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Abstract

The goal of clustering is to group similar objects into meaningful partitions. This
process is well understood when an explicit similarity measure between the objects
is given. However, far less is known when this information is not readily available
and, instead, one only observes ordinal comparisons such as “object i is more simi-
lar to j than to k.” In this paper, we tackle this problem using a two-step procedure:
we estimate a pairwise similarity matrix from the comparisons before using a clus-
tering method based on semi-definite programming (SDP). We theoretically show
that our approach can exactly recover a planted clustering using a near-optimal
number of passive comparisons. We empirically validate our theoretical findings
and demonstrate the good behaviour of our method on real data.

1 Introduction

In clustering, the objective is to group together objects that share the same semantic meaning, that
are similar to each other, into k disjoint partitions. This problem has been extensively studied in the
literature when a measure of similarity between the objects is readily available, for example when
the examples have a Euclidean representation or a graph structure (Shi and Malik, 2000; Arthur and
Vassilvitskii, 2007; von Luxburg, 2007). However, it has attracted less attention when the objects
are difficult to represent in a standard way, for example cars or food. A recent trend to tackle this
problem is to use comparison based learning (Ukkonen, 2017; Emamjomeh-Zadeh and Kempe, 2018)
where, instead of similarities, one only observes comparisons between the examples:
Triplet comparison: Object xi is more similar to object xj than to object xk;
Quadruplet comparison: Objects xi and xj are more similar to each other than objects xk and xl.
There are two ways to obtain these comparisons. On the one hand, one can adaptively query them
from an oracle, for example a crowd. This is the active setting. On the other hand, they can be
directly given, with no way to make new queries. This is the passive setting. In this paper, we study
comparison based learning for clustering using passively obtained triplets and quadruplets.

Comparison based learning mainly stems from the psychometric and crowdsourcing literature (Shep-
ard, 1962; Young, 1987; Stewart et al., 2005) where the importance and robustness of collecting
ordinal information from human subjects has been widely discussed. In recent years, this framework
has attracted an increasing amount of attention in the machine learning community and three main
learning paradigms have emerged. The first one consists in obtaining an Euclidean embedding of
the data that respects the comparisons as much as possible and then applying standard learning
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techniques (Borg and Groenen, 2005; Agarwal et al., 2007; Jamieson and Nowak, 2011; Tamuz et al.,
2011; van der Maaten and Weinberger, 2012; Terada and von Luxburg, 2014; Zhang et al., 2015;
Amid and Ukkonen, 2015; Arias-Castro, 2017). The second paradigm is to directly solve a specific
task from the ordinal comparisons, such as data dimension or density estimation (Kleindessner and
von Luxburg, 2015; Ukkonen et al., 2015), classification and regression (Haghiri et al., 2018), or
clustering (Vikram and Dasgupta, 2016; Ukkonen, 2017; Ghoshdastidar et al., 2019). Finally, the
third paradigm is an intermediate solution where the idea is to learn a similarity or distance function,
as in embedding approaches, but, instead of satisfying the comparisons, the objective is to solve one
or several standard problems such as classification or clustering (Kleindessner and von Luxburg,
2017). In this paper, we focus on this third paradigm and propose two new similarities based on
triplet and quadruplet comparisons respectively. While these new similarities can be used to solve any
machine learning problem, we show that they are provably good for clustering under a well known
planted partitioning framework (Abbe, 2017; Yan et al., 2018; Xu et al., 2020).

Motivation of this work. A key bottleneck in comparison based learning is the overall number of
available comparisons: given n examples, there exist O

(
n3
)

different triplets and O
(
n4
)

different
quadruplets. In practice, it means that, in most applications, obtaining all the comparisons is not
realistic. Instead, most approaches try to use as few comparisons as possible. This problem is relatively
easy when the comparisons can be actively queried and it is known that Ω (n lnn) adaptively selected
comparisons are sufficient for various learning problems (Haghiri et al., 2017; Emamjomeh-Zadeh
and Kempe, 2018; Ghoshdastidar et al., 2019). On the other hand, this problem becomes harder
when the comparisons are passively obtained. The general conclusion in most theoretical results on
learning from passive ordinal comparisons is that, in the worst case, almost all the O

(
n3
)

or O
(
n4
)

comparisons should be observed (Jamieson and Nowak, 2011; Emamjomeh-Zadeh and Kempe, 2018).
The focus of this work is to show that, by carefully handling the passively obtained comparisons,
it is possible to design comparison based approaches that use almost as few comparisons as active
approaches for planted clustering problems.

Near-optimal guarantees for clustering with passive comparisons. In hierarchical clustering,
Emamjomeh-Zadeh and Kempe (2018) showed that constructing a hierarchy that satisfies all compar-
isons in a top-down fashion requires Ω

(
n3
)

passively obtained triplets in the worst case. Similarly,
Ghoshdastidar et al. (2019) considered a planted model and showed that Ω

(
n3.5 lnn

)
passive quadru-

plets suffice to recover the true hierarchy in the data using a bottom-up approach. Since the main
difficulty lies in recovering the small clusters at the bottom of the tree, we believe that this latter
result also holds for standard clustering. In this paper, we consider a planted model for standard
clustering and we show that, when the number of clusters k is constant, Ω

(
n(lnn)2

)
passive triplets

or quadruplets are sufficient for exact recovery.2 This result is comparable to the sufficient number of
active comparisons in most problems, that is Ω (n lnn) (Haghiri et al., 2017; Emamjomeh-Zadeh
and Kempe, 2018). Furthermore, it is near-optimal. Indeed, to cluster an example, it is necessary to
observe it in a comparison at least once as, otherwise, it can only be assigned to a random cluster.
Thus, to cluster n objects, it is necessary to have access to at least Ω (n) comparisons. Finally, to
obtain these results, we study a semi-definite programming (SDP) based clustering method and our
analysis could be of significant interest beyond the comparison based framework.

General noise model for comparison based learning. In comparison based learning, there are two
main sources of noise. First, the observed comparisons can be noisy, that is the observed triplets and
quadruplets are not in line with the underlying similarities. This noise stems, for example, from the
randomness of the answers gathered from a crowd. It is typically modelled by assuming that each
observed comparison is randomly (and independently) flipped (Jain et al., 2016; Emamjomeh-Zadeh
and Kempe, 2018). This is mitigated in the active setting by repeatedly querying each comparison,
but may have a significant impact in the passive setting where a single instance of each comparison
is often observed. Apart from the aforementioned observation errors, the underlying similarities
may also have intrinsic noise. For instance, the food data set by Wilber et al. (2014) contains triplet
comparisons in terms of which items taste more similar, and it is possible that the taste of a dessert is
closer to a main dish than to another dessert. This noise has been considered in Ghoshdastidar et al.
(2019) by assuming that every pair of items possesses a latent random similarity, which affects the

2When we write that Ω
(
n(lnn)2

)
comparisons are sufficient, we express that any number of comparisons

greater than Cn(lnn)2 with C a constant is sufficient to solve the problem. In other words, it means that having
exactly Cn(lnn)2 comparisons is sufficient but also that having more comparisons is not detrimental. This
notation is used in statistics and information theory (Fletcher et al., 2009) and is equivalent to &.
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responses to comparisons. In this paper, we propose, to the best of our knowledge, the first analysis
that considers and shows the impact of both types of noise on the number of passive comparisons.

Scalable comparison based similarity functions. Several similarity and kernel functions have been
proposed in the literature (Kleindessner and von Luxburg, 2017; Ghoshdastidar et al., 2019). However,
computing these similarities is usually expensive as they require up to O (n) passes over the set of
available comparisons. In this paper, we propose new similarity functions whose construction is much
more efficient than previous kernels. Indeed, they can be obtained with a single pass over the set of
available comparisons. It means that our similarity functions can be computed in an online fashion
where the comparisons are obtained one at a time from a stream. The main drawback compared to
existing approaches is that we lose the positive semi-definiteness of the similarity matrix, but our
theoretical results show that this is not an issue in the context of clustering. We also demonstrate this
empirically as our similarities obtain results that are comparable with state of the art methods.

2 Background and theoretical framework

In this section, we present the comparison based framework and our planted clustering model, under
which we later show that a small number of passive comparisons suffices for learning. We consider
the following setup. There are n items, denoted by [n] = {1, 2, . . . , n}, and we assume that, for
every pair of distinct items i, j ∈ [n], there is an implicit real-valued similarity wij that we cannot
directly observe. Instead, we have access to

Triplets: T =
{

(i, j, r) ∈ [n]3 : wij > wir, i, j, r distinct
}
, or

Quadruplets: Q =
{

(i, j, r, s) ∈ [n]4 : wij > wrs, i 6= j, r 6= s, (i, j) 6= (r, s)
}
.

(1)

There areO
(
n4
)

possible quadruplets andO
(
n3
)

possible triplets, and it is expensive to collect such
a large number of comparisons via crowdsourcing. In practice, T or Q only contain a small fraction
of all possible comparisons. We note that if a triple i, j, r ∈ [n] is observed with i as reference item,
then either (i, j, r) ∈ T or (i, r, j) ∈ T depending on whether i is more similar to j or to r. Similarly,
when tuples (i, j) and (r, s) are compared, we have either (i, j, r, s) ∈ Q or (r, s, i, j) ∈ Q.

Sampling and noise in comparisons. This paper focuses on passive observation of comparisons. To
model this, we assume that the comparisons are obtained via uniform sampling, and every comparison
is equally likely to be observed. Let p ∈ (0, 1] denote a sampling rate that depends on n. We
assume that every comparison (triplet or quadruplet) is independently observed with probability p. In
expectation, |Q| = O

(
pn4
)

and |T | = O
(
pn3
)
, and we can control the sampling rate p to study the

effect of the number of observations, |Q| or |T |, on the performance of an algorithm.

As noted in the introduction, the observed comparisons are typically noisy due to random flipping of
answers by the crowd workers and inherent noise in the similarities. To model the external (crowd)
noise we follow the work of Jain et al. (2016) and, given a parameter ε ∈ (0, 1], we assume that any
observed comparison is correct with probability 1

2 (1 + ε) and flipped with probability 1
2 (1− ε). To

be precise, for observed triple i, j, r ∈ [n] such that wij > wir,

P
(
(i, j, r) ∈ T | wij > wir

)
=

1 + ε

2
, whereas P

(
(i, r, j) ∈ T | wij > wir

)
=

1− ε
2

. (2)

The probabilities for flipping quadruplets can be similarly expressed. We model the inherent noise by
assuming wij to be random, and present a model for the similarities under planted clustering.

Planted clustering model. We now present a theoretical model for the inherent noise in the similari-
ties that reflects a clustered structure of the items. The following model is a variant of the popular
stochastic block model, studied in the context of graph clustering (Abbe, 2017), and is related to the
non-parametric weighted stochastic block model (Xu et al., 2020).

We assume that the item set [n] is partitioned into k clusters C1, . . . , Ck of sizes n1, . . . , nk, re-
spectively, but the number of clusters k as well as the clusters C1, . . . , Ck are unknown to the
algorithm. Let Fin and Fout be two distributions defined on R. We assume that the inherent (and
unobserved) similarities {wij : i < j} are random and mutually independent, and

wij ∼ Fin if i, j ∈ C` for some `, and wij ∼ Fout otherwise.
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We further assume that wii is undefined, wji = wij , and that for w,w′ independent,

Pw,w′∼Fin(w > w′) = Pw,w′∼Fout(w > w′) = 1/2, and

Pw∼Fin,w′∼Fout(w > w′) = (1 + δ)/2 for some δ ∈ (0, 1].
(3)

The first condition in (3) requires that Fin, Fout do not have point masses, and is assumed for
analytical convenience. The second condition ensures that within cluster similarities are larger than
inter-cluster similarities—a natural requirement. Ghoshdastidar et al. (2019) used a special case
of the above model, where Fin, Fout are assumed to be Gaussian with identical variances σ2, and
means satisfy µin > µout . In this case, δ = 2Φ

(
(µin − µout)/

√
2σ
)
− 1 where Φ is the cumulative

distribution function of the standard normal distribution.

The goal of this paper is to obtain bounds on the number of passively obtained
triplets/quadruplets that are sufficient to recover the aforementioned planted clusters with
zero error. To this end, we propose two similarity functions respectively computed from triplet and
quadruplet comparisons, and show that a similarity based clustering approach using semi-definite
programming (SDP) can exactly recover clusters planted in the data using few passive comparisons.

3 A theoretical analysis of similarity based clustering

Before presenting our new comparison based similarity functions, we describe the SDP approach
for clustering from similarity matrices that we use throughout the paper (Yan et al., 2018; Chen and
Yang, 2020). In addition, we prove a generic theoretical guarantee for this approach that holds for
any similarity matrix and, thus, that could be of interest even beyond the comparison based setting.

Similarity based clustering is widely used in machine learning, and there exist a range of popular
approaches including spectral methods (von Luxburg, 2007), semi-definite relaxations (Yan and
Sarkar, 2016), or linkage algorithms (Dasgupta, 2016) among others. We consider the following SDP
for similarity based clustering. Let S ∈ Rn×n be a symmetric similarity matrix among n items, and
Z ∈ {0, 1}n×k be the cluster assignment matrix that we wish to estimate. For unknown number of
clusters k, it is difficult to directly determine Z, and hence, we estimate the normalised clustering
matrix X ∈ Rn×n such that Xij = 1

|C| if i, j co-occur in estimated cluster C, and Xij = 0 otherwise.
Note that trace (X) = k. The following SDP was proposed and analysed by Yan et al. (2018) under
the stochastic block model for graphs, and can also be applied in the more general context of data
clustering (Chen and Yang, 2020). This SDP is agnostic to the number of clusters, but penalises large
values of trace (X) to restrict the number of estimated clusters:

max
X

trace (SX)− λ trace (X)

s.t. X ≥ 0, X � 0, X1 = 1.
(SDP-λ)

Here, λ is a tuning parameter and 1 denotes the vector of all ones. The constraints X ≥ 0 and X � 0
restricts the optimisation to non-negative, positive semi-definite matrices.

We first present a general theoretical result for SDP-λ. Assume that the data has an implicit partition
into k clusters C1, . . . , Ck of sizes n1, . . . , nk and with cluster assignment matrix Z, and suppose that
the similarity S is close to an ideal similarity matrix S̃ that has a k × k block structure S̃ = ZΣZT .
The matrix Σ ∈ Rk×k is such that Σ``′ represents the ideal pairwise similarity between items
from clusters C` and C`′ . Typically, under a random planted model, S̃ is the same as E[S] up to
possible differences in the diagonal terms. For S = S̃ and certain values of λ, the unique optimal
solution of SDP-λ is a block diagonal matrix X∗ = ZN−1ZT , where N ∈ Rk×k is diagonal with
entries n1, . . . , nk (see Appendix B). Thus, in the ideal case, solving the SDP provides the desired
normalised clustering matrix from which one can recover the partition C1, . . . , Ck. The following
result shows that X∗ is also the unique optimal solution of SDP-λ if S is sufficiently close to S̃.
Proposition 1 (Recovery of planted clusters using SDP-λ). Let Z ∈ {0, 1}n×k be the assignments
for a planted k-way clustering, S̃ = ZΣZT , and X∗ = ZN−1ZT as defined above. Define

∆1 = min
` 6=`′

(
Σ`` + Σ`′`′

2
− Σ``′

)
, and ∆2 = max

i∈[n]
max
`∈[k]

∣∣∣∣∣∣ 1

|C`|
∑
j∈C`

(
Sij − S̃ij

)∣∣∣∣∣∣ .
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X∗ is the unique optimal solution of SDP-λ for any choice of λ in the interval∥∥∥S − S̃∥∥∥
2
< λ < min

`
n` ·min

{
∆1

2
, ∆1 − 6∆2

}
.

The proof of Proposition 1, given in Appendix B, is adapted from Yan et al. (2018) although
uniqueness was not proved in this previous work. The term ∆1 quantifies the separation between the
ideal within and inter-cluster similarities, and is similar in spirit to the weak assortativity criterion for
stochastic block models (Yan et al., 2018). On the other hand, the matrix spectral norm ‖S − S̃‖2
and the term ∆2 both quantify the deviation of the similarities S from their ideal values S̃. Note
that the number of clusters can be computed as k = trace (X) and cluster assignment Z is obtained
by clustering the rows of X∗ using k-means or spectral clustering for example. In the experiments
(Section 5), we present a data-dependent approach to tune λ and find k.

We conclude this section by noting that most of the previous analyses of SDP clustering either
assume sub-Gaussian data (Yan and Sarkar, 2016) or consider similarity matrices with independence
assumptions (Chen and Xu, 2014; Yan et al., 2018) that might not hold in general, and do not hold
for our AddS-3 and AddS-4 similarities described in the next section. In contrast, the deterministic
criteria stated in Proposition 1 make the result applicable in more general settings.

4 Similarities from passive comparisons

We present two new similarity functions computed from passive comparisons (AddS-3 and AddS-4)
and guarantees for recovering planted clusters using SDP-λ in conjunction with these similarities.
Kleindessner and von Luxburg (2017) introduced pairwise similarities computed from triplets. A
quadruplets variant was proposed by Ghoshdastidar et al. (2019). These similarities, detailed in
Appendix A, are positive-definite kernels and have multiplicative forms. In contrast, we compute the
similarity between items i, j by simply adding binary responses to comparisons involving i and j.

Similarity from quadruplets. We construct the additive similarity for quadruplets, referred to as
AddS-4, in the following way. Recall the definition of Q in Equation (1) and for every i 6= j, define

Sij =
∑
r 6=s

(
I{(i,j,r,s)∈Q} − I{(r,s,i,j)∈Q}

)
, (AddS-4)

where I{·} is the indicator function. The intuition is that if i, j are similar (wij is large), then for every
observed tuple i, j, r, s, wij > wrs is more likely to be observed. Thus, (i, j, r, s) appears in Q more
often than (r, s, i, j), and Sij is a (possibly large) positive term. On the other hand, smaller wij leads
to a negative value of Sij . Under the aforementioned planted model with clusters of size n1, . . . , nk,
one can verify that Sij indeed reveals the planted clusters in expectation since if i, j belong to the

same planted cluster, then E[Sij ] = pεδ
∑
`∈[k]

n`(n− n`)
2

, and E[Sij ] = −pεδ
∑
`∈[k]

(
n`
2

)
otherwise.

Thus, in expectation, the within cluster similarity exceeds the inter-cluster similarity by pεδ
(
n
2

)
.

Similarity from triplets. The additive similarity based on passive triplets AddS-3 is given by

Sij =
∑
r 6=i,j

(
I{(i,j,r)∈T } − I{(i,r,j)∈T }

)
+
(
I{(j,i,r)∈T } − I{(j,r,i)∈T }

)
(AddS-3)

for every i 6= j. The AddS-3 similarity Sij aggregates all the comparisons that involve both i and j,
with either i or j as the reference item. Similar to the case of AddS-4, Sij tends to be positive when
wij is large, and negative for small wij . One can also verify that, under a planted model, the expected
within cluster AddS-3 similarity exceeds the inter-cluster similarity by pεδ(n− 2).

A significant advantage of AddS-3 and AddS-4 over existing similarities is in terms of computational
time for constructing S. Unlike existing kernels, both similarities can be computed from a single
pass over T or Q. In addition, the following result shows that the proposed similarities can exactly
recover planted clusters using only a few (near optimal) number of passive comparisons.
Theorem 1 (Cluster recovery using AddS-3 and AddS-4). Let X∗ denote the normalised cluster-
ing matrix corresponding to the true partition, and nmin be the size of the smallest planted cluster.
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Given the triplet or the quadruplet setting, there exist absolute constants c1, c2, c3, c4 > 0 such
that, with probability at least 1 − 1

n , X∗ is the unique optimal solution of SDP-λ if δ satisfies

c1

√
n lnn

nmin
< δ ≤ 1 , and one of the following two conditions hold:

• (triplet setting) S is given by AddS-3, and the number of triplets |T | and the parameter λ satisfy

|T | > c2
n3(lnn)2

ε2δ2n2min

and c3 max

{√
|T | lnn

n
, |T |ε

√
lnn

n3
, (lnn)2

}
< λ < c4|T |

εδnmin

n2
;

• (quadruplet setting) S is given by AddS-4, and the number of quadruplets |Q| and λ satisfy

|Q| > c2
n3(lnn)2

ε2δ2n2min

and c3 max

{√
|Q| lnn

n
, |Q|ε

√
lnn

n3
, (lnn)2

}
< λ < c4|Q|

εδnmin

n2
.

The condition on δ and the number of comparisons ensure that the interval for λ is non-empty.

Theorem 1 is proved in Appendix C. This result shows that given a sufficient number of comparisons,
one can exactly recover the planted clusters using SDP-λwith an appropriate choice of λ. In particular,
if there are k planted clusters of similar sizes and δ satisfies the stated condition, then recovery of the
planted clusters with zero error is possible with only Ω

(
k2

ε2δ2n(lnn)2
)

passively obtained triplets
or quadruplets. In this particular context, we make a few important remarks about the sufficient
conditions.
Remark 1 (Comparison with existing results). For fixed k and fixed ε, δ ∈ (0, 1], Theorem 1 states
that Ω

(
n(lnn)2

)
passive comparisons (triplets or quadruplets) suffice to exactly recover the clusters.

This significantly improves over the result of Ghoshdastidar et al. (2019) stating that Ω
(
n3.5 lnn

)
passive quadruplets are sufficient in a planted setting, and the fact that Ω

(
n3
)

triplets are necessary
in the worst case (Emamjomeh-Zadeh and Kempe, 2018).
Remark 2 (Dependence of the number of comparisons on the noise levels ε, δ). When one can
actively obtain comparisons, Emamjomeh-Zadeh and Kempe (2018) showed that it suffices to query
Ω
(
n ln

(
n
ε

))
triplets. Compared to the ln

(
1
ε

)
dependence in the active setting, the sufficient number

of passive comparisons in Theorem 1 has a stronger dependence of 1
ε2 on the crowd noise level ε.

While we do not know whether this dependence is optimal, the stronger criterion is intuitive since,
unlike the active setting, the passive setting does not provide repeated observations of the same
comparisons that can easily nullify the crowd noise. The number of comparisons also depends as 1

δ2

on the inherent noise level, which is similar to the conditions in Ghoshdastidar et al. (2019).

Theorem 1 states that exact recovery primarily depends on two sufficient conditions, one on δ and the
other on the number of passive comparisons (|T | or |Q|). The following two remarks show that both
conditions are necessary, up to possible differences in logarithmic factors.
Remark 3 (Necessity of the condition on δ). The condition on δ imposes the condition of nmin =

Ω
(√

n lnn
)

. This requirement on nmin appears naturally in planted problems. Indeed, assuming that

all k clusters are of similar sizes, the above condition is equivalent to a requirement of k = O
(√

n
lnn

)
and it is believed that polynomial time algorithms cannot recover k � √n planted clusters (Chen
and Xu, 2014, Conjecture 1).
Remark 4 (Near-optimal number of comparisons). To cluster n items, one needs to observe each
example at least once. Hence, one trivially needs at least Ω (n) comparisons (active or passive).
Similarly, existing works on actively obtained comparisons show that Ω (n lnn) comparisons are
sufficient for learning in supervised or unsupervised problems (Haghiri et al., 2017; Emamjomeh-
Zadeh and Kempe, 2018; Ghoshdastidar et al., 2019). We observe that, in the setting of Remark 1,
it suffices to have Ω

(
n(lnn)2

)
passive comparisons which matches the necessary conditions up

to logarithmic factors. However, the sufficient condition on the number of comparisons becomes
Ω
(
k2n(lnn)2

)
if k grows with n while ε and δ are fixed. It means that the worst case of k =

O
(√

n
lnn

)
, stated in Remark 3, can only be tackled using at least Ω

(
n2 lnn

)
passive comparisons.

Remark 5 (No new information beyond Ω
(
n2/ε2

)
comparisons). Theorem 1 shows that for large

n and Ω
(
n2/ε2

)
number of comparisons, the condition for exact recovery of the clusters is only
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governed by the condition on δ as the interval for λ is always non empty. It means that, beyond a
quadratic number of comparisons, no new information is gained by observing more comparisons. This
explains why significantly fewer passive comparisons suffice in practice than the known worst-case
requirements of Ω

(
n3
)

passive triplets or Ω
(
n4
)

passive quadruplets.

We conclude our theoretical discussion with a remark about recovering planted clusters when the
pairwise similarities wij are observed. Our methods are near optimal even in this setting.
Remark 6 (Recovering planted clusters for non-parametric Fin, Fout). Theoretical studies in the
classic setting of clustering with observed pairwise similarities {wij : i < j} typically assume that
the distributions Fin and Fout for the pairwise similarities are Bernoulli (in unweighted graphs), or
take finitely many values (labelled graphs), or belong to exponential families (Chen and Xu, 2014;
Aicher et al., 2015; Yun and Proutiere, 2016). Hence, the applicability of such results are restrictive.
Recently, Xu et al. (2020) considered non-parametric distributions for Fin, Fout, and presented a
near-optimal approach based on discretisation of the similarities into finitely many bins. Our work
suggests an alternative approach: compute ordinal comparisons from the original similarities and use
clustering on AddS-3 or AddS-4. Theorem 1 then guarantees, for any non-parametric and continuous
Fin and Fout, exact recovery of the planted clusters under a near-optimal condition on δ.

5 Experiments

The goal of this section is three-fold: present a strategy to tune λ in SDP-λ; empirically validate our
theoretical findings; and demonstrate the performance of the proposed approaches on real datasets.

Choosing λ and estimating the number of clusters based on Theorem 1. Given a similarity
matrix S, the main difficulty involved in using SDP-λ is tuning the parameter λ. Yan et al. (2018)

proposed the algorithm SPUR to select the best λ as λ∗ = arg max0≤λ≤λmax

∑
i≤kλ

σi(Xλ)

trace(Xλ)
where

Xλ is the solution of SDP-λ, kλ is the closest integer to trace (Xλ) and an estimate of the number of
clusters, σi(Xλ) is the i-th largest eigenvalue of Xλ, and λmax is a theoretically well-founded upper
bound on λ. The maximum of the above objective is 1, achieved when Xλ has the same structure
as X∗ in Proposition 1. In our setting, Theorem 1 gives an upper bound on λ that depends on ε, δ
and nmin which are not known in practice. Furthermore, it is computationally beneficial to use the
theoretical lower bound for λ instead of using λ ≥ 0 as suggested in SPUR.

We propose to modify SPUR based on the fact that the estimated number of clusters k monotonically
decreases with λ (details in Appendix D). Given Theorem 1, we choose λmin =

√
c(lnn)/n and

λmax = c/n, where c = |Q| or |T |. The trace of the SDP-λ solution then gives two estimates of the
number of clusters, kλmin and kλmax , and we search over k ∈ [kλmax

, kλmin
] instead of searching over

λ—in practice, it helps to search over the values max{2, kλmax
} ≤ k ≤ kλmin

+ 2. We select k that
maximises the above SPUR objective, where X is computed using a simpler SDP (Yan et al., 2018):

maxX 〈S,X〉 s.t. X ≥ 0, X � 0, X1 = 1, trace (X) = k. (SDP-k)

The overall approach is summarized in Algorithm 1.

Clustering with AddS-3 and AddS-4.3 For the proposed similarity matrices AddS-3 and AddS-4,
the above strategy provides the optimal number of clusters k and a corresponding solution Xk of
SDP-k. The partition is obtained by clustering the rows ofXk using k-means. Alternative approaches,
such as spectral clustering, lead to similar performances (see Appendix E).

Evaluation function. We use the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) between
the ground truth and the predictions. The ARI takes values in [−1, 1] and measures the agreement
between two partitions: 1 implies identical partitions, whereas 0 implies that the predicted clustering
is random. In all the experiments, we report the mean and standard deviation over 10 repetitions.

Simulated data with planted clusters. We generate data using the planted model from Section 2 and
verify that the learned clusters are similar to the planted ones. As default parameters we use n = 1000,
k = 4, ε = 0.75, |T | = |Q| = n(lnn)4 and Fin = N

(√
2σΦ−1

(
1+δ
2

)
, σ2
)
, Fout = N

(
0, σ2

)
with σ = 0.1 and δ = 0.5. In each experiment, we investigate the sensitivity of our method by varying
one of the parameters while keeping the others fixed. We use SPUR to estimate the number of clusters.

3We provide a Python implementation on https://github.com/mperrot/AddS-Clustering
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Algorithm 1: Comparison-based SPUR
input : The number of examples n and the comparisons T or Q.
begin

Define c = |T | or |Q|.
Let S be obtained with AddS-3 or AddS-4.

Define λmin =
√

c(ln c)
n and λmax = c

n .
Xλmin

, Xλmax ← SDP-λmin, SDP-λmax on S.
kλmin

, kλmax
← btrace (Xλmin

)e, btrace (Xλmax
)e.

for k = max{2, kλmax
} to kλmin + 2 do

Solve SDP-k to obtain Xk.
end
Choose k̂ = argmax

k

∑
i≤k σi(Xk)

trace(Xk)
, where σi(Xk) denotes the i-th largest eigenvalue of Xk.

end
output : Number of clusters k̂, Xk̂.
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Figure 1: ARI of various methods on the planted model (higher is better). We vary: (1a) the number
of comparisons |T | and |Q|; (1b) the crowd noise level ε; (1c) the distributions Fin and Fout.

As baselines, we use SDP-k (using the number of clusters estimated by our approaches) followed by
k-means with two comparison based multiplicative kernels: MulK-3 for triplets (Kleindessner and
von Luxburg, 2017) and MulK-4 for quadruplets (Ghoshdastidar et al., 2019).

We present some significant results in Figure 1 and defer the others to Appendix E. In Figure 1a, we
vary the number of sampled comparisons. Unsurprisingly, our approaches are able to exactly recover
the planted clusters using as few as n(lnn)3 comparisons—extra lnn factor compared to Theorem 1
accounts for ε, δ and constants. MulK-3 and MulK-4 respectively need n(lnn)4.5 and n(lnn)5.5

comparisons (both values exceed n2 for n = 1000). In all our experiments, AddS-3 and AddS-4 have
comparable performance while MulK-3 is significantly better than MulK-4. Thus we focus on triplets
in the subsequent experiments for the sake of readability. In Figure 1b, we vary the external noise
level ε. Given n(lnn)4 comparisons, AddS-3 exactly recovers the planted clusters for ε as small
as 0.25 (high crowd noise) while, given the same number of comparisons, MulK-3 only recovers
the planted clusters for ε > 0.9. Figure 1c shows that AddS-3 outperforms MulK-3 even when
different distributions for Fin and Fout are considered (Uniform + Beta or Uniform + Normal; details
in Appendix E). It also shows that the distributions affect the performances, which is not evident
from Theorem 1, indicating the possibility of a refined analysis under distributional assumptions.

MNIST clustering with comparisons. We consider two datasets which are subsets of the MNIST
test dataset (LeCun and Cortes, 2010) that originally contains 10000 examples roughly equally
distributed among the ten digits: (i) a subset of 2163 examples containing all the 1 and 7 (MNIST
1vs.7), two digits that are visually very similar, and (ii) a randomly selected subset of 2000 examples
drawn without replacement and covering all 10 classes (MNIST 10). In both cases, to generate
the comparisons, we use the Gaussian similarity (See Section F.3 in the supplementary) on a 2-
dimensional embedding of the entire MNIST test data constructed with t-SNE (van der Maaten,
2014) and normalized so that each example lies in [−1, 1]2. We focus on the triplet setting and we
randomly and uniformly draw, without replacement, between n(lnn)2 and n(lnn)4 comparisons
to be observed by the different approaches. We also consider two additional baselines. First, we
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Figure 2: Experiments on real datasets. (2a)–(2b) ARI on MNIST; (2c) ARI similarity matrix
comparing the clusters obtained by the different methods on car (darker means more agreement).

use t-STE (van der Maaten and Weinberger, 2012), an ordinal embedding approach, to embed the
examples in 2 dimensions, and then cluster them using k-means on the embedded data. Second, we
directly use k-means on the normalized data obtained with t-SNE. The latter is a baseline with access
to Euclidean data instead of triplet comparisons.

For MNIST 1vs.7 (Figure 2a), |T | = n(lnn)2 is sufficient for AddS-3 to reach the performance of
k-means and t-STE while MulK-3 requires n(lnn)3 triplets. Furthermore, note that AddS-3 with
known number of clusters performs similarly to AddS-3 using SPUR, indicating that SPUR estimates
the number of clusters correctly. If we consider MNIST 10 (Figure 2b) and |T | = n(lnn)2, AddS-3
with known k outperforms AddS-3 using SPUR, suggesting that the number of comparisons here
is not sufficient to estimate the number of clusters accurately. Moreover, AddS-3 with known k
outperforms MulK-3 while being close to the performance of t-STE. Finally for n(lnn)4 triplets,
all ordinal methods converge to the baseline of k-means with access to original data. The ARI of
AddS-3 SPUR improves when the number of comparisons increases due to better estimations of the
number of clusters—estimated k increases from 3 for |T | = n(lnn)2 up to 9 for |T | = n(lnn)4.

Real comparison based data. First, we consider the Food dataset (Wilber et al., 2014) that contains
100 examples and 190376 triplet comparisons. Unfortunately, there is no ground truth and, thus,
quantitatively assessing the quality of the obtained partitions is difficult. Thus, in Appendix F, we
simply compare the different methods with respect to one another and present the partition obtained
by AddS-3 for visual inspection. Second, we consider the Car dataset (Kleindessner and von Luxburg,
2016). It contains 60 examples grouped into 3 classes (SUV, city cars, sport cars) with 4 outliers,
and exhibits 12112 triplet comparisons. For this dataset, AddS-3 SPUR estimates k = 2 instead
of the correct 3 clusters. Figure 2c considers all ordinal methods with k = 2 and k = 3, and
shows the pairwise agreement (ARI) between different methods and also with the true labels. While
MulK-3 with k = 3 agrees the most with the true labels, all the clustering methods agree well for
k = 2 (top-left 3× 3 block). Hence, the data may have another natural clustering with two clusters,
suggesting possible discrepancies in how different people judge the similarities between cars (for
instance, color or brand instead of the specified classes).

6 Conclusion

It is generally believed that a large number of passive comparisons is necessary in comparison
based learning. Existing results on clustering require at least Ω

(
n3
)

passive comparisons in the
worst-case or under a planted framework. We show that, in fact, Ω

(
n(lnn)2

)
passive comparisons

suffice for accurately recovering planted clusters. This number of comparisons is near-optimal, and
almost matches the number of active comparisons typically needed for learning. Our theoretical
findings are based on two simple approaches for constructing pairwise similarity matrices from
passive comparisons (AddS-3 and AddS-4). The present analysis is in a restricted framework, where
all within (or inter) cluster similarities are assumed to be identically distributed. Based on existing
work on robustness of SDPs (Moitra et al., 2016), we believe that our theoretical result holds in a
more general semi-random setting. Lastly, while we studied the merits of AddS-3 and AddS-4 in the
context of clustering, they could be used for other problems such as semi-supervised learning, data
embedding, or classification.
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Broader Impact

This work primarily has applications in the fields of psychophysics and crowdsourcing, and more
generally, in learning from human responses. Such data and learning problems could be affected by
implicit biases in human responses. However, this latter issue is beyond the scope of this work and,
thus, was not formally analysed.
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