A Additional results

A.1 Numerical experiments with synthetic datasets

Here, we consider a synthetic dataset with A having exponential spectral decay o; = 0.957 for
j =1,...,d. The observation vector is generated as follows, b = Az + 1, where x;; is a planted

vector with ﬁj\f (0,1) independent entries and 7 is a vector of Gaussian noise ﬁ./\f (0,I,). We

also consider the similar synthetic dataset but with polynomially decaying singular values o; = 1/
for j = 1,...,d. Results are reported in Figure[3]
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Figure 3: Exponential and polynomial spectral decays: comparison of CG, pCG, Algorithm [I]
and a variant of Algorithm [I] which only computes gradient-THS updates. We consider an entire
regularization path v € {107 | 7 = 0,..., —4}. For each algorithm, we start with the largest value
v = 1. For j < 3, we initialize each algorithm at the previous solution Z found for j + 1. For each
value of v, we stop the algorithm once ¢ = 10~1°-precision is met. We observe that pCG is slow at
the beginning due to forming and factoring the m x d sketched matrix S - A with m =~ d. In contrast,
our methods start with m = 1 and the varying sketch size remains much smaller than that of pCG.
This leads to better time and memory space performance, except for the case of Gaussian embeddings
and polynomial decays. In the latter case, our method is slowed down by Gaussian projections which
are expensive. But with the SRHT, our method has the best performance. Each run is averaged over
30 independent trials. Mean standard deviations are reported in the form of error bars.

A.2 The underdetermined case n < d

A dual of the problem (T is

* : }7 T2 ZE 2 3T
z" r=argmin< —||A" 2|+ =z =b' 2z ¢ ,
ern |2 2
and one can map the optimal dual solution z* to the primal one using the relationship
zt=AT 2. (13)

The dual problem fits into the primal overdetermined framework we consider in the main body of this
manuscript. Indeed, we have that

. . 1 ~ V2
2" = argmin {g(z) i= §||AT2 —b|]* + 2||z||2} ; (14)
z€R™

where b = Afb and Af is the pseudo-inverse of A. One might wonder whether b needs to be
computed in order to apply the previous framework to the dual overdetermined case: this is not
the case. Indeed, in Algorithm|I] the observation vector b only appears in the gradient formula, as
Vf(z¢) = AT (Az; — b). For the dual problem (T4), we have

Vg(z) = A(A 2z —b) = AAT 2 —b.
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That is, the gradient is easily computed and Algorithm [T]can be applied to the dual problem (14)
with the exact same guarantees for the sketch size and the number of rejected steps as in Theorems [3]
and [6] while having guarantees on the error

1 . v? .
€ 1= §|\AT(Zt - 2P+ 7||Zt - 2*|?,

Using the map x; = A" z, the notation &, = L[| A(z; — 2*)[|2 + % ||z, — «*||? and assuming that
20 = 0 so that ¢g = f(z*)/v?, we obtain with Algorithmthat et < pleg, and consequently

1 £\ ]2 v? w2 L T N V2 T N
SIAGe —2)1° + o llee — 277 = S|AA " (20 — 2917 + -4 (2 — 27)|
2 2 2 2

o1(A)? g

N

Thus, the total number of iterations to reach e-relative accuracy for x; becomes

 (log(1/2) + log(o1 (A)2/?) + log(f(a*)/60)
r=0 ( log(1/7) > |

Under the hypothesis € < ;27257 of Theorem and the additional hypothesis %0*) < e 1, this

number of iterations scales as

T = O (log(1/¢)/log(1/p)) -

Consequently, we obtain the same total computational complexity (both in time and space) as stated
in Theorem 7]to reach an approximate solution x; with e-relative accuracy.

B Proof of main results

B.1 Proof of Theorems[Iland

We denote by A = ULV T a singular value decomposition of the matrix A, where U = [uy, . .., uq] €
R™*4 has orthonormal columns, V' = [v1,...,v4] € R?*9 has orthonormal columns, and ¥ =
diag(o1,...,04), withoy > ... 2 04 > 0.

We denote D = diag (\/0‘721”2 e \/0‘2‘1”2), D’ = diag (\/a;:ru? e \/0;’+V2>, and further,
1 d 1 d

[7::[‘(/{5,}, i::diag(\/ofﬁ—u?,...,g/ag—&—zﬁ).

Note that A = UXV . Indeed,
~a, T |UDESVT [ uxvT o] [ A
sV = |:VD/EVT:| - |:VY(VId)‘/v—r 72 Al

Further, the columns of U are orthonormal, and the matrix s diagonal with non-negative entries,
so that UXV' T is a singular value decomposition of A.

Given an embedding S € R™*", denote by S the (m +d) x (n + d) block-diagonal matrix {g 1% ] .
Denote b = [8} . We have that ATSTSA = ATSTSA + v2I; = Hg. Consequently, given a step
size ;1 € R and a momentum parameter 5 € R, the update formula () of the Polyak-IHS method can
be equivalently written as

Ty = Ty — M(ATSTSA)_lﬁT(Axt —b) + Bz —x4-1) - (15)
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Multiplying the update formula (T3) by U T A, subtracting U " Az*, using the normal equation
ATh= AT Az* and using the notation ¢; : = U " A(z; — x*), we obtain that

€t41 = € — ,LLUTA(ATSTSA)ilATUGt + ﬁ(et - et_l)
= (I — M(UTSTgﬁ)_l) er + Bler —erq).
Further, unrolling the expression U ' ST SU = D(UTSTSU — I;)D + I; = Cs, we find the error

recursion

€t Id +—

e el e

c= M ()
B.1.1 Gradient-IHS method
For the gradient-IHS method, we have that 8 = 0 so that the dynamics simplifies to
err1 = (Ig — uCSTl)et .
Using the fact that §; = 1||e;|?, we obtain that for any ¢ > 0,

01
Ot

The eigenvalues of the matrix I; — uCy ! are given by 1 — A/ﬁ where the v;’s are the eigenvalues of
Cs indexed in non-increasing order. Then,

< g —pCgtl3.

1 = 05 e =max {1 - £ - 214
B! Yd
If A\, A > 0 are two real numbers such that A < 74 < 71 < A, then it holds that for any g > 0,

1 M { 1 u}
max<4 |l — —[,|[1——| <max<|1l——|,[1—=]|¢ .
fir- L= 2} <max{in- 104

Picking p = 2/(5 + ) yields that
A=)
I, — uC3te < [ —=
- u0s'le < (553
which is the result claimed in Theorem[I]

B.1.2 Polyak-IHS method

2 we immediately find by recursion that

Using (T6) and the fact that §; = 1||e;

(5t+1 + 0,
01+ do

From Gelfand formula, we obtain that

N o

)t < 1M (u, BY'|

lim sup (&5) ! < p(M(p, 5))2,

t—o0 50

where p(M (p, 8)) is the spectral radiusﬂ of the matrix M (i, 3). Let Cs = TAT T be an eigenvalue
decomposition of the positive definite matrix C's — where A = diag(v1,...,7q4) andy; > ...74 >0
—, and define the (2d) x (2d) permutation matrix IT as

1ifiodd, j=1
I;; =<1 ifieven, j=n+1
0 otherwise

“The spectral radius of a complex-valued matrix is the largest module of its complex eigenvalues.
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Then, it holds that

1,
HE % M(“’B)[g %HT_ : 2 S
0 0 ... Miup)

—1
where M;(u, B) = [1 +5 I HY; _06} . That is, M (1, 8) is similar to the block diagonal matrix

with 2 x 2 diagonal blocks M;(u, 3). To compute the eigenvalues of M (u, 3), it suffices to compute
the eigenvalues of all of the M;(u, 3). For fixed 4, the eigenvalues of the 2 x 2 matrix are roots
of the equation u? — (1 + 8 — pu/vi)u + B = 0. In the case that 1 > 8 > (1 — \/u/v:)?, the
roots of the characteristics equations are imaginary, and both have magnitude /8. Pick p = p* :
VAV ) ~
=4/(1/VA+1/VN)?and B = B* : = <ﬁ+ﬁ) , where A\, A > 0 are respectively any lower
and upper bounds of 74 and ;. Then, we have that 8 > (1 — \/p/7;)? foralli = 1,...,d, so that
p(M(u, B)) < +/B, and this yields the claimed result. O

B.2 Proof of Theorem 3

We introduce the notationm = 5 - %.
Either the sketch size always remains smaller than 7, which is equivalent to

log (7M/ Minitia )

log(2)
in which case the statements (7)) and (8) of Theorem [5|on the sketch size and the number of rejected
steps hold almost surely.

K < A7)

Otherwise, suppose that for some iteration ¢ > 1, we have m > . Lett > 1 be the first such

iteration, so that m < 2m and K < W + 1.

Denote S the sketching matrix sampled at time #. Let ), /5m and A, /5 ) be the bounds as given in
Definition [3.1](where p is replaced by p/5), and consider the event

gp/5 = {>\p/5,n < Umin(CS) < Umax(CS) < Ap/S,n} ) (18)
which, according to Theorem and the fact that 7 > 77, holds with probability at least 1 — 8¢~%"/2,

We assume, from now on, that the event £, /5 holds. Lett > t be any time such that between ¢ and
t, all updates were accepted (either Polyak- or gradient-IHS), so that the sketch size and sketching
matrix are still the same. We claim that it suffices to prove that the gradient-IHS update at time t is
accepted.

Denote z; the current iterate, &, = 3||A(z; — 2*)||> and r, = %HC’S_éﬁTZ(xt — z%)||%. Let

x;] be the gradient-IHS update of Algorithm and denote §1 : = %HZ(:U;I —z*)|*and 7+ : =
I

3ICg 2 UTA(JL‘;j — 2%)||%. Recall from Lemma |1|that 7, and 7F are also the sketched Newton

decrements at x; and z ™, so that the gradient-IHS improvement ratio computed in Algorithm is

equal to %

We need the following technical result whose proof is deferred to Appendix [D.2]

Lemma 2. Suppose that p < 0.18 and 7 < 0.01. Then, on the event Sp/5, it holds that

Umax(CS)
. 5.1) < ). 19
ooin(Cs) cga(p/5,m) < ca(p,n) 19)
We have that
5t Tmin(Cs)
— <c¢ 9,m) < —— =5 Culpsm),
5 ) ed(p/5,m) &) Tmax(Cs) VX))
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st

where inequality (i) follows from Theorem and, inequality (ii) from Lemma Using 7+ < o C5)

and r; > %, it follows that

rt Umax(CS) 6t
T T8 0 o).
Tt Umin(CS) 6t ng(p 77)

. . . . . +
Consequently, the gradient-IHS update xgj verifies the improvement criterion % < cod(p,m), and
the update x;d is not rejected.

In summary, as soon as m > T and provided that £, /5 holds, future updates are not rejected. This
holds with probability at least 1 — 8¢~%"/2 which concludes the proof of the statements (7)) and
on the sketch size and the number of rejected steps.

We turn to showing statement (). Fix any iteration ¢ > 1. By construction of Algorithm [} it holds
almost surely that
r

t _ _ _
oS max{cea(p,n) ", cp(p, )"} = cealp,m)' T

Denoting by S the sketching matrix at time ¢, and using that §; < omax(Cs)-r¢ and d1 = omin(Cls, )
r1, it follows that
] max C max C _
% ¢ omnlCs) 11 Tmn(Cs)_ ceaa(pm)' T
o1 Omin(Cpiga)  T1 Tiin(C Siniia)

On the one hand, according to Theorem 3} we have that

V2 o? d
Tmax (Cs) < + = '<1+\/(1+3\/?1)2 )

2

2 2
o] + V2 o] + V2 Minitial

with probability at least 1 — 8¢~"%/2, Using that < 0.01, (1 + 3,/7) < 3/2and (1 + 1/%)2 <

4 max{1, -4}, we obtain

7 Minitial
2 2
v oy de
omax(Cg) <9 maxq1 .
mer(Cs) < of +v? ot +v? t 7mininal}
On the other hand, it holds almost surely that
2 v?
Umin(CSinmal) >1- ||D||2 = O’% L2

Combining the latter inequalities, it holds with probability at least 1 — 8e~%"/2 that

5t O'% de t—1
e < 9 1 5 17 9 a )
01 ( - p2 ) Minitial ealp:m)

which concludes the proof.

B.3 Proof of Theorem [6]

The proof for the SRHT follows steps similar to the Gaussian case. We introduce the notation

d. log(d,

m=a,- C(n,de)w, (20)
p

145

—vp

Either the sketch size always remains smaller than 772. The latter is equivalent to

and we recall that a,, : =

log (72 / Minitia1)

K < )
log(2)

21
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in which case the statements (I0) and (TT)) of Theorem[f]on the sketch size and the number of rejected
steps hold almost surely.

Otherwise, suppose that for some iteration ¢ > 1, we have m > m. Lett > 1 be the first such
iteration, so that m < 2m and K < bg(l";g/ig)“‘) + 1.

. . . i . P P P
Denote S the sketching matrix sampled at time ¢. Define A, /,, :=1— | /o and A, q, =1+ @y

and consider the event
5p/a,, = {Ap/ap < Umin(CS) < Umax(CS) < Ap/a,,} ) (22)

which, according to Theoremand the fact that m > m, holds with probability at least 1 — %.

We assume, from now on, that the event £ o/a, holds. Let ¢ > ¢ be any time such that between ¢ and
t, all updates were accepted (either Polyak- or gradient-IHS), so that the sketch size and sketching
matrix are the same. We claim that it suffices to prove that the gradient-IHS update at time t is
accepted.

— 1l __ T
Denote z; the current iterate, &, = 3| A(z; — *)||> and r; = | Cq 2T Az, — 2°)|% Let
a3y be the gradient-THS update of Algorithm |1} and denote 6 : = §[|A(zj; — 2*)|* and r* : =

1T
Cg2U A(x;:j — 2*)||%. Recall from Lemma |1/ that r, and r* are also the sketched Newton
decrements at x; and 27, so that the gradient-THS improvement ratio computed in Algorithm 1]is
+
equal to %

We need the following technical result whose proof is deferred to Appendix [D.3]

Lemma 3. On the event £, ,,, it holds that % < a, and cea(p/a,) = %

‘We have that

o+ cea(p)
= < C, a = g )
O () silp/ap) (i) ap

where inequality (i) follows from Theorem[I} and, equality (ii) from the second part of Lemma 3]
Using r* < #JFCS) and r; > %, it follows that

i < Umax(CS) 5t < Umax(CS’) ) ng(P) <a ng(P)

X X B . = Cq 5
Tt O'min(CS) 5t gmin(OS) ap (2) r Gp &d(p)

where inequality (i) follows from the first part of Lemma[3] Consequently, the gradient-IHS update
x;j verifies the improvement criterion % < ¢gd(p), and the update 3:;1 is not rejected.

In summary, as soon as m > and provided that £, , holds, future updates are not rejected. This
holds with probability at least 1 — -, which concludes the proof of the statements and on
the sketch size and the number of rejected steps.

We turn to showing statement (12)). Fix any iteration ¢ > 1. By construction of Algorithm I] it holds
almost surely that

T

t — — _
2 < max{ea(p)' (o)} = culp)'

Denoting by S the sketching matrix at time ¢, and using that §; < omax(Cs) 7+ and 61 = omin(Cs,y )
r1, it follows that

é < Umax(CS) . E < Umax(CS)
1 A Umin(CSinmal) 1 A Umin(csinilial

) ’ ng(p)til .

17



On the one hand, it holds almost surely that

omx(Cs) = sup ||z|% 4+ (Dz, (UTSTSU — I;)Dx)

[lz]|2=1

<1+ sup (z,(UTSTSU — Iy)z)

(%) lz]l2<1

<1+ sup (z,UTSTSUz)
llzll2<1

< 2,

(@)
where inequality (i) follows from the fact that || D||2 < 1, and inequality (ii) from the fact that SU is
a partial orthogonal matrix so that || SU||2 < 1. On the other hand, it holds almost surely that

2

w(Cs VY>1—|D|2 = ———s.
Tmin(Cspa) = DII2 Py

Combining the latter inequalities, it holds almost surely that
O g % t—1
Lo <1+U2 caa(p) L

which concludes the proof.

B.4 Proof of Theorem/[7]

According to Theorem |6} we have with probability at least 1 — d% that over an entire trajectory, the
sketch size and the number of rejected steps satisfy

m = O(delogde/p), K = O(log(de/p))-
From now on, we assume that the above event holds.

Then, forming the sketched matrix SA costs at most O(ndlogd,) at any iteration. Using the
Woodbury matrix identity, the inverse of Hg verifies

Hy' = (SA)TSA+121,) " = % (Io — (SA)T (V21 + SA(SA)T)"1SA) .

To reduce the complexity of solving at each iteration the linear system Hg - z = V f(x¢), one
can simply compute and cache a factorization of the matrix (v2I,,, + SA(SA)T) which takes time

d? log?d, . d? log?d,.
(’)(CTCZ). Consequently, the total sketching and factor costs scale as O(log(d./p) - (==—s—<d +

ndlog(de/p))). ’

The per-iteration cost is that of computing the matrix-vector products Az; and AT (Az; — b), which
is given by O(nd). Note that the other main numerical operation consists in solving the linear
system Hg - z = V f(z;). Using the cached factorization of the matrix (v*1,,, + SA(SA)T) and
the Woodbury identity, this linear system can be solved in time O(%d), which is negligible
compared to O(nd).

According to Theorem [6] we have almost surely that over an entire trajectory,

Ott1 g % t

<24 D) culo)

A simple calculation yields that ceq(p) = p. Therefore, a sufficient number of iterations 7" to reach
an e-accurate solution is exactly given by

T log 2 + log(1 + ;’—i) + log(1/e)
log(1/p)
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2 .
For ¢ < min{ﬁ, 1/2}, this reduces to

Thus, we obtain the total time complexity

- = 0 (tog(de/p) - (25 a4 naton(a. /) + na 2

which is the claimed result.

C Proofs of concentration inequalities

C.1 Gaussian concentration over ellipsoids — Proof of Theorem 3]

Letp > 0and m > %. Let S € R™*" be a random matrix with i.i.d. entries A'(0,1/m). We aim to
control the quantities

y1 = sup 14 (z,D(U"STSU — I;)Dx)

llzll=1

¢ = inf 14 (z,D(UTSTSU - 1;)Dz).

llzll=1

Upper bound on the largest eigenvalue ~;

We introduce the re-scaled matrix D = ”5”2, so that || D||% = d. and || D|2 = 1. We have that

-1 _ 1 - 1 _ _
n 4 sup (x, D(—G"G — I)Dz) = sup —|GDz|* — || Dz|?

D3 jzy=1 m lle)=1 M

2
= Zsup sup u' Gz +(u, z),
m zeC ueR™
where we introduced the random matrix G € R™*< with i.i.d. Gaussian entries A(0, 1) and the
first equality holds since SU 4 ﬁG. We also used the notations C = {Dz | ||lz|| =1} and
¥(u,z) 1= —1(||lul|* + m[|z]|*). We introduce the auxiliary random variable

2
Y= sup sup [zllg"u+ lulhz+(u,z),
m reC uerRm

where g € R™ and h € R? are random vectors with i.i.d. entries A'(0, 1). Using Theorem E] (see
Appendix [C.I.1)), it holds that for any ¢ € R,

1
1}»(71 . >c> <2P(Y >¢). (23)
1Dl

Consequently, it suffices to control the upper tail of Y in order to control that of ~;. First, we recall a
few basic facts on the concentration of Gaussian random vectors (see, for instance, Theorems 3.1.1
and 6.3.2 in [42]). That is, for any > 0, the following event holds with probability at least
1 — 4e=men/2,

Ey = {lllgll = vml < vmnp, — lgll® =m| <mymp, DAl < mp(1+ i)},
(24)
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On the event &,, we have

2 1 m
Y = =sup sup [|lzlg"u+ [lullhTz = Slul® = Z-[|=]?
m zeC ueRm 2 2

(i) 2 1 m
= —supsup t|z||lg] +th"z — St* — |2
m zeC t>0 2 2

(i) 2 1 m
< —supsup (|2 +1RT2]) — =2 — — 2|1
= supsup (2] g + |17 2]) — 5~ ]

@2 el e LT
< —sup—— —m|+ =|hTz? z h'z
m S gl |+ 5lh 2"+ =llgll[h 2]
(iv) 92 2 _ 1
< 7sup|HgH m‘ +*‘hTZ|2+HgH|hTZ|
m zec 2 2

v Z— Dh||?>  2||Dh
@ [gl® =m| [IDRIZ 2] DAlllgll
m m m

oL ) 2L+ (L )
= (L AL+ BYA) +2y/B(1+ 5 Vi)
< (14 vpe,) - 1,

where ¢, := (1 + 3,/1)% In equality (i), we used the fact that for a vector u with fixed norm
|lu|| = t, the maximum of g u is equal to ||g||t. In inequality (ii), we bounded A"z by |h' 2|
and then relaxed the constraint £ > 0 to ¢t € R. In inequality (iii), we plugged-in the value of the
maximizer t* = ||z||[|g|| + | " z|. In inequality (iv), we used the fact that for z € C, ||z|| < 1. In
(v), we used the fact that sup, ¢ |h " 2| = ||Dh||. In (vi), we used that, on the event &,, we have

Mﬂ < /mm, |Dh| < /mp(1+ /) and ||g|| < v/m(1 + /7p). Consequently, we have that

~1
]1D||2 > (14 /pey)? — 1| <2P[Y > (1+ /pey)® — 1]
2

<2(1-PlE,)
<8- e—mpn/2’

which is the claimed upper bound (6)) on ;.

Controlling the smallest eigenvalue ~,

Here we assume that p € (0,0.18] and 5 € (0,0.01]. We make this assumption in order to provide
explicit and simple statements.

We consider the same definitions D, C, ¢ and &, introduced in the proof of the upper bound on ;.
We have that

Yd -1 d _ 1 T _ ) 1 B ) B )
——— = inf (x,D(—G G —1)Dz) = inf —||GDz|* — || Dz
1Dl it PG )Da) = inf | GD? ~ | Da

2
= —inf sup u' Gz +Y(u,z).
m z€C ycrm

We introduce the auxiliary random variable
2 .
Y := = inf sup |z|lg"u+ |Jullh" 2+ ¥(u, 2),
m zeC ueR™

where ¢ € R™ and h € R? are random vectors with i.i.d. entries NV'(0,1). Using Theorem II.1
from [39], it holds that for any ¢ € R,

Ya—1
D13

P( <e)<L2P(Y <¢). (25)
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Consequently, it suffices to control the lower tail of Y in order to control that of ~,4. It holds that

2 1 m
Y =" inf s T h'z— <[l = 5 ||z
o int sup [l2llg T+ ull T gl = el
2 if sup t]|zfllgl + tR Tz — 262 — 2|2
= — 1nI su z Zz — — — —||Z
szCt>Ig g 2 2

_ [l it gl T <0
L2 (g2 = m) + P25 4 22 1g]|(AT 2),  otherwise.
Define
Y, := inf —l2|1?,

z€C;
I=llllgll+hT =<0

1212

TZQ
EIE gy - my 4+ 820

Y := inf
zeC
I=llgll+hT2>0
so that Y = min{Y7, Y5}. For any z € C, it holds that h " 2 > —|| Dh/|, and consequently
|.DR|1?

lgll®

2 T
+ = lzllglhT2),

iz inf —fz]? > -
2€C;
llzlllgll <[ DAl
Hence, conditional on the event &,, we have
1+
Yi2 p( i )
1—/pn

On the other hand, we have

1 . (hT2)2 2
n>—wﬁ—m+mﬁ—mm%|
m zeC m m

1 (Dh,z)?* 2 _
—|mP—m+%mf{—wmwmw}
1 2 ) t2
[ R S Ly P
m o<t<||Dhl|

where, in the first inequality, we relaxed the constraint set by removing the constraint ||z|||g||+h Tz >
0 and we used the fact that ||z|| < 1. In the second inequality, we used the change of variable z = Dz
with ||z|| = 1. In the third inequality, we used the fact that |(Dh, z}| < ||Dh|| and used the change
of variable |(Dh, x)| =t with t € [0, || Dhl|]. On the event &,, it follows that

Y2 2 p(1 =) = 2/5(1+ 3vA)
> (14 3y~ 2V7(1 + 3v7)

=(1-ep)® -1,

One can verify that inequality (i) is equivalent to /p < ﬁ which always holds under the

assumption that p < 0.18 and n < 0.01. Then, combining the respective lower bounds on Y; and Y3,

we obtain that
: 1+ﬁ)2 )
Y > min —p( , (1= /epp)® —1
{ 1_\/ﬁ !

> (1—/ep)® -1,

One can verify that the last inequality is equivalent to
2(1+3
P (1+3ym)

(1432 + (122 )
which always holds the assumption that p < 0.18 and < 0.01.

Thus, we have proved the claimed lower bound on ;.
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C.1.1 A new Gaussian comparison inequality

We start with the following well-known comparison inequality, which was first derived in [17].
Theorem 8 (Gordon’s Gaussian comparison theorem). Let I, J € N*, and {X;;}, {Y;;} be two
centered Gaussian processed indexed on I x J, such that for any i, € [ with¢ # [ and j, k € J,
]Eij = EYE
EX;; Xk = EY;; Y
EX;; X <EY;Y.
Then, for any {\;;} € RI*/, we have

I J

I J
PO UMzl | =P UXi =N
i=1 j=1

i=1 j=1

Our next result is a consequence of Gordon’s comparison inequality, and appears to be new. More
specifically, it can be seen as a variant of the Sudakov-Fernique’s inequality (see, for instance,
Theorem 7.2.11 in [42]).

Theorem 9. Let S; C R™ and S2 C R™ be non-empty sets, and ¢ : S X S2 — R be a continuous
function. Then, for any c € R,

Pl sup y' Gz+o(xy >c| <2P[ sup |azllg'y+ylhTz+y(z,y) =c),
(z,y)€S1 X% S2 (z,y)€S1XxS2

Proof. The proof relies on several intermediate results, and is deferred to Section|C.1.2] O

Lemmad4. Let G € R™*", Z € R, g € R™ and h € R"™ have independent standard Gaussian
entries. Let [y C R™ and 1o C R™ be finite sets, and ¢ be a function defined over I; x I. Then, for
any ¢ € R, we have

(z,y)€l1 X1

P (o, o7Go+ Zlalll + (o) > ¢) <P max elsTy Il o) > <)
2

(z,y)€I1 X

Proof. We introduce two Gaussian processes X and Y indexed over I; X I, defined as
Xoy = llzllg"y + llyllhTa, Yoy =y Gz + Z|z|lyll,

for all (x,y) € I x I. It holds that EX,,,, = EY,,, = 0, EX?, = 2||z[]*[|y||* = EY;?,, and

E[ Xy Xory] = lzllllzl v "y + Nyl 2",

E[YeyYary] = | &' 1yl Iyl + 272"y "y
Consequently, we have

E[YayYory] = E[Xay Xory] = (] |2/ = 2 "2") (lull 19" =y "y")
>0.

Therefore, applying Gordon’s comparison theorem with [ = I; X I3, J being any finite set, and
Azy = P(x,y) — ¢, we obtain that

P( min yTGx+Z||x|||y||—w<x,y>>—c)>P( i ||x|gTy+||y||th—w<x,y>>—c>.

(z,y)el1 xI3 (z,y)€l1 X1

Using the symmetry of the Gaussian distribution, it follows that

P, g oGt Zlallol + wios) <) = B max felsTy + Il + 0t0) < c)
2

(z,y)€l1 X 12 (z,y)E€

and consequently,

/

P( i yTGx+Z||x|||y||+w<x,y>>c)<P( i ||sc||gTy+||yth+w<x,y>>c),

(zy)eli X I2 (z,y)elh X Iz

O
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Corollary 1. Let S; C R™ and S3 C R™ be non-empty sets, and ¢ : S; x Ss — R be a continuous
function. Then, for any c € R,

Pl sup  y' Gz+Z|zlllly| +¥(z.y) =c) <P sup zlg"y+yllh"z+v(z,y) >c]|,
(w,y)esl X So (x,y)eSl><82

Proof. According to Lemmafd] the result is true if S7 and S5 are finite. By monotone convergence, it
is immediate to extend it to countable sets. By density arguments and monotone convergence, it also
follows for any sets S and Ss. O]

C.1.2 Proof of Theorem[9]

We define f1(z,y) = y' Gz +(z,y) and fa(x,y) =y Gz + Z||z|||lyll + ¢ (z,y). If Z > 0, then
fl < f2 and Supy 4 fl(xa y) < SUPg 4 fz(x,y) Thus,

P sup  fi(z,y)=e, Z>0] <P sup  fa(z,y) = c] .
(z,y)€S51 % S2 (z,y)€S51 %S>
From Corollary [I] we know that
P sup  folwy)>c| <P|  sup zllgy+yllh"e +o(zy) >c) .
(z,y)€S1xS2 (2,y)E€S1 xS
Consequently, using the independence of f; and Z, we get

1
2P< sSup fl(m>y)>c> :]P)( Sup fl(xay>>c7 Z>O>
(z.y

(z,y)€S81xS2 )ES1 X Sa
< P( sup lzllgTy + ylh "z + (x,y) = c) ,
(z,y)€S1 %X S2

which yields the claim. O

C.2 SRHT matrices — matrix deviation inequalities over ellipsoids
C.3 Preliminaries

Let S € R™*™ be a SRHT matrix, that is, S = RHdiag(e) where R is a row-subsampling matrix
of size m x n, H is the normalized Walsh-Hadamard transform of size n x n and ¢ is a vector of n
independent Rademacher variables. We introduce the scaled diagonal matrix D = T 5\2 . Note that

|D|% = d and | D]z = 1.
Lemma 5. Let e; be the j-th vector of the canonical basis in R™. Then,

_ . 1 1
]P{ ‘max_|[|e] Hdiag(e)UD|| > N \/BOg(ﬁn)} <=, (26)
j=1,...,n n n B

Proof. We fix arow index j € {1,...,n}, and define the function
f(x) := ||le] Hdiag(«)UD|| = |z " EUD]|,

where F : = diag(ejTH ). Each entry of F has magnitude n~2. The function f is convex, and its
Lipschitz constant is upper bounded as follows,
_ _ 1
[f(z) = FW)I < Iz —y) "EVD|| < [l =yl | Bll2 V|2 |1 Dl = ﬁllx —yll-
For a Rademacher vector ¢, we have
de

Ef(e) < VEf(e)* = [EUD|r < [|EU2ID]lr =/
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Applying Lipschitz concentration results for Rademacher variables, we obtain

P{He;Hdiag(g)Um > \/‘E+ \/Slognw")} < %

Finally, taking a union bound over j € {1,...,n}, we obtain the claimed result. O

Theorem 10 (Matrix Bernstein). Let X = {X7,..., X,,} be a finite set of squared matrices with
dimension d. Fix a dimension m, and suppose that there exists a positive semi-definite matrix V" and
a real number K > 0 such that E[X;] = 0, E[X?] < V, and || X[|2 < K almost surely, where I is
a uniformly random index over {1,...,n}. Let T be a subset of {1, ...,n} with m indices drawn

uniformly at random without replacement. Then, for any t > /m/||V||2 + K/3, we have

P ‘ >t% <8-de-e < £/2 )
(2 = ~X : - X T T S )
2l P TV + Kt/3

where d. : = tr(V)/||V|| is the intrinsic dimension of the matrix V.

Proof. We denote Sp := >, X;. Fix 6 > 0, define 1(t) = €’ — 6t — 1, and use the Laplace
matrix transform method (e.g., Proposition 7.4.1 in [41]) to obtain

P {Amax(ST) >t} < TEUTMST)
1 05
= e"t—et—lEtr(e T—1),
and the last equality holds due to the fact that EST = mEX; = 0. Let T = {i1,...,49m} be
a subset of {1,...,n}, drawn uniformly at random with replacement. In particular, the indices of
T’ are 1ndependent random variables, and so are the matrices { X, }/;. Write S+ : = Z;nzl X

Gross and Nesme [19] have shown that for any 6 > 0,
Etrexp (0S7) < Etrexp (6S7/) .
As a consequence of Lieb’s inequality (e.g., Lemma 3.4 in [41]]), it holds that

Etrexp (6S57/) < trexp Zlog Ee’Xi | = trexp (m log EeeX’) .
j=1
Thus, it remains to bound E /7. By assumption, E[X] = 0 and || X7||2 < K almost surely. Then,
using Lemma 5.4.10 from [42]], we get E e’X7 < exp(g(0) E X7), for any || < 3/K and where
g(0) = W By monotonicity of the logarithm, m -log E e?*7 < m-g(f) E X 2. By assumption,

E X? < V and thus, m - logEe?X7 < m - g(f) V. By monotonicity of the trace exponential, it
follows that trexp (m log Ee’*1) < trexp (m g(0) V), and further,

1 mg(0)V 1
]P){)\max(ST) 2 t} g mtr (6 g( ) 7]) = mtrgp(mg(@) V)7
where p(a) = e* — 1. The function ¢ is convex, and the matrix m g(6) V' is positive semidefinite.
Therefore, we can apply Lemma 7.5.1 from [41]] and obtain
wp(mg(8) V) <de-p(mg(6) |Vll2) < de - em 9@ IWlz

which further implies that

ot

e —0t+m g(6)-| V|| 3 —0t+m g(6)-| V||
IP’{)\max(ST)>t}<de-60t_0t_1~e g 2 < d, - 1+02t2 e g 2,

=14 t% <1+ 3 forall a > 0. Picking

et—a—1

For the last inequality, we used the fact that
0 =t/(m||V|2+ Kt/3), we obtain

(m||V]|2 + Kt/3)? t?/2
> < . . . TN 2o |
P {Amax(S7) >t} < de (1+3 " P\ TV + Kt/3

aal
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Under the assumption ¢ > /m||V||2 + K/3, the parenthesis in the above right-hand side is bounded
by four, which results in

t2/2
P{/\max(ST) 2 t} < 4 de FexP <_7n||‘/||2/+f(t/3> .

Repeating the argument for —S7 and combining the two bounds, we obtain the claimed result. [

C.3.1 Proof of Theorem[

We write v; : = /-~ w;, where w; = e;'—Hdiag(s)UD, and ¢ € {+1}" is a fixed vector. We denote

1 1 -
vi= max{ max ||vjl], m‘?} and X, :=vw, — —D?.
Jj=1,....,n m
Let I be a uniformly random index over {1, ...,n}. We have
Emﬂ:>ﬁmwmﬁy~£ﬁ%:3 lﬁéDUMmg@Heaimmg@UD ~lp
m I m m \n = v m

1 _ n B 1 _
EDWH@@HZ?@%M@@UD—Eﬁ
——
=7

=0.
The last equality holds due to the fact that H? = I, diag(¢)? = I and U " U = I. Further, ||v7||* < 72
a.s., so that ||vr||?v;v] < +?vrv] as., and consequently, E [[|vr||*vrv] | < 4% - E[vsv]]. Thus,

2 _
E [XIQ} =E [HUI||2UIUT] - ED‘I + —

The first inequality holds due to the fact that E [v;v] | = m ™' D?. Further, we have
T 1 2 1 2
[ X7l = llvpy; — —D7[| <max | max |[lo;||,m™" » =77
m j=1,...n

Let T be a subset of m indices in {1,...,n} drawn uniformly at random, without replacement.
Applying Theorem with V' = m~'42D? and using the scale invariance of the effective dimension,
we obtain that for any t > v + ~2/3,

t2/2
P H Xill =2ty <8d- —_—— .
{Z. : } sie- o0 (=i 7))
€T
d

Suppose now that ¢ is a vector of independent Rademacher variables. Note that } ., X; =

DUT(STS—1UD. From Lemma we know that 7 < o= /%= 4 /218U iy probability

at least 1 — d_!. Consequently, with probability at least 1 — d ! — 8d, - exp (—%), for
t > o (1+ 0/3) we have

HDUT@TS—DUDmgt. 27)
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2
We sett = 04/8/3logd., and p = M where C(n, d,) = % (1 + /Slogd(:ie”)) We

2
choose m large enough so that p < (1 — (8/31log de)_%) . Then, we get that

p{HDUT<sTs_1)UDH2 > DI} v} < dg

which is the claimed result. O

D Proofs of auxiliary results
D.1 Proof of Lemmal(d]
Let {x:} be a sequence of iterates. Let USVT be a singular value decomposition of A. Denote

5- [ﬁ 1%] o that Hs = (SA)TSA+ 121, = (SA)T (S A).

We have that g, = 4 A(x; — x*) and thus,
T —T — o sl s 1T — .
g Hg ge=(A Az, —2"),(A S SA)A Az —2"))

= (A(z; —2*),AA' S SA) A Az, — 2*))

= (A(z; —2*),USV (VEU'S' SUSV )" 'WESU' A(x, — 2*))
= (A(z; — ), TT' S SU)T" Az, — 2%))

= (U Az, — 2*), (U §' SU)'U Az, — )>

.

which concludes the proof.

D.2 Proof of Lemma/[2]

Fix p < 0.18 and < 0.01. Let a > 1 be some numerical constant, and assume that the event £,/
holds. Then, we have that

ced(p/a n):l VPl max(C's) \[+\/pT
R e RN

Using that , /pc,, < v0.18 - 1.32 < 0.56 and pcy < 0.31, we obtain that

Umax(CS) ]. ].+an f+\/[7
<

1.31 y/a+0.56
e \‘?_056 cea(psm) -

V24056 4o decreasing on (0.562, +00) and ¢(5) < 1. Thus, for any

VT—0.56

The function g : z +— L \/‘351
> b, it holds that

Omax (C,
ng(ﬂ/a, 77) . O_Ecvj; < ng(p7 77) 3

and this concludes the proof. O

D.3 Proof of Lemma[3]
By definition, we have on the event & o/a, that

)\p/ap Umm(CS) Umax<CS) Ap/ap )
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where A/, =1 —, /£ and A,/q, =1+ ﬁ, and a, = f_r%. It follows that

P
Tmax (Cs) 1+ aw _ \Ap /P

<

Umi“(cs)\l—\/%_\/@—\/ﬁ'

The function  — 222 is decreasing on [1, +00). Since a, > 1, it follows that f(a,) < f(1),i.e.,

T—/p
N RN [T+ L
NI/ < 1=z e NCTEN < a,, which yields that

Umax(CS) a
Umin(CS) e

Regarding the second statement of Lemma a simple calculation yields that ceq(p’) = p’ for any

p' € (0,1). This further implies that coq(p/a,) = £ = °2—(p) which concludes the proof. O

s
ap p
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