and the number of rejected steps satisfy

m = O(de log de/ρ) , K = O(log(de/ρ)) .

From now on, we assume that the above event holds.

Then, forming the sketched matrix SA costs at most O(nd log de) at any iteration. Using the
Woodbury matrix identity, the inverse of HS verifies

H−1
S =

(
(SA)>SA+ ν2Id

)−1
=

1

ν2

(
Id − (SA)>(ν2Im + SA(SA)>)−1SA

)
.

To reduce the complexity of solving at each iteration the linear system HS · z = ∇f(xt), one
can simply compute and cache a factorization of the matrix (ν2Im + SA(SA)>) which takes time
O(

d2e log2de
ρ2 d). Consequently, the total sketching and factor costs scale asO(log(de/ρ) · (d

2
e log2de
ρ2 d+

nd log(de/ρ))).

The per-iteration cost is that of computing the matrix-vector products Axt and A>(Axt − b), which
is given by O(nd). Note that the other main numerical operation consists in solving the linear
system HS · z = ∇f(xt). Using the cached factorization of the matrix (ν2Im + SA(SA)>) and
the Woodbury identity, this linear system can be solved in time O(de log de

ρ d), which is negligible
compared to O(nd).

According to Theorem 6, we have almost surely that over an entire trajectory,

δt+1

δ1
6 2 · (1 +

σ2
1

ν2
) · cgd(ρ)

t
.

A simple calculation yields that cgd(ρ) = ρ. Therefore, a sufficient number of iterations T to reach
an ε-accurate solution is exactly given by

T =

⌈
log 2 + log(1 +

σ2
1

ν2 ) + log(1/ε)

log(1/ρ)

⌉
.
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For ε 6 min{ ν2

σ2
1+ν2 , 1/2}, this reduces to

T = O
(

log(1/ε)

log(1/ρ)

)
.

Thus, we obtain the total time complexity

Cε = O
(

log(de/ρ) · (d
2
e log2de
ρ2

d+ nd log(de/ρ)) + nd
log(1/ε)

log(1/ρ)

)
,

which is the claimed result.

C Proofs of concentration inequalities

C.1 Gaussian concentration over ellipsoids – Proof of Theorem 3

Let ρ > 0 and m > de
ρ . Let S ∈ Rm×n be a random matrix with i.i.d. entriesN (0, 1/m). We aim to

control the quantities

γ1 = sup
‖x‖=1

1 + 〈x,D(U>S>SU − Id)Dx〉

γd = inf
‖x‖=1

1 + 〈x,D(U>S>SU − Id)Dx〉 .

Upper bound on the largest eigenvalue γ1

We introduce the re-scaled matrix D̄ = D
‖D‖2 , so that ‖D̄‖2F = de and ‖D̄‖2 = 1. We have that

γ1 − 1

‖D‖22
d
= sup
‖x‖=1

〈x, D̄(
1

m
G>G− I)D̄x〉 = sup

‖x‖=1

1

m
‖GD̄x‖2 − ‖D̄x‖2

=
2

m
sup
z∈C

sup
u∈Rm

u>Gz + ψ(u, z) ,

where we introduced the random matrix G ∈ Rm×d with i.i.d. Gaussian entries N (0, 1) and the
first equality holds since SU d

= 1√
m
G. We also used the notations C =

{
D̄x | ‖x‖ = 1

}
and

ψ(u, z) : = − 1
2 (‖u‖2 +m‖z‖2). We introduce the auxiliary random variable

Y : =
2

m
sup
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z + ψ(u, z) ,

where g ∈ Rm and h ∈ Rd are random vectors with i.i.d. entries N (0, 1). Using Theorem 9 (see
Appendix C.1.1), it holds that for any c ∈ R,

P
(
γ1 − 1

‖D‖22
> c

)
6 2P(Y > c) . (23)

Consequently, it suffices to control the upper tail of Y in order to control that of γ1. First, we recall a
few basic facts on the concentration of Gaussian random vectors (see, for instance, Theorems 3.1.1
and 6.3.2 in [42]). That is, for any η > 0, the following event holds with probability at least
1− 4e−mρη/2,

Eη : =
{
|‖g‖ −

√
m| 6 √mηρ , |‖g‖2 −m| 6 m

√
ηρ , ‖D̄h‖ 6 √mρ(1 +

√
η)
}
,
(24)
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On the event Eη , we have

Y =
2

m
sup
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z − 1

2
‖u‖2 − m

2
‖z‖2

(i)
=

2

m
sup
z∈C

sup
t>0

t ‖z‖‖g‖+ t h>z − 1

2
t2 − m

2
‖z‖2

(ii)

6
2

m
sup
z∈C

sup
t∈R

t(‖z‖‖g‖+ |h>z|)− 1

2
t2 − m

2
‖z‖2

(iii)

6
2

m
sup
z∈C

‖z‖2

2
|‖g‖2 −m|+ 1

2
|h>z|2 + ‖z‖‖g‖|h>z|

(iv)

6
2

m
sup
z∈C

|‖g‖2 −m|
2

+
1

2
|h>z|2 + ‖g‖|h>z|

(v)
=
|‖g‖2 −m|

m
+
‖D̄h‖2

m
+

2‖D̄h‖‖g‖
m

(vi)

6
√
ρη + ρ(1 +

√
η)2 + 2

√
ρ(1 +

√
η)(1 +

√
ρη)

= ρ(1 +
√
η)(1 + 3

√
η) + 2

√
ρ(1 +

3

2

√
η)

6
(
1 +
√
ρcη
)2 − 1 ,

where cη : = (1 + 3
√
η)2. In equality (i), we used the fact that for a vector u with fixed norm

‖u‖ = t, the maximum of g>u is equal to ‖g‖t. In inequality (ii), we bounded h>z by |h>z|
and then relaxed the constraint t > 0 to t ∈ R. In inequality (iii), we plugged-in the value of the
maximizer t∗ = ‖z‖‖g‖ + |h>z|. In inequality (iv), we used the fact that for z ∈ C, ‖z‖ 6 1. In
(v), we used the fact that supz∈C |h>z| = ‖D̄h‖. In (vi), we used that, on the event Eη, we have
|‖g‖2−m|

m 6
√
ηm, ‖D̄h‖ 6 √mρ(1 +

√
η) and ‖g‖ 6

√
m(1 +

√
ηρ). Consequently, we have that

P
[
γ1 − 1

‖D‖22
> (1 +

√
ρcη)2 − 1

]
6 2P

[
Y > (1 +

√
ρcη)2 − 1

]
6 2(1− P[Eη])

6 8 · e−mρη/2 ,

which is the claimed upper bound (6) on γ1.

Controlling the smallest eigenvalue γd

Here we assume that ρ ∈ (0, 0.18] and η ∈ (0, 0.01]. We make this assumption in order to provide
explicit and simple statements.

We consider the same definitions D̄, C, ϕ and Eη introduced in the proof of the upper bound on γ1.
We have that

γd − 1

‖D‖22
d
= inf
‖x‖=1

〈x, D̄(
1

m
G>G− I)D̄x〉 = inf

‖x‖=1

1

m
‖GD̄x‖2 − ‖D̄x‖2

=
2

m
inf
z∈C

sup
u∈Rm

u>Gz + ψ(u, z) .

We introduce the auxiliary random variable

Y : =
2

m
inf
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z + ψ(u, z) ,

where g ∈ Rm and h ∈ Rd are random vectors with i.i.d. entries N (0, 1). Using Theorem II.1
from [39], it holds that for any c ∈ R,

P(
γd − 1

‖D‖22
< c) 6 2P(Y < c) . (25)
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Consequently, it suffices to control the lower tail of Y in order to control that of γd. It holds that

Y =
2

m
inf
z∈C

sup
u∈Rm

‖z‖g>u+ ‖u‖h>z − 1

2
‖u‖2 − m

2
‖z‖2

=
2

m
inf
z∈C

sup
t>0

t ‖z‖‖g‖+ t h>z − 1

2
t2 − m

2
‖z‖2

= inf
z∈C

{
−‖z‖2 , if ‖z‖‖g‖+ h>z 6 0
‖z‖2
m (‖g‖2 −m) + (h>z)2

m + 2
m‖z‖‖g‖(h

>z) , otherwise.

Define
Y1 : = inf

z∈C;
‖z‖‖g‖+h>z60

−‖z‖2 ,

Y2 : = inf
z∈C

‖z‖‖g‖+h>z>0

‖z‖2

m
(‖g‖2 −m) +

(h>z)2

m
+

2

m
‖z‖‖g‖(h>z) ,

so that Y = min{Y1, Y2}. For any z ∈ C, it holds that h>z > −‖Dh‖, and consequently

Y1 > inf
z∈C;

‖z‖‖g‖6‖D̄h‖

−‖z‖2 > −‖D̄h‖
2

‖g‖2
.

Hence, conditional on the event Eη , we have

Y1 > −ρ
(

1 +
√
η

1−√ρη

)2

,

On the other hand, we have

Y2 > − 1

m
|‖g‖2 −m|+ inf

z∈C

{
(h>z)2

m
− 2

m
‖g‖|h>z|

}
> − 1

m
|‖g‖2 −m|+ inf

‖x‖=1

{
〈D̄h, x〉2

m
− 2

m
‖g‖|〈D̄h, x〉|

}
= − 1

m
|‖g‖2 −m|+ 2

m
inf

06t6‖D̄h‖

{
t2

2
− ‖g‖t

}
,

where, in the first inequality, we relaxed the constraint set by removing the constraint ‖z‖‖g‖+h>z >
0 and we used the fact that ‖z‖ 6 1. In the second inequality, we used the change of variable z = D̄x
with ‖x‖ = 1. In the third inequality, we used the fact that |〈D̄h, x〉| 6 ‖D̄h‖ and used the change
of variable |〈D̄h, x〉| = t with t ∈ [0, ‖D̄h‖]. On the event Eη , it follows that

Y2 > ρ(1− η)− 2
√
ρ(1 +

3

2

√
η)

>
(i)

(1 + 3
√
η)2ρ− 2

√
ρ(1 + 3

√
η)

= (1−√cηρ)2 − 1 ,

One can verify that inequality (i) is equivalent to
√
ρ 6 1

2+
10
√
η

3

, which always holds under the

assumption that ρ 6 0.18 and η 6 0.01. Then, combining the respective lower bounds on Y1 and Y2,
we obtain that

Y > min

{
−ρ
(

1 +
√
η

1−√η

)2

, (1−√cηρ)2 − 1

}
> (1−√cηρ)2 − 1 ,

One can verify that the last inequality is equivalent to
√
ρ 6

2(1 + 3
√
η)

(1 + 3
√
η)2 +

(
1+
√
η

1−√η

)2 ,

which always holds the assumption that ρ 6 0.18 and η 6 0.01.

Thus, we have proved the claimed lower bound on γ1.
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C.1.1 A new Gaussian comparison inequality

We start with the following well-known comparison inequality, which was first derived in [17].
Theorem 8 (Gordon’s Gaussian comparison theorem). Let I, J ∈ N∗, and {Xij}, {Yij} be two
centered Gaussian processed indexed on I × J , such that for any i, l ∈ I with i 6= l and j, k ∈ J ,

EX2
ij = EY 2

ij

EXijXik > EYijYik
EXijXlk 6 EYijYlk .

Then, for any {λij} ∈ RI×J , we have

P

 I⋂
i=1

J⋃
j=1

[Yij > λij ]

 > P

 I⋂
i=1

J⋃
j=1

[Xij > λij ]


Our next result is a consequence of Gordon’s comparison inequality, and appears to be new. More
specifically, it can be seen as a variant of the Sudakov-Fernique’s inequality (see, for instance,
Theorem 7.2.11 in [42]).
Theorem 9. Let S1 ⊂ Rn and S2 ⊂ Rm be non-empty sets, and ψ : S1 × S2 → R be a continuous
function. Then, for any c ∈ R,

P

(
sup

(x,y)∈S1×S2

y>Gx+ ψ(x, y) > c

)
6 2P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,

Proof. The proof relies on several intermediate results, and is deferred to Section C.1.2.

Lemma 4. Let G ∈ Rm×n, Z ∈ R, g ∈ Rm and h ∈ Rn have independent standard Gaussian
entries. Let I1 ⊂ Rn and I2 ⊂ Rm be finite sets, and ψ be a function defined over I1 × I2. Then, for
any c ∈ R, we have

P
(

max
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) > c

)
6 P

(
max

(x,y)∈I1×I2
‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
.

Proof. We introduce two Gaussian processes X and Y indexed over I1 × I2, defined as

Xxy = ‖x‖g>y + ‖y‖h>x , Yxy = y>Gx+ Z‖x‖‖y‖ ,
for all (x, y) ∈ I1 × I2. It holds that EXxy = EYxy = 0, EX2

xy = 2‖x‖2‖y‖2 = EY 2
xy , and

E[XxyXx′y′ ] = ‖x‖‖x′‖ y>y′ + ‖y‖‖y′‖x>x′ ,
E[YxyYx′y′ ] = ‖x‖ ‖x′‖ ‖y‖ ‖y′‖+ x>x′ y>y′ .

Consequently, we have

E[YxyYx′y′ ]− E[XxyXx′y′ ] =
(
‖x‖ ‖x′‖ − x>x′

) (
‖y‖ ‖y′‖ − y>y′

)
> 0 .

Therefore, applying Gordon’s comparison theorem with I = I1 × I2, J being any finite set, and
λxy = ψ(x, y)− c, we obtain that

P
(

min
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖ − ψ(x, y) > −c
)

> P
(

min
(x,y)∈I1×I2

‖x‖g>y + ‖y‖h>x− ψ(x, y) > −c
)
.

Using the symmetry of the Gaussian distribution, it follows that

P
(

max
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) 6 c

)
> P

(
max

(x,y)∈I1×I2
‖x‖g>y + ‖y‖h>x+ ψ(x, y) 6 c

)
,

and consequently,

P
(

max
(x,y)∈I1×I2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) > c

)
6 P

(
max

(x,y)∈I1×I2
‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,
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Corollary 1. Let S1 ⊂ Rn and S2 ⊂ Rm be non-empty sets, and ψ : S1 × S2 → R be a continuous
function. Then, for any c ∈ R,

P

(
sup

(x,y)∈S1×S2

y>Gx+ Z‖x‖‖y‖+ ψ(x, y) > c

)
6 P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,

Proof. According to Lemma 4, the result is true if S1 and S2 are finite. By monotone convergence, it
is immediate to extend it to countable sets. By density arguments and monotone convergence, it also
follows for any sets S1 and S2.

C.1.2 Proof of Theorem 9

We define f1(x, y) = y>Gx+ψ(x, y) and f2(x, y) = y>Gx+Z‖x‖‖y‖+ψ(x, y). If Z > 0, then
f1 6 f2 and supx,y f1(x, y) 6 supx,y f2(x, y). Thus,

P

(
sup

(x,y)∈S1×S2

f1(x, y) > c, Z > 0

)
6 P

(
sup

(x,y)∈S1×S2

f2(x, y) > c

)
.

From Corollary 1, we know that

P

(
sup

(x,y)∈S1×S2

f2(x, y) > c

)
6 P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
.

Consequently, using the independence of f1 and Z, we get

1

2
P

(
sup

(x,y)∈S1×S2

f1(x, y) > c

)
= P

(
sup

(x,y)∈S1×S2

f1(x, y) > c, Z > 0

)

6 P

(
sup

(x,y)∈S1×S2

‖x‖g>y + ‖y‖h>x+ ψ(x, y) > c

)
,

which yields the claim.

C.2 SRHT matrices – matrix deviation inequalities over ellipsoids

C.3 Preliminaries

Let S ∈ Rm×n be a SRHT matrix, that is, S = RHdiag(ε) where R is a row-subsampling matrix
of size m× n, H is the normalized Walsh-Hadamard transform of size n× n and ε is a vector of n
independent Rademacher variables. We introduce the scaled diagonal matrix D̄ = D

‖D‖2 . Note that
‖D̄‖2F = de and ‖D̄‖2 = 1.
Lemma 5. Let ej be the j-th vector of the canonical basis in Rn. Then,

P

{
max

j=1,...,n
‖e>j Hdiag(ε)UD̄‖ >

√
de
n

+

√
8 log(βn)

n

}
6

1

β
. (26)

Proof. We fix a row index j ∈ {1, . . . , n}, and define the function

f(x) : = ‖e>j Hdiag(x)UD̄‖ = ‖x>EUD̄‖ ,

where E : = diag(e>j H). Each entry of E has magnitude n−
1
2 . The function f is convex, and its

Lipschitz constant is upper bounded as follows,

|f(x)− f(y)| 6 ‖(x− y)>EV D̄‖ 6 ‖x− y‖ ‖E‖2 ‖V ‖2 ‖D̄‖2 =
1√
n
‖x− y‖ .

For a Rademacher vector ε, we have

E f(ε) 6
√

E f(ε)2 = ‖EUD̄‖F 6 ‖EU‖2 ‖D̄‖F =

√
de
n
.
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Applying Lipschitz concentration results for Rademacher variables, we obtain

P

{
‖e>j Hdiag(ε)UD̄‖ >

√
de
n

+

√
8 log(βn)

n

}
6

1

nβ
.

Finally, taking a union bound over j ∈ {1, . . . , n}, we obtain the claimed result.

Theorem 10 (Matrix Bernstein). Let X = {X1, . . . , Xn} be a finite set of squared matrices with
dimension d. Fix a dimension m, and suppose that there exists a positive semi-definite matrix V and
a real number K > 0 such that E[XI ] = 0, E[X2

I ] � V , and ‖XI‖2 6 K almost surely, where I is
a uniformly random index over {1, . . . , n}. Let T be a subset of {1, . . . , n} with m indices drawn
uniformly at random without replacement. Then, for any t >

√
m‖V ‖2 +K/3, we have

P

{∥∥∥∑
i∈T

Xi

∥∥∥
2
> t

}
6 8 · de · exp

(
− t2/2

m‖V ‖2 +Kt/3

)
,

where de : = tr(V )/‖V ‖ is the intrinsic dimension of the matrix V .

Proof. We denote ST : =
∑
i∈T Xi. Fix θ > 0, define ψ(t) = eθt − θt − 1, and use the Laplace

matrix transform method (e.g., Proposition 7.4.1 in [41]) to obtain

P {λmax(ST ) > t} 6
1

ψ(t)
E trψ(ST )

=
1

eθt − θt− 1
E tr

(
eθST − I

)
,

and the last equality holds due to the fact that EST = mEXI = 0. Let T ′ = {i1, . . . , im} be
a subset of {1, . . . , n}, drawn uniformly at random with replacement. In particular, the indices of
T ′ are independent random variables, and so are the matrices {Xij}mj=1. Write ST ′ : =

∑m
j=1Xij .

Gross and Nesme [19] have shown that for any θ > 0,

E tr exp (θST ) 6 E tr exp (θST ′) .

As a consequence of Lieb’s inequality (e.g., Lemma 3.4 in [41]), it holds that

E tr exp (θST ′) 6 tr exp

 m∑
j=1

log E eθXij

 = tr exp
(
m log E eθXI

)
.

Thus, it remains to bound E eθXI . By assumption, E[XI ] = 0 and ‖XI‖2 6 K almost surely. Then,
using Lemma 5.4.10 from [42], we get E eθXI � exp

(
g(θ)EX2

I

)
, for any |θ| < 3/K and where

g(θ) = θ2/2
1−|θ|K/3 . By monotonicity of the logarithm,m · logE eθXI � m ·g(θ)EX2

I . By assumption,
EX2

I � V and thus, m · logE eθXI � m · g(θ)V . By monotonicity of the trace exponential, it
follows that tr exp

(
m log E eθXI

)
6 tr exp (mg(θ)V ), and further,

P {λmax(ST ) > t} 6
1

eθt − θt− 1
tr
(
emg(θ)V − I

)
=

1

eθt − θt− 1
trϕ(mg(θ)V ) ,

where ϕ(a) = ea − 1. The function ϕ is convex, and the matrix mg(θ)V is positive semidefinite.
Therefore, we can apply Lemma 7.5.1 from [41] and obtain

trϕ(mg(θ)V ) 6 de · ϕ(mg(θ) ‖V ‖2) 6 de · emg(θ) ‖V ‖2 ,

which further implies that

P {λmax(ST ) > t} 6 de ·
eθt

eθt − θt− 1
· e−θt+mg(θ)·‖V ‖2 6 de ·

(
1 +

3

θ2t2

)
· e−θt+mg(θ)·‖V ‖2 .

For the last inequality, we used the fact that ea

ea−a−1 = 1 + 1+a
ea−a−1 6 1 + 3

a2 for all a > 0. Picking
θ = t/(m ‖V ‖2 +Kt/3), we obtain

P {λmax(ST ) > t} 6 de ·
(

1 + 3 · (m‖V ‖2 +Kt/3)2

t4

)
· exp

(
− t2/2

m‖V ‖2 +Kt/3

)
.
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Under the assumption t >
√
m‖V ‖2 +K/3, the parenthesis in the above right-hand side is bounded

by four, which results in

P {λmax(ST ) > t} 6 4 · de · exp

(
− t2/2

m‖V ‖2 +Kt/3

)
.

Repeating the argument for −ST and combining the two bounds, we obtain the claimed result.

C.3.1 Proof of Theorem 4

We write vj : =
√

n
m wj , where wj = e>j Hdiag(ε)UD̄, and ε ∈ {±1}n is a fixed vector. We denote

γ : = max

{
max

j=1,...,n
‖vj‖, m−

1
2

}
and Xi : = viv

>
i −

1

m
D̄2 .

Let I be a uniformly random index over {1, . . . , n}. We have

E[XI ] =
n

m
E[wIw

>
I ]− 1

m
D̄2 =

n

m

(
1

n

n∑
i=1

D̄U>diag(ε)Heie
>
i Hdiag(ε)UD̄

)
− 1

m
D̄2

=
1

m
D̄U>diag(ε)H

n∑
i=1

eie
>
i︸ ︷︷ ︸

=I

Hdiag(ε)UD̄ − 1

m
D̄2

= 0 .

The last equality holds due to the fact thatH2 = I , diag(ε)2 = I and U>U = I . Further, ‖vI‖2 6 γ2

a.s., so that ‖vI‖2vIv>I � γ2vIv
>
I a.s., and consequently, E

[
‖vI‖2vIv>I

]
� γ2 · E[vIv

>
I ]. Thus,

E
[
X2
I

]
= E

[
‖vI‖2vIv>I

]
− 2

m
D̄4 +

1

m2
D̄4

6
γ2

m
D̄2 − 2

m2
D̄4 +

1

m2
D̄4

= γ2 · 1

m
D̄2 − 1

m2
D̄4

� γ2

m
D̄2 .

The first inequality holds due to the fact that E
[
vIv
>
I

]
= m−1D̄2. Further, we have

‖XI‖ = ‖vIv>I −
1

m
D̄2‖ 6 max

{
max

j=1,...,n
‖vj‖2,m−1

}
= γ2 .

Let T be a subset of m indices in {1, . . . , n} drawn uniformly at random, without replacement.
Applying Theorem 10 with V = m−1γ2D̄2 and using the scale invariance of the effective dimension,
we obtain that for any t > γ + γ2/3,

P

{∥∥∥∑
i∈T

Xi

∥∥∥
2
> t

}
6 8de · exp

(
− t2/2

γ2(1 + t/3)

)
.

Suppose now that ε is a vector of independent Rademacher variables. Note that
∑
i∈T Xi

d
=

D̄U>(S>S − I)UD̄. From Lemma 5, we know that γ 6 σ : =
√

de
m +

√
8 log(den)

m with probability

at least 1 − d−1
e . Consequently, with probability at least 1 − d−1

e − 8de · exp
(
− t2/2
σ2(1+t/3)

)
, for

t > σ (1 + σ/3) we have ∥∥∥D̄U>(S>S − I)UD̄
∥∥∥

2
6 t . (27)
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We set t = σ
√

8/3 log de, and ρ = de log(de)C(n,de)
m where C(n, de) = 16

3

(
1 +

√
8 log(den)

de

)2

. We

choose m large enough so that ρ 6
(

1− (8/3 log de)
− 1

2

)2

. Then, we get that

P
{∥∥∥DU>(S>S − I)UD

∥∥∥
2
> ‖D‖22 ·

√
ρ
}

6
9

de
,

which is the claimed result.

D Proofs of auxiliary results

D.1 Proof of Lemma 1

Let {xt} be a sequence of iterates. Let U ΣV
>

be a singular value decomposition of A. Denote

S =

[
S 0
0 Id

]
, so that HS = (SA)>SA+ ν2Id = (S A)>(S A).

We have that gt = A
>
A(xt − x∗) and thus,

g>t H
−1
S gt = 〈A>A(xt − x∗), (A

>
S
>
S A)−1A

>
A(xt − x∗)〉

= 〈A(xt − x∗), A(A
>
S
>
S A)−1A

>
A(xt − x∗)〉

= 〈A(xt − x∗), U ΣV
>

(V ΣU
>
S
>
S U ΣV

>
)−1V ΣU

>
A(xt − x∗)〉

= 〈A(xt − x∗), U(U
>
S
>
S U)−1U

>
A(xt − x∗)〉

= 〈U>A(xt − x∗), (U
>
S
>
S U)−1U

>
A(xt − x∗)〉 .

Observing that U
>
S
>
S U = CS , it follows that 1

2 g
>
t H

−1
S gt = 1

2‖C
− 1

2

S U
>
A(xt − x∗)‖2 = rt,

which concludes the proof.

D.2 Proof of Lemma 2

Fix ρ 6 0.18 and η 6 0.01. Let a > 1 be some numerical constant, and assume that the event Eρ/a,η
holds. Then, we have that√

cgd(ρ/a, η) =
2√
a

√
ρcη

1 +
ρcη
a

,

√
σmax(CS)

σmin(CS)
6

√
a+
√
ρcη√

a−√ρcη
.

Using that√ρcη 6
√

0.18 · 1.32 6 0.56 and ρcη 6 0.31, we obtain that√
cgd(ρ/a, η) ·

√
σmax(CS)

σmin(CS)
6

1√
a

1 + ρcη
1 +

ρcη
a

√
a+
√
ρcη√

a−√ρcη
·
√
cgd(ρ, η)

6
1.31√
a
·
√
a+ 0.56√
a− 0.56

·
√
cgd(ρ, η) .

The function g : x 7→ 1.31√
x
·
√
x+0.56√
x−0.56

is decreasing on (0.562,+∞) and g(5) 6 1. Thus, for any
a > 5, it holds that

cgd(ρ/a, η) · σmax(CS)

σmin(CS)
6 cgd(ρ, η) ,

and this concludes the proof.

D.3 Proof of Lemma 3

By definition, we have on the event Eρ/aρ that

λρ/aρ 6 σmin(CS) 6 σmax(CS) 6 Λρ/aρ ,
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where λρ/aρ = 1−
√

ρ
aρ

and Λρ/aρ = 1 +
√

ρ
aρ

, and aρ =
1+
√
ρ

1−√ρ . It follows that

σmax(CS)

σmin(CS)
6

1 +
√

ρ
aρ

1−
√

ρ
aρ

=

√
aρ +

√
ρ

√
aρ −

√
ρ
.

The function x 7→ x+
√
ρ

x−√ρ is decreasing on [1,+∞). Since aρ > 1, it follows that f(aρ) < f(1), i.e.,
√
aρ+
√
ρ

√
aρ−
√
ρ <

1+
√
ρ

1−√ρ , i.e.,
√
aρ+
√
ρ

√
aρ−
√
ρ < aρ, which yields that

σmax(CS)

σmin(CS)
6 aρ .

Regarding the second statement of Lemma 3, a simple calculation yields that cgd(ρ′) = ρ′ for any
ρ′ ∈ (0, 1). This further implies that cgd(ρ/aρ) = ρ

aρ
=

cgd(ρ)
aρ

, which concludes the proof.
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