
A Proofs

A.1 Proof of Theorem 3.1

Let ε = 1
poly(d) . Let N be a neural network of depth k and width poly(d), such that ‖N − f‖L2(µ) ≤

ε
5 . We will construct a network N̂ of depth 3k + 3, width poly(d) and poly(d)-bounded weights,
such that ‖N̂ − f‖L2(µ) ≤ ε.

Since f is approximately poly(d)-bounded, there is B = poly(d) be such that

E
x∼µ

(
f(x)− [f(x)][−B,B]

)2 ≤ ( ε
5

)2

.

Let f ′ : Rd → R be such that f ′(x) = [f(x)][−B,B]. Thus,

‖f ′ − f‖L2(µ) ≤
ε

5
. (1)

LetN ′ be a network of depth k+1 such that for every x ∈ Rd we haveN ′(x) = [N(x)][−B,B]. Such
N ′ can be obtained fromN by adding to it one layer, sinceN ′(x) = [N(x)+B]+−[N(x)−B]+−B.
Although we do not allow bias in the output neuron, the additive term −B can be implemented by
adding a hidden neuron with fan-in 0 and bias 1, that is connected to the output neuron with weight
−B. Note that Ex∼µ(N ′(x)− f ′(x))2 ≤ Ex∼µ(N(x)− f ′(x))2, and therefore

‖N ′ − f ′‖L2(µ) ≤ ‖N − f ′‖L2(µ) ≤ ‖N − f‖L2(µ) + ‖f − f ′‖L2(µ) ≤
2ε

5
. (2)

Let δ = ε2

400B2 . Since µ has an almost-bounded support, there is R = poly(d) such that Prx∼µ(x 6∈
[−R,R]d) ≤ δ. Let p(d) be a polynomial. Let I = { j

p(d) : −Rp(d) ≤ j ≤ Rp(d), j ∈ Z}. Let
x ∈ Rd. For every i such that xi ∈ [−R − 1

2p(d) , R + 1
2p(d) ], let x̃i ∈ I be such that |x̃i − xi| is

minimal. That is, x̃i is obtained by rounding xi to the nearest multiple of 1
p(d) . For every i such that

xi 6∈ [−R − 1
2p(d) , R + 1

2p(d) ], let x̃i = 0. Then, let x̃ = (x̃1, . . . , x̃d). Let Ñ : Rd → [−B,B] be

a function such that for every x ∈ Rd we have Ñ(x) = N ′(x̃). We will prove the following two
lemmas:
Lemma A.1. There exists a polynomial p(d) such that

‖Ñ −N ′‖L2(µ) ≤
ε

5
.

Lemma A.2. There exists a neural network N̂ of depth 3k+ 3, width poly(d) and poly(d)-bounded
weights, such that

‖N̂ − Ñ‖L2(µ) ≤
ε

5
.

Then, combining Lemmas A.1 and A.2 with Eq. 1 and 2, we have

‖N̂ − f‖L2(µ) ≤ ‖N̂ − Ñ‖L2(µ) + ‖Ñ −N ′‖L2(µ) + ‖N ′ − f ′‖L2(µ) + ‖f ′ − f‖L2(µ)

≤ ε

5
+
ε

5
+

2ε

5
+
ε

5
= ε ,

and hence the theorem follows.

A.1.1 Proof of Lemma A.1

We start with an intuitive explanation, and then turn to the formal proof. Since we have Ñ(x) = N ′(x̃)

and |N ′(x)| ≤ B for every x, then we have |Ñ(x)−N ′(x)| ≤ 2B. In order to bound ‖Ñ−N ′‖L2(µ)

we show that w.h.p. |Ñ(x)−N ′(x)| is small. Namely, that w.h.p. the value of N ′ does not change
too much by moving from x to x̃. Since the Lipschitzness of N ′ is not bounded, then for every choice
of a polynomial p(d), we are not guaranteed that |N ′(x̃)−N ′(x)| is small. However, we show that
for a sufficiently large polynomial p(d), the probability that we encounter a region where N ′ has
large derivative while moving from x to x̃, is small.
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We move from x to x̃ in d steps. In the i-th step we change the i-th component from xi to x̃i. Namely,
we move from (x̃1, . . . , x̃i−1, xi, xi+1, . . . , xd) to (x̃1, . . . , x̃i−1, x̃i, xi+1, . . . , xd). We show that
for each step, w.h.p., the change in N ′ is small. Since in the i-th step the components [d] \ {i} are
fixed, then the dependence of N ′ on the value of the i-th component, which is the component that we
change, can be expressed by a network with input dimension 1, width poly(d), and constant depth.
Such a network computes a function gi : R→ R that is piecewise linear with poly(d) pieces. Since
N ′ is bounded by B then gi is also bounded by B, and therefore a linear piece in gi whose derivative
has a large absolute value is supported on a small interval. Now, we need to show that the interval
between xi and x̃i has an empty intersection with intervals of gi with large derivatives. Since there
are only poly(d) intervals and intervals with large derivatives are small, then by using the fact that µ
has an almost-bounded conditional density, we are able to show that w.h.p. the interval between xi
and x̃i does not have a non-empty intersection with such intervals. Intuitively, we can think about
the choice of x ∼ µ as choosing the components [d] \ {i} according to µ[d]\i and then choosing xi
according to µi|[d]\i. Now, the choice of the components [d] \ {i} induces the function gi, and the
choice of xi is good with respect to gi if the interval between xi and x̃i does not have a non-empty
intersection with the intervals of gi which have large derivatives. We show that w.h.p. we obtain gi
and xi, such that xi is good with respect to gi.

We now turn to the formal proof. Let

A =

{
x ∈ Rd : (N ′(x)− Ñ(x))2 >

ε2

50

}
.

Let x ∈ Rd, let yi = (x̃1, . . . , x̃i−1, xi+1, . . . , xd) ∈ Rd−1, and let N ′i,yi : R → [−B,B] be such
that

N ′i,yi(t) = N ′(x̃1, . . . , x̃i−1, t, . . . , xd) .

Note that for every x ∈ Rd, we have
|N ′(x)− Ñ(x)| = |N ′(x)−N ′(x̃)|

=

∣∣∣∣∣∣
∑
i∈[d]

N ′(x̃1, . . . , x̃i−1, xi, . . . , xd)−N ′(x̃1, . . . , x̃i, xi+1, . . . , xd)

∣∣∣∣∣∣
≤
∑
i∈[d]

|N ′(x̃1, . . . , x̃i−1, xi, . . . , xd)−N ′(x̃1, . . . , x̃i, xi+1, . . . , xd)|

=
∑
i∈[d]

|N ′i,yi(xi)−N
′
i,yi(x̃i)| .

Thus, using the shorthand Pr(· | [−R,R]d) for Pr(· | x ∈ [−R,R]d), we have

Pr(A | x ∈ [−R,R]d) = Pr

(
(N ′(x)− Ñ(x))2 >

ε2

50

∣∣∣∣[−R,R]d
)

= Pr

(
|N ′(x)− Ñ(x)| > ε

5
√

2

∣∣∣∣[−R,R]d
)

≤ Pr

∑
i∈[d]

|N ′i,yi(xi)−N
′
i,yi(x̃i)| >

ε

5
√

2

∣∣∣∣∣∣[−R,R]d


≤ Pr

(
∃i ∈ [d] s.t. |N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

∣∣∣∣[−R,R]d
)

≤
∑
i∈[d]

Pr

(
|N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

∣∣∣∣[−R,R]d
)
.

Now, since Pr(x 6∈ [−R,R]d) ≤ δ, we have
Pr(A) = Pr(A | [−R,R]d) · Pr([−R,R]d) + Pr(A | Rd \ [−R,R]d) · Pr(Rd \ [−R,R]d)

≤
∑
i∈[d]

Pr

(
|N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

∣∣∣∣[−R,R]d
)

+ δ . (3)

12



Let

Ai =

{
x ∈ Rd : |N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

}
.

Lemma A.3.
Pr
(
Ai | x ∈ [−R,R]d

)
≤ ε2

400B2d
.

Proof. Let δ′ = ε2

1600B2d . Since µ has an almost-bounded conditional density, there is M = poly(d)
such that for every i ∈ [d] we have Pr(Gi) ≤ δ′, where

Gi = {x ∈ Rd : ∃t ∈ R s.t. µi|[d]\i(t|x1, . . . , xi−1, xi+1, . . . , xd) > M} .

Now, we have

Pr
(
Ai|[−R,R]d

)
= Pr

(
Ai ∩Gi|[−R,R]d

)
+ Pr

(
Ai ∩ (Rd \Gi)|[−R,R]d

)
≤ Pr

(
Gi|[−R,R]d

)
+ Pr

(
Ai ∩ (Rd \Gi)|[−R,R]d

)
(4)

Note that

Pr
(
Gi|[−R,R]d

)
=
Pr
(
Gi ∩ [−R,R]d

)
Pr ([−R,R]d)

≤ Pr (Gi)

Pr ([−R,R]d)
≤ δ′

1− δ
. (5)

Thus, it remains to bound Pr
(
Ai ∩ (Rd \Gi)|[−R,R]d

)
. Let x ∈ [−R,R]d. Note that the function

N ′i,yi : R → R can be expressed by a neural network of depth k + 1 that is obtained from N ′ by
using the hardwired yi instead of the corresponding input components [d] \ {i}. That is, if a neuron
in the first hidden layer of N ′ has weights w1, . . . , wd and bias b, then in N ′i,yi its weight is wi and its
bias is b+ 〈(w1, . . . , wi−1, wi+1, . . . , wd),yi〉. A neural network with input dimension 1, constant
depth, and m neurons in each hidden layer, is piecewise linear with at most poly(m) pieces ([29]).
Therefore, N ′i,yi consists of l = poly(d) linear pieces. Note that l depends only on the depth and
width of N ′, and does not depend on i and yi.

Since N ′i,yi(t) ∈ [−B,B] for every t ∈ R, then if N ′i,yi has derivative α in a linear interval [a, b]

then |(b − a)α| ≤ 2B. Let xi = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1. Let γ = 6400B3dMl
ε2 . We

denote by Ii,xi,γ the set of intervals [aj , bj ] where the derivative αj in N ′i,yi satisfies |αj | > γ. Note
that yi depends on xi and does not depend on xi. Now,∑

[aj ,bj ]∈Ii,xi,γ

(bj − aj) ≤
∑

[aj ,bj ]∈Ii,xi,γ

2B

|αj |
< l · 2B

γ
. (6)

Let β be the open interval (xi, x̃i) if xi ≤ x̃i or (x̃i, xi) otherwise. If β ∩ [aj , bj ] = ∅ for every
[aj , bj ] ∈ Ii,xi,γ , then

|N ′i,yi(xi)−N
′
i,yi(x̃i)| ≤ |x̃i − xi|γ ≤

γ

p(d)
.

Let

I ′i,xi,γ =

{
[a′j , b

′
j ] : a′j = aj −

1

p(d)
, b′j = bj +

1

p(d)
, [aj , bj ] ∈ Ii,xi,γ

}
.

Thus, if |N ′i,yi(xi)−N
′
i,yi

(x̃i)| > γ
p(d) then β∩ [aj , bj ] 6= ∅ for some [aj , bj ] ∈ Ii,xi,γ , and therefore

xi ∈ [a′j , b
′
j ] for some [a′j , b

′
j ] ∈ I ′i,xi,γ . Hence, for a sufficiently large polynomial p(d), if x ∈ Ai

then xi ∈ [a′j , b
′
j ] for some [a′j , b

′
j ] ∈ I ′i,xi,γ .

We denote `(I ′i,xi,γ) =
∑

[a′j ,b
′
j ]∈I′i,xi,γ

(b′j − a′j). Note that

`(I ′i,xi,γ) =
∑

[aj ,bj ]∈Ii,xi,γ

(bj − aj +
2

p(d)
) ≤ 2l

p(d)
+

∑
[aj ,bj ]∈Ii,xi,γ

(bj − aj)
(Eq. 6)
<

2l

p(d)
+

2Bl

γ
.

(7)

13



For z ∈ Rd−1 and t ∈ R we denote zi,t = (z1, . . . , zi−1, t, zi, . . . , zd−1) ∈ Rd. Note that for every
z ∈ Rd−1 and every t, t′ ∈ R, we have zi,t ∈ Gi iff zi,t′ ∈ Gi. Let G′i = {z ∈ Rd−1 : ∃t ∈
R s.t. zi,t ∈ Gi}. Now, we have

Pr(Ai ∩ (Rd \Gi) ∩ [−R,R]d) =

∫
Ai∩(Rd\Gi)∩[−R,R]d

µ(x)dx

=

∫
Rd−1\G′i

[∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µ(zi,t)dt

]
dz

=

∫
Rd−1\G′i

[∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µ[d]\i(z)µi|[d]\i(t|z)dt

]
dz

=

∫
Rd−1\G′i

µ[d]\i(z)

[∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µi|[d]\i(t|z)dt

]
dz

≤ sup
z∈Rd−1\G′i

∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µi|[d]\i(t|z)dt .

Recall that if z ∈ Rd−1 \G′i then µi|[d]\i(t|z) ≤M for all t ∈ R. Hence the above is at most

sup
z∈Rd−1\G′i

∫
{t∈R:zi,t∈Ai∩[−R,R]d}

Mdt .

Also, recall that if x ∈ Ai ∩ [−R,R]d then xi ∈ [a′j , b
′
j ] for some [a′j , b

′
j ] ∈ I ′i,xi,γ . Therefore the

above is at most

sup
z∈Rd−1\G′i

∫
{t∈[a′j ,b

′
j ]:[a

′
j ,b
′
j ]∈I′i,z,γ}

Mdt ≤ sup
z∈Rd−1\G′i

∑
[a′j ,b

′
j ]∈I′i,z,γ

∫
[a′j ,b

′
j ]

Mdt

= sup
z∈Rd−1\G′i

∑
[a′j ,b

′
j ]∈I′i,z,γ

(b′j − a′j)M

= sup
z∈Rd−1\G′i

M · `(I ′i,z,γ)
(Eq. 7)
< M

(
2l

p(d)
+

2Bl

γ

)
.

Now, we have

Pr
(
Ai ∩ (Rd \Gi)|[−R,R]d

)
=
Pr
(
Ai ∩ (Rd \Gi) ∩ [−R,R]d

)
Pr([−R,R]d)

≤M
(

2l

p(d)
+

2Bl

γ

)
1

1− δ
.

Combining the above with Eq. 4 and 5, and using δ ≤ 1
2 , δ′ = ε2

1600B2d and γ = 6400B3dMl
ε2 , we have

Pr
(
Ai|[−R,R]d

)
≤ δ′

1− δ
+M

(
2l

p(d)
+

2Bl

γ

)
1

1− δ
≤ 2δ′ + 2M

(
2l

p(d)
+

2Bl

γ

)
=

ε2

800B2d
+

4Ml

p(d)
+

ε2

1600B2d
.

Therefore, for a sufficiently large polynomial p(d) we have Pr
(
Ai|[−R,R]d

)
≤ ε2

400B2d .

By combining Lemma A.3 and Eq. 3, and plugging in δ = ε2

400B2 we have

Pr(A) ≤
∑
i∈[d]

ε2

400B2d
+

ε2

400B2
=

ε2

200B2
.

Finally, since for every x we have (N ′(x)− Ñ(x))2 ≤ (2B)2, and since for every x 6∈ A we have
(N ′(x)− Ñ(x))2 ≤ ε2

50 , then

E
x∼µ

(
N ′(x)− Ñ(x)

)2

≤ Pr(A) · (2B)2 + Pr(Rd \A) · ε
2

50
≤ ε2

200B2
· 4B2 +

ε2

50
=
( ε

5

)2

.
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A.1.2 Proof of Lemma A.2

The network N̂ consists of three parts. First, it transforms with high probability the input x to a
binary representation of x̃. Then, it simulates N(x̃) by using arithmetic operations on binary vectors.
Finally, it performs clipping of the output to the interval [−B,B] and transforms it from the binary
representation to its real value.

We start with the first part of N̂ , namely, transforming the input x to a binary representation of x̃.
The following lemma shows a property of almost-bounded conditional densities, that is required for
this transformation.
Lemma A.4. Let µ be a distribution with an almost-bounded conditional density. Then, for every
ε = 1

poly(d) there is ∆ = 1
poly(d) such that for every i ∈ [d] and s ∈ R we have

Prx∼µ (xi ∈ [s, s+ ∆]) ≤ ε .

Proof. For x ∈ Rd we denote xi = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1. Since µ has an almost-
bounded conditional density, then there is M = poly(d) such that for every i ∈ [d] we have

Prx∼µ
(
∃t ∈ R s.t. µi|[d]\i(t|xi) > M

)
≤ ε

2
.

Let ∆ = 1
poly(d) such that M∆ ≤ ε

2 .

Then,

Prx∼µ(xi ∈ [s, s+ ∆]) =

∫
{x:xi∈[s,s+∆]}

µ(x)dx

=

∫
{x:xi∈[s,s+∆]}

µ[d]\i(x
i)µi|[d]\i(xi|xi)dx

=

∫
Rd−1

µ[d]\i(x
i)

[∫
[s,s+∆]

µi|[d]\i(xi|xi)dxi

]
dxi

=

∫
{xi∈Rd−1:∀t∈R . µi|[d]\i(t|xi)≤M}

µ[d]\i(x
i)

[∫
[s,s+∆]

µi|[d]\i(xi|xi)dxi

]
dxi+

∫
{xi∈Rd−1:∃t∈R . µi|[d]\i(t|xi)>M}

µ[d]\i(x
i)

[∫
[s,s+∆]

µi|[d]\i(xi|xi)dxi

]
dxi

≤
∫
{xi∈Rd−1:∀t∈R . µi|[d]\i(t|xi)≤M}

µ[d]\i(x
i)

[∫
[s,s+∆]

Mdxi

]
dxi+∫

{xi∈Rd−1:∃t∈R . µi|[d]\i(t|xi)>M}
µ[d]\i(x

i)

[∫
R
µi|[d]\i(xi|xi)dxi

]
dxi

≤
∫
{xi∈Rd−1:∀t∈R . µi|[d]\i(t|xi)≤M}

µ[d]\i(x
i)M∆dxi+∫

{x∈Rd:∃t∈R . µi|[d]\i(t|xi)>M}
µ(x)dx

≤M∆ + Prx∼µ
(
∃t ∈ R s.t. µi|[d]\i(t|xi) > M

)
≤ ε

2
+
ε

2
= ε .

Let c be an integer greater or equal to log(2Rp(d) + 1). For i ∈ [d] we denote by
(p(d)x̃i)

bin(c) ∈ {0, 1}c the c-bits binary representation of the integer p(d)x̃i. Note that since
p(d)x̃i ∈ [−Rp(d), Rp(d)] then c bits are sufficient. We use the standard two’s complement binary
representation. In this representation, the arithmetic operations of addition and multiplication of
signed numbers are identical to those for unsigned numbers. Thus, we do not need to handle negative
and positive numbers differently. We denote by (p(d)x̃)bin(c) ∈ {0, 1}c·d the binary representation
of p(d)x̃, obtained by concatenating (p(d)x̃i)

bin(c) for i = 1, . . . , d.
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Lemma A.5. Let c ≤ poly(d) be an integer greater or equal to log(2Rp(d)+1) and let δ′ = 1
poly(d) .

There is a neural networkN of depth 2, width poly(d), weights bounded by some poly(d), and (c · d)
outputs, such that

Prx∼µ

(
N (x) = (p(d)x̃)bin(c)

)
≥ 1− δ′ .

Proof. In order to construct N , we need to show how to compute (p(d)x̃i)
bin(c) for every i ∈ [d].

We will show a depth-2 network N ′ such that given xi ∼ µi it outputs (p(d)x̃i)
bin(c) w.p. ≥ 1− δ′

d .
Then, the network N consists of d copies of N ′, and satisfies

Prx∼µ

(
N (x) 6= (p(d)x̃)bin(c)

)
≤
∑
i∈[d]

Prxi∼µi

(
N ′(xi) 6= (p(d)x̃i)

bin(c)
)
≤ δ′

d
· d = δ′ .

For j ∈ [c] let Ij ⊆ {−Rp(d), . . . , Rp(d)} be the integers such that the j-th bit in their binary
representation is 1. Hence, given xi, the network N ′ should output in the j-th output 1Ij (p(d)x̃i).

By Lemma A.4, there is ∆ = 1
poly(d) such that for every i ∈ [d] and every t ∈ R we have

Prx∼µ

(
xi ∈

[
t− ∆

p(d)
, t+

∆

p(d)

])
≤ δ′

(2Rp(d) + 2)d
. (8)

For an integer −Rp(d) ≤ l ≤ Rp(d), let gl : R→ R be such that

gl(t) =

[
1

∆

(
t− l +

1

2

)]
+

−
[

1

∆

(
t− l +

1

2
−∆

)]
+

.

Note that gl(t) = 0 if t ≤ l − 1
2 , and that gl(t) = 1 if t ≥ l − 1

2 + ∆. Let g′l(t) = gl(t)− gl+1(t).
Note that g′l(t) = 0 if t ≤ l − 1

2 or t ≥ l + 1
2 + ∆, and that g′l(t) = 1 if l − 1

2 + ∆ ≤ t ≤ l + 1
2 .

Let hj(t) =
∑
l∈Ij g

′
l(t). Note that for every l ∈ {−Rp(d), . . . , Rp(d)} and l− 1

2 + ∆ ≤ t ≤ l+ 1
2

we have hj(t) = 1 if l ∈ Ij and hj(t) = 0 otherwise. Hence, for p(d)xi ∈ [−Rp(d)− 1
2 , Rp(d)+ 1

2 ],
if |p(d)xi − p(d)x̃i| ≤ 1

2 − ∆ then hj(p(d)xi) = 1Ij (p(d)x̃i). For p(d)xi ≤ −Rp(d) − 1
2 − ∆

and for p(d)xi ≥ Rp(d) + 1
2 + ∆, we have x̃i = 0 and hj(p(d)xi) = 0 = 1Ij (0) = 1Ij (p(d)x̃i).

Therefore, if hj(p(d)xi) 6= 1Ij (p(d)x̃i) then p(d)xi ∈ [l − 1
2 − ∆, l − 1

2 + ∆] for some integer
−Rp(d) ≤ l ≤ Rp(d) + 1.

Let N ′ be such that N ′(xi) = (h1(p(d)xi), . . . , hc(p(d)xi)). Note that N ′ can be implemented by
a depth-2 neural network.

Now,

Prxi∼µi

(
N ′(xi) 6= (p(d)x̃i)

bin(c)
)

= Prxi∼µi

(
∃j ∈ [c] s.t. hj(p(d)xi) 6= (p(d)x̃i)

bin(c)
j

)
= Prxi∼µi

(
∃j ∈ [c] s.t. hj(p(d)xi) 6= 1Ij (p(d)x̃i)

)
≤ Prxi∼µi

(
p(d)xi ∈

[
l − 1

2
−∆, l − 1

2
+ ∆

]
,−Rp(d) ≤ l ≤ Rp(d) + 1

)
≤

∑
−Rp(d)≤l≤Rp(d)+1

Prxi∼µi

(
xi ∈

[
l

p(d)
− 1

2p(d)
− ∆

p(d)
,

l

p(d)
− 1

2p(d)
+

∆

p(d)

])
(Eq. 8)

≤ (2Rp(d) + 2) · δ′

(2Rp(d) + 2)d
=
δ′

d
.

We now show that x̃ 7→ N(x̃) for our network N can be computed approximately by a depth-k
network N ′′ whose weights and biases are at most 2poly(d), and have a binary representation with
poly(d) bits. The network N ′′ will be useful later in order to simulate such a computation with
arithmetic operations on binary vectors.
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Lemma A.6. ([18]) Consider a system Ax ≤ b of arbitrary finite number of linear inequalities in l
variables. Assume that all entries in A and b are integers of absolute value at most a. If this system
has a solution in Rl, then it has a solution of the form

(
s1
t , . . . ,

sl
t

)
, where s1, . . . , sl, t are integers

of absolute value at most (2l + 1)!a2l+1.

Lemma A.7. Let p′(d) = poly(d). There is a poly(d)-sized neural network N ′′ of depth k such that
for every x̃ ∈ Id we have:

• If N(x̃) ∈ [−B,B] then |N ′′(x̃)−N(x̃)| ≤ 1
p′(d) .

• If N(x̃) > B then N ′′(x̃) ≥ B.

• If N(x̃) < −B then N ′′(x̃) ≤ −B.

Moreover, N ′′ satisfies the following:

• There is a positive integer t ≤ 2poly(d) such that all weights and biases are in Qt = { st :

|s| ≤ 2poly(d), s ∈ Z}.

• The weights in layers 2, . . . , k are all in {−1, 1}.

Proof. In [18] it is shown that a similar property holds for the case where the output neuron has sign
activation, namely, where the output of the network is Boolean. We extend this result to real-valued
functions.

We construct N ′′ in three steps. First, we transform N into a network N1 of depth k where the
fan-out of each hidden neuron is 1, such that for every x ∈ Rd we have N1(x) = N(x). Then, we
transform N1 into a network N2 of depth k where the weights in layers 2, . . . , k are all in {−1, 1},
such that for every x ∈ Rd we have N2(x) = N1(x). Finally, we show that N2 can be transformed
to a network N ′′ that satisfies the requirements (in particular, with exponentially-bounded weights
and biases). The last stage is the most delicate one, and can be roughly described as follows: We
create a huge set of linear inequalities, which encodes the requirement that the weights and biases of
each neuron in N2 produce the appropriate outputs, separately for each and every possible input x̃
from our grid Id (up to polynomially small error). Moreover, it can be shown that the size of the
elements in our linear inequalities is poly(d). Hence, invoking Lemma A.6, we get that there is a
solution to the linear system (namely, a set of weights and biases) which approximate N2, yet have
only 2poly(d)-sized entries.

We now turn to the formal proof. First, the network N1 is obtained by proceeding inductively from
the output neuron towards the input neurons. Each hidden neuron with fan-out c > 1 is duplicated c
times. Let li, l′i be the number of hidden neurons in the i-th layer of N and N1 respectively. Note
that l′i ≤ li · l′i+1. Since k is constant and li = poly(d) then the size of N1 is also poly(d).

In order to construct N2, we, again, proceed inductively from the output neuron nout of N1 towards
the input neurons. Let w1, . . . , wl be the weights of the output neuron and let n1, . . . , nl be the
corresponding hidden neurons. That is, for each i ∈ [l] there is an edge with weight wi 6= 0 between
ni and nout. Now, for each i ∈ [l], we replace the weight wi of the edge (ni, nout) by wi

|wi| , and
multiply the weights and bias of ni by |wi|. Note that now the multiplication by |wi| is done before
ni instead of after it, but nout still receives the same input as in N1. Since the fan-out of every hidden
neuron in N1 is 1, we can repeat the same operation also in the predecessors of n1, . . . , nl, and
continue until the first hidden layer. Hence, we obtain a network N2 where the weights in layers
2, . . . , k are all in {−1, 1}.
We now show that N2 can be transformed to a network N ′′ that satisfies the requirements. Let l1
be the number of neurons in the first hidden layer of N2, let mw = d · l1 be the number of weights
in the first layer (including 0 weights), and let mb the number of hidden neurons in N2, that is, the
number of biases in N2. Let m = mw +mb. For each i ∈ [l1] we denote by wi ∈ Rd the weights
of the i-th neuron in the first hidden layer in N2, and for each hidden neuron n in N2 we denote by
bn the bias of n. We define a linear system Az ≤ c where the variables z ∈ Rm correspond to the
weights of the first layer and the biases in N2. We denote by zi the d variables in z that correspond to
wi, and by zn the variable in z that corresponds to bn. Note that each assignment to the variables z
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induces a neural network Nz
2 where the weights in the first layer and the biases in N2 are replaced by

the corresponding variables.

For each x̃ ∈ Id we place in the system Az ≤ c an inequality for each hidden neuron in N2, and
either one or two inequalities for the output neuron. These inequalities are defined by induction on the
depth of the neuron. If ni is the i-th neuron in the first hidden layer and its input in the computation
of N2(x̃) satisfies 〈x̃,wi〉 + bni ≥ 0, then we add the inequality 〈x̃, zi〉 + zni ≥ 0 to the system.
Otherwise, we add the inequality 〈x̃, zi〉 + zni ≤ 0. Note that the variables in the inequality are
zi, zni , and that x̃ is a constant. Let S1 ⊆ {ni : i ∈ [l1]} be the neurons in the first hidden layer
where 〈x̃,wi〉+ bni ≥ 0, that is, the neurons where the ReLU is active in the computation N2(x̃).
Now, the input for each neuron n′ in the second hidden layer in the computation N2(x̃), is of the
form I(n′) =

∑
ni∈S1

ai(〈x̃,wi〉 + bni) + bn′ where ai ∈ {−1, 0, 1} is the weight of the edge
(ni, n

′) in N2. Let I ′(n′) =
∑
ni∈S1

ai(〈x̃, zi〉+ zni) + zn′ . If I(n′) ≥ 0 then we add the inequality
I ′(n′) ≥ 0, and otherwise we add I ′(n′) ≤ 0. Note that the variables in the inequality are zi, zni , zn′
(for the appropriate indices i) and that x̃, ai are constants. Thus, this inequality is linear.

We denote by S2 the set of neurons in the second hidden layer where the ReLU is active in the
computation N2(x̃), and for each neuron n′′ in the third hidden layer we define I(n′′) and I ′(n′′)
and add a linear inequality analogously. We continue until we reach the output neuron nout. Let
I(nout) be the input to nout in the computation N2(x̃), and let I ′(nout) be the corresponding linear
expression, where the variables are z and the constants are x̃ and the weights in layers 2, . . . , k
(which are all in {−1, 0, 1}). Note that I(nout) = N2(x̃) = N(x̃). If N(x̃) ∈ [−B,B], then let
−Bp′(d) ≤ j ≤ Bp′(d)− 1 be an integer such that j

p′(d) ≤ I(nout) ≤ j+1
p′(d) . Now, we add the two

inequalities j
p′(d) ≤ I ′(nout) ≤ j+1

p′(d) , where j, p′(d) are constants. If N(x̃) > B, then we add the
inequality I ′(nout) ≥ B, and if N(x̃) < −B, then we add the inequality I ′(nout) ≤ −B.

Note that if z satisfies all the inequalities Az ≤ c, then for each neuron n, the expression I ′(n) is
consistent with the set of active ReLUs according to the inequalities of the previous layers. Therefore,
the input to n in the computation Nz

2 (x̃) is I ′(n). Hence, for such z we have for every x̃ ∈ Id
that if N2(x̃) ∈ [−B,B] then |Nz

2 (x̃) − N2(x̃)| ≤ 1
p′(d) , if N2(x̃) > B then Nz

2 (x̃) ≥ B, and if
N2(x̃) < −B then Nz

2 (x̃) ≤ −B. Note that Az ≤ c has a solution in Rm, since the weights and
biases in N2 satisfy all the inequalities. The entries in A, c are either integers with absolute value at
most poly(d), or of the form q · x̃i = q′

p(d) or q
p′(d) where q, q′ are integers with absolute values at

most poly(d). Therefore, by Lemma A.6, there is an integer a = poly(d) such that the linear system
(p(d)p′(d)A)z ≤ p(d)p′(d)c has a solution z =

(
s1
t , . . . ,

sm
t

)
, where s1, . . . , sm, t are integers of

absolute value at most (2m + 1)!a2m+1 ≤ 2poly(d). Hence, the network N ′′ = Nz
2 satisfies the

requirements.

Let N ′′ be the network from Lemma A.7 with p′(d) =
√

50
ε . The following lemma follows easily.

Lemma A.8. For every x̃ ∈ Id we have∣∣[N ′′(x̃)][−B,B] −N ′(x̃)
∣∣ ≤ 1

p′(d)
.

Proof. • If N(x̃) ∈ [−B,B] then |N ′′(x̃)−N(x̃)| ≤ 1
p′(d) and we have∣∣[N ′′(x̃)][−B,B] −N ′(x̃)

∣∣ ≤ |N ′′(x̃)−N ′(x̃)| = |N ′′(x̃)−N(x̃)| ≤ 1

p′(d)
.

• If N(x̃) > B then N ′′(x̃) ≥ B, and therefore∣∣[N ′′(x̃)][−B,B] −N ′(x̃)
∣∣ = |B −B| = 0 .

• If N(x̃) < −B then N ′′(x̃) ≤ −B, and therefore∣∣[N ′′(x̃)][−B,B] −N ′(x̃)
∣∣ = | −B − (−B)| = 0 .
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The weights and biases in N ′′ might be exponential, but they have a binary representation with
poly(d) bits. This property enables us to simulate [N ′′(x̃)][−B,B] using arithmetic operations on
binary vectors.

We now show how to simulate [N ′′(x̃)][−B,B] using binary operations. Recall that the input x̃ to N ′′

is such that every component x̃i is of the form qi
p(d) for some integer qi with absolute value at most

poly(d). We will represent each component in the input by the binary representation of the integer
p(d)x̃i. It implies that while simulating N ′′, we should replace each weight w in the first layer of N ′′
with w′ = w

p(d) . Then, w · x̃i = w′ · (p(d)x̃i). Recall that the network N ′′ is such that all weights
in layers 2, . . . , k in N ′′ are in {−1, 1} and all weights in the first layer and biases are of the form
si
t for some positive integer t ≤ 2poly(d), and integers si with |si| ≤ 2poly(d). We represent each

number of the form v
t by the binary representation of v. Since for all weights and biases si

t in N ′′ we
can multiply both t and si by p(d), we can assume w.l.o.g. that p(d) | si and p(d) | t. Then, for each
weight w = si

t in the first layer of N ′′, we represent w′ = w
p(d) = si

t·p(d) by the binary representation
of the integer si

p(d) .

Since the input to a neuron in the first hidden layer ofN ′′ is a sum of the form I =
∑
i∈[d] wix̃i+b =∑

i∈[d] w
′
i(p(d)x̃i) + b, then in order to simulate it we need to compute multiplications and additions

of binary vectors. Note that p(d)x̃i are integers, w′i are represented by the binary representation of the
integers qi such that w′i = qi

t , and b is represented by the binary representation of the integer q such
that b = q

t . Then, I is also of the form v
t for an integer v with |v| ≤ 2poly(d), and therefore it can be

represented by the binary representation of v. Since the biases inN ′′ are of the form si
t for integers si,

and the weights in layers 2, . . . , k are in {−1, 1}, then in the computation N ′′(x̃) all values, namely,
inputs to neurons in all layers, are of the form v

t where v is an integer with |v| ≤ 2poly(d). That is, a
binary representation of v requires poly(d) bits. Thus, since all values have t in the denominator,
then we ignore it and work only with the numerator.

Let C ′ = poly(d) be such that for all x̃ ∈ Id, all inputs to neurons in the computation N ′′(x̃)

are of the form v
t where v is an integer with absolute value at most 2C

′
. Namely, all values in

the computation can be represented by C ′ bits. Let C = poly(d) be such that every integer v
of absolute value at most 2C

′
+ Bt has a binary representation with C bits. Also, assume that

C ≥ log(2Rp(d) + 1). Such C will be sufficiently large in order to represent all inputs p(d)x̃i and
all values in our simulation of [N ′′(x̃)][−B,B].

We now show how to simulate p(d)x̃ 7→ [N ′′(x̃)][−B,B] +B with a threshold circuit.

Lemma A.9. There is a threshold circuit T of depth 3k + 1, width poly(d), and poly(d)-bounded
weights, whose inputs are the C-bits binary representations of:

• p(d)x̃i for every i ∈ [d].

• si
p(d) and −sip(d) for every weight sit in the first layer of N ′′.

And its outputs are:

• The C-bits binary representation of v such that:

– If N ′′(x̃) ∈ [−B,B] then v
t = N ′′(x̃) +B.

– Otherwise v = 0.

• A bit c such that c = 1 iff N ′′(x̃) > B.

Proof. In order to simulate the first layer of N ′′, we first need to compute a sum of the form∑
i∈[d] wi ·zi wherewi = si

p(d) and zi = p(d)x̃i are the inputs and are given in a binary representation.
Hence, we are required to perform binary multiplications and then binary iterated addition, namely,
addition of multiple numbers that are given by binary vectors. Binary iterated addition can be done
by a depth-2 threshold circuit with polynomially-bounded weights and polynomial width, and binary
multiplication can be done by a depth-3 threshold circuit with polynomially-bounded weights and
polynomial width ([28]). The depth-3 circuit for multiplication shown in [28] first computes the
partial products and then uses the depth-2 threshold circuit for iterated addition in order to compute
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their sum. They show it for a multiplication of two n-bit numbers that results in a 2n-bit number.
The same method can be used also in our case for a multiplication of two C-bit numbers that results
in a C-bit number, since C was chosen such that we are guaranteed that there is no overflow. Also,
in two’s complement representation, multiplication and addition of signed numbers can be done
similarly to the unsigned case. In our case, we need to compute multiplication and then iterated
addition. Hence, instead of using a depth-5 threshold circuit that computes multiplications and then
computes the iterated addition, we can use a depth-3 threshold circuit that first computes all partial
products for all multiplications, and then computes a single iterated addition.

Since the hidden neurons in N ′′ have biases, we need to simulate sums of the form b+
∑
i∈[d] wi · zi.

Hence, the binary iterated addition should also include b. Therefore, the bias b is hardwired into the
circuit T . That is, for every bias b = v

t , we add C gates to the first hidden layer with fan-in 0 and
with biases in {0, 1} that correspond to the binary representation of v.

Simulating the ReLUs of the first hidden layer in N ′′ can be done as follows. Let v be an integer and
let vbin(C) ∈ {0, 1}C be its binary representation. Recall that in the two’s complement representation
the most significant bit (MSB) is 1 iff the number is negative. Now, we reduce the value of the
MSB, namely vbin(C)

C , from all other C − 1 bits vbin(C)
1 , . . . , v

bin(C)
C−1 . Thus, we transform vbin(C) to(

sign(v
bin(C)
1 − vbin(C)

C ), . . . , sign(v
bin(C)
C−1 − vbin(C)

C ), 0
)

. Now, if v < 0, that is vbin(C)
C = 1, then

we obtain a binary vector whose bits are all 0. If v ≥ 0 then vbin(C)
C = 0 and therefore vbin(C) is

not changed. Thus, simulating a ReLU of N ′′ requires one additional layer in the threshold circuit.
Overall, the output of the first hidden layer of N ′′ can be computed by a depth-4 threshold circuit.

Now, the weights in layers 2, . . . , k in N ′′ are in {−1, 1}. Note that simulating multiplication by
a threshold circuit, as discussed above, requires 3 layers. However, we need to compute values of
the form b+

∑
i ai · zi where ai ∈ {−1, 1}, and zi, b are given by binary vectors. In order to avoid

multiplication, we keep both the values of the computation N ′′(x̃) in each layer, and their negations.
That is, the circuit T keeps both the binary representation of zi and the binary representation of
−zi, and then simulating each layer can be done by iterated addition, without binary multiplication.
Keeping both zi and −zi in each layer is done as follows. When T simulates the first layer of N ′′, it
computes values of the form z = b +

∑
i∈[d] wi · (p(d)x̃i), and in parallel it should also compute

−z = −b+
∑
i∈[d](−wi) · (p(d)x̃i). Note that both wi and−wi are given as inputs to T , and that the

binary representation of v such that −b = v
t can be hardwired into T , similarly to the case of b. Then,

when simulating a ReLU ofN ′′, it reduces the MSB of z also from all bits of the binary representation
of −z. Thus, if z < 0 then both z and −z become 0. Now, computing z′ = b′ +

∑
i ai · zi where

ai ∈ {−1, 1} and zi, b′ are binary numbers, can be done by iterated addition, and also computing
−z′ = −b′ +

∑
i−ai · zi can be done by iterated addition. Note that the binary representations

of ±v such that b′ = v
t are also hardwired into T . Since iterated addition can be implemented by

a threshold circuit of depth 2, the sum z′ = b′ +
∑
i ai · zi can be implemented by 2 layers in T ,

and then implementing [z′]+, requires one more layer as discussed above. Thus, each of the layers
2, . . . , k − 1 in N ′′ requires 3 layers in T .

LetN ′′(x̃) = v
t . When simulating the final layer ofN ′′, we also add (as a part of the iterated addition)

the hardwired binary representation of Bt. That is, instead of computing the binary representation of
v, we compute the binary representation of v′ = v +Bt. We also compute the binary representation
of v′′ = −v + Bt. Note that v

′

t = N ′′(x̃) + B and v′′

t = −N ′′(x̃) + B. Now, the bit c that T
should output is the MSB of v′′, since v′′ is negative iff N ′′(x̃) > B. The C-bits binary vector that T
outputs is obtained from v′, v′′ by adding one final layer as follows. Let MSB(v′) and MSB(v′′) be
the MSBs of v′, v′′. In the final layer we reduce MSB(v′) + MSB(v′′) from all bits of v′. That is, if
either v′ or v′′ are negative, then we output 0, and otherwise we output v′. Now, if N ′′(x̃) ∈ [−B,B]
then v′, v′′ ∈ [0, 2Bt], and we output v′, which corresponds to N ′′(x̃) + B. If N ′′(x̃) < −B
then v′

t = N ′′(x̃) + B < 0, and therefore MSB(v′) = 1, and we output 0. If N ′′(x̃) > B then
v′′

t = −N ′′(x̃) +B < 0, and therefore MSB(v′′) = 1, and we output 0. Thus, simulating the final
layer of N ′′ requires 3 layers in T : 2 layers for the iterated addition, and one layer for transforming
v′, v′′ to the required output.

Finally, the depth of T is 3k + 1 since simulating the first layer of N ′′ requires 4 layers in T , and
each additional layer in N ′′ required 3 layers in T .

20



The following simple lemma shows that threshold circuits can be transformed to neural networks.
Lemma A.10. Let T be a threshold circuit with d inputs, q outputs, depth m and width poly(d).
There is a neural network N with q outputs, depth m + 1 and width poly(d), such that for every
x ∈ {0, 1}d we have N (x) = T (x). If T has poly(d)-bounded weights then N also has poly(d)-
bounded weights. Moreover, for every input x ∈ Rd the outputs of N are in [0, 1].

Proof. Let g be a gate in T , and let w ∈ Zl and b ∈ Z be its weights and bias. Let n1 be a neuron
with weights w and bias b, and let n2 be a neuron with weights w and bias b− 1. Let y ∈ {0, 1}l.
Since (〈w,y〉 + b) ∈ Z, we have [〈w,y〉 + b]+ − [〈w,y〉 + b − 1]+ = sign(〈w,y〉 + b). Hence,
the gate g can be replaced by the neurons n1, n2. We replace all gates in T by neurons and obtain a
network N . Since each output gate of T is also replaced by two neurons, N has m+ 1 layers. Since
for every x ∈ Rd, weight vector w and bias b we have [〈w,x〉+ b]+ − [〈w,x〉+ b− 1]+ ∈ [0, 1]
then for every input x ∈ Rd the outputs of N (x) are in [0, 1].

We are now ready to construct the network N̂ . Let δ′ = ε2

50·36B2 . The network N̂ is such that w.p. at
least 1− δ′ we have N̂(x) = [N ′′(x̃)][−B,B]. It consists of three parts.

First, N̂ transforms w.p. ≥ 1− δ′ the input x to the (C · d)-bits binary representation of p(d)x̃. By
Lemma A.5, it can be done with a 2-layers neural network N1.

Second, let T be the threshold circuit from Lemma A.9. By Lemma A.10, T can be implemented by
a neural network N2 of depth 3k + 2. Note that the input to N2 has two parts:

1. The (C · d)-bits binary representation of p(d)x̃. This is the output of N1.
2. The binary representations of ±sip(d) for every weight si

t in the first layer of N ′′. This is

hardwired into N̂ by hidden neurons with fan-in 0 and appropriate biases in {0, 1}.

Thus, usingN2 the network N̂ transforms the binary representation of p(d)x̃ to the output (vbin(C), c)
of T .

Third, N̂ transforms (vbin(C), c) to [N ′′(x̃)][−B,B] as follows. Let v be the integer that corresponds
to the binary vector vbin(C). The properties of v and c from Lemma A.9, imply that [N ′′(x̃)][−B,B] =
v
t + c · 2B −B, since we have:

• If N ′′(x̃) ∈ [−B,B] then v
t = N ′′(x̃) +B and c = 0.

• If N ′′(x̃) < −B then v = 0 and c = 0.
• If N ′′(x̃) > B then v = 0 and c = 1.

Hence, we need to transform (vbin(C), c) to the real number vt + c · 2B −B. Note that v ≥ 0, and
therefore we have

v

t
=

∑
i∈[C−1]

v
bin(C)
i · 2i−1

t
.

Also, note that vt ∈ [0, 2B], and therefore for every i ∈ [C − 1] we have vbin(C)
i · 2i−1

t ≤ 2B. Hence,
we can ignore every i > log(2Bt) + 1. Thus,

v

t
=

∑
i∈[log(2Bt)+1]

v
bin(C)
i · 2i−1

t
. (9)

Since for i ∈ [log(2Bt) + 1] we have 2i−1

t ≤ 2B, then in the above computation of vt the weights
are positive numbers smaller or equal to 2B. Thus, we can transform (vbin(C), c) to v

t + c · 2B −B
in one layer with poly(d)-bounded weights. In order to avoid bias in the output neuron, the additive
term −B is hardwired into N̂ by adding a hidden neuron with fan-in 0 and bias 1 that is connected to
the output neuron with weight −B.

Since the final layers ofN1 andN2 do not have activations and can be combined with the next layers,
and since the third part of N̂ is a sum, then the depth of N̂ is 3k + 3.
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Thus, we have w.p. at least 1− δ′ that N̂(x) = [N ′′(x̃)][−B,B]. By Lemma A.8, it implies that w.p.
at least 1− δ′ we have ∣∣∣N̂(x)− Ñ(x)

∣∣∣ ≤ 1

p′(d)
. (10)

However, it is possible (w.p. at most δ′) that N1 fails to transform x to the binary representation of
p(d)x̃, and therefore the above inequality does not hold. Still, even in this case we can bound the
output of N̂ as follows. IfN1 fails to transform x to p(d)x̃, then the input toN2 may contains values
other than {0, 1}. However, by Lemma A.10, the network N2 outputs c and vbin(C) such that each
component is in [0, 1]. Now, when transforming (vbin(C), c) to v

t + c · 2B −B in the final layer of
N̂ , we compute v

t by the sum in Eq. 9. Since vbin(C)
i ∈ [0, 1] for every i, this sum is at least 0 and at

most
1

t
· 2log(2Bt)+1 = 4B .

Therefore, the output of N̂ is at most 4B + 1 · 2B −B = 5B, and at least 0 + 0 · 2B −B = −B.
Thus, for every x we have N̂(x) ∈ [−B, 5B]. Since for every x we have Ñ(x) ∈ [−B,B], then we
have ∣∣∣N̂(x)− Ñ(x)

∣∣∣ ≤ 6B .

Combining the above with Eq. 10 and plugging in δ′ = ε2

50·36B2 and p′(d) =
√

50
ε , we have

E
x∼µ

(N̂(x)−Ñ(x))2 ≤ (1−δ′)
(

1

p′(d)

)2

+δ′ ·(6B)2 = (1−δ′) ε
2

50
+

ε2

50 · 36B2
·36B2 ≤

( ε
5

)2

.

Therefore ‖N̂ − Ñ‖L2(µ) ≤ ε
5 as required.

A.2 Proof of Theorem 3.2

The proof follows the same ideas as the proof of Theorem 3.1, but is simpler. Consider the functions
f ′ and N ′ that are defined in the proof of Theorem 3.1. For every x ∈ Id we denote x̃ = x, and
Ñ(x) = N ′(x̃) = N ′(x). Now, from the same arguments as in the proof of Theorem 3.1, it follows
that we can bound ‖f ′ − f‖L2(D) and ‖N ′ − f ′‖L2(D). Since ‖Ñ −N ′‖L2(D) = 0, it remains to
show that Lemma A.2 holds also in this case.

The network N̂ will have a similar structure to the one in the proof of Lemma A.2.

First, it transforms the input x to the binary representation of p(d)x̃ = p(d)x. This transformation is
similar to the one from the proof of Lemma A.5. However, since D is such that for every i ∈ [d] the
component xi is of the form j

p(d) for some integer j, then for an appropriate ∆, we have for every
integer l that

Prx∼D

(
xi ∈

[
l

p(d)
− 1

2p(d)
− ∆

p(d)
,

l

p(d)
− 1

2p(d)
+

∆

p(d)

])
= 0 .

Hence, there is a depth-2 network with poly(d) width and poly(d)-bounded weights, that transforms
x to the binary representation of p(d)x̃ and succeeds w.p. 1.

Recall that in the proof of Lemma A.2, the next parts of N̂ transform for every x̃ the binary
representation of p(d)x̃ to [N ′′(x̃)][−B,B]. Since this transformation is already discrete and does not
depend on the input distribution, we can also use it here. Then, by lemma A.8 we have for every x̃
that ∣∣[N ′′(x̃)][−B,B] −N ′(x̃)

∣∣ ≤ 1

p′(d)
.

Thus, for p′(d) = 5
ε , we obtain a network N̂ such that w.p. 1 we have

∣∣∣N̂(x)− Ñ(x)
∣∣∣ ≤ ε

5 , and

therefore ‖N̂ − Ñ‖L2(D) ≤ ε
5 .

22



A.3 Proof of Theorem 3.3

Let ε = 1
poly(d) , and let N be a neural network of depth k′ such that ‖N − f‖L2(µ) ≤ ε

5 . In the

proof of Theorem 3.1 we constructed a network N̂ of depth 3k′ + 3 such that ‖N̂ − f‖L2(µ) ≤ ε.
The network N̂ is such that in the first two layers the input x is transformed w.h.p. to the binary
representation of p(d)x̃. This transformation requires two layers, denoted by N1. Since the second
layer in N1 does not have activation, it is combined with the next layer in N̂ . The next layers in N̂ ,
denoted by N2, implement a threshold circuit T of depth 3k′ + 1 and width poly(d). The depth of
N2 is 3k′ + 2. Since the final layer of N2 does not have activation, it is combined with the next layer
in N̂ . Finally, the output of N̂ is obtained by computing a linear function over the outputs of N2.

Let g : {0, 1}d′ → {0, 1} be the function that T computes. Note that d′ = poly(d). Assume that g
can be computed by a threshold circuit T ′ of depth k − 2 and width poly(d′). By Lemma A.10, the
threshold circuite T ′ can be implemented by a neural network N ′2 of depth k − 1 and width poly(d′).
Consider the neural network N̂ obtained from N̂ by replacing N2 with N ′2. The depth of N̂ is k.
The same arguments from the proof of Theorem 3.1 for showing that ‖N̂ − f‖L2(µ) ≤ ε now apply
on N̂ , and hence ‖N̂ − f‖L2(µ) ≤ ε. Therefore, f can be approximated by a network of depth k,
in contradiction to the assumption. Hence the function g cannot be computed by a poly(d′)-sized
threshold circuit of depth k − 2.

A.4 Proof of Theorem 3.4

Let ε = 1
poly(d) , and let N be a neural network of depth k′ such that ‖N − f‖L2(D) ≤ ε

5 . In the proof

of Theorem 3.2 we constructed a network N̂ of depth 3k′ + 3 such that ‖N̂ − f‖L2(D) ≤ ε. The
structure of the network N̂ is similar to the corresponding network from the proof of Theorem 3.1.
Now, the proof follows the same lines as the proof of Theorem 3.3.

A.5 Proof of Theorem 3.5

Let f(x) = g(‖x‖) where g : R→ R. Let ε = 1
poly(d) . By Theorem 3.1, there is a neural network

N of a constant depth k, width poly(d), and poly(d)-bounded weights, such that Ex∼µ(N(x) −
f(x))2 ≤

(
ε
3

)2
. Since N has a constant depth, poly(d) width and poly(d)-bounded weights, then it

is poly(d)-Lipschitz. Also, as we show in the proof of Theorem 3.1, the network N is bounded by
some B = poly(d), namely, for every x ∈ Rd we have |N(x)| ≤ B.

Let r = ‖x‖ and let µr be the distribution of r where x ∼ µ. Let U(Sd−1) be the uniform distribution
on the unit sphere in Rd. Since µ is radial, we have( ε

3

)2

≥ E
x∼µ

(N(x)−f(x))2 = E
z∼U(Sd−1)

E
r∼µr

(N(rz)−f(rz))2 = E
z∼U(Sd−1)

E
r∼µr

(N(rz)−g(r))2 .

Therefore, there is some u ∈ Sd−1 such that Er∼µr (N(ru) − g(r))2 ≤
(
ε
3

)2
. Let Nu : R → R

be such that Nu(t) = N(tu). It can be implemented by a network of depth k that is obtained by
precedingN with a layer that computes t 7→ tu (and does not have activation). Thus, Er∼µr (Nu(r)−
g(r))2 ≤

(
ε
3

)2
. Let h : Rd → R be such that h(x) = Nu(‖x‖). Note that

E
x∼µ

(h(x)− f(x))2 = E
x∼µ

(Nu(‖x‖)− g(‖x‖))2 = E
r∼µr

(Nu(r)− g(r))2 ≤
( ε

3

)2

. (11)

Since µ has an almost-bounded conditional density, then by Lemma A.4, there is R1 = 1
poly(d) such

that for every i ∈ [d] we have

Prx∼µ (xi ∈ [−R1, R1]) ≤ ε2

72B2
.

Hence,

Prx∼µ (‖x‖ ≤ R1) ≤ ε2

72B2
.
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Also, since µ has an almost-bounded support, there exists R1 < R2 = poly(d) such that

Prx∼µ (‖x‖ ≥ R2) ≤ ε2

72B2
.

Thus,

Prr∼µr (R1 ≤ r ≤ R2) ≥ 1− ε2

36B2
. (12)

Since the network N is bounded by B then Nu is also bounded by B, namely, for every t ∈ R we
have |Nu(t)| ≤ B. Moreover, since N is poly(d)-Lipschitz, then Nu is also poly(d)-Lipschitz. Let
N ′u : R→ R be such that

N ′u(t) =



0 t ≤ R1

2
2Nu(R1)

R1
· t−Nu(R1) R1

2 < t ≤ R1

Nu(t) R1 < t ≤ R2

−Nu(R2)
R2

· t+ 2Nu(R2) R2 < t ≤ 2R2

0 t > 2R2

.

Note that N ′u agrees with Nu on [R1, R2], supported on
[
R1

2 , 2R2

]
, bounded by B, and poly(d)-

Lipschitz. Let h′ : Rd → R be such that h′(x) = N ′u(‖x‖). We have

E
x∼µ

(h′(x)− h(x))2 = E
x∼µ

(N ′u(‖x‖)−Nu(‖x‖))2 = E
r∼µr

(N ′u(r)−Nu(r))2 .

By Eq. 12 the functions Nu and N ′u agree w.p. at least 1− ε2

36B2 . Also, since both Nu and N ′u are
bounded by B, we have |Nu(r)−N ′u(r)| ≤ 2B for every r. Hence, the above is at most

ε2

36B2
· (2B)2 + 0 =

( ε
3

)2

. (13)

Now, we need the following Lemma.

Lemma A.11. [7] Let f : R → R be a poly(d)-Lipschitz function supported on [r,R], where
r = 1

poly(d) and R = poly(d). Then, for every δ = 1
poly(d) , there exists a neural network N of depth

3, width poly(d), and poly(d)-bounded weights, such that

sup
x∈Rd

|N (x)− f(‖x‖)| ≤ δ .

Since N ′u is poly(d)-Lipschitz and supported on
[
R1

2 , 2R2

]
, then by Lemma A.11 there exists a

network N of depth 3, width poly(d), and poly(d)-bounded weights , such that

sup
x∈Rd

|N (x)−N ′u(‖x‖)| ≤ ε

3
.

Therefore, we have

‖N − h′‖L2(µ) ≤ ‖N − h′‖∞ = sup
x∈Rd

|N (x)−N ′u(‖x‖)| ≤ ε

3
.

Combining the above with Eq. 11 and 13, we have

‖N − f‖L2(µ) ≤ ‖N − h′‖L2(µ) + ‖h′ − h‖L2(µ) + ‖h− f‖L2(µ) ≤
ε

3
+
ε

3
+
ε

3
= ε .

A.6 Proof of Theorem 3.6

Lemma A.12. Let f : R→ R be a function that can be implemented by a neural network of width n
and constant depth. Then, f can be implemented by a network of width poly(n) and depth 2.
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Proof. A neural network with input dimension 1, constant depth, and width n, is piecewise linear
with at most poly(n) pieces ([29]). Therefore, f consists of m = poly(n) linear pieces.

Let −∞ = a0 < a1 < . . . < am−1 < am =∞ be such that f is linear in every interval (ai, ai+1).
For every i ∈ [m] Let αi be the derivative of f in the linear interval (ai−1, ai). Now, we have

f(t) = f(a1)− α1[a1 − t]+ +
∑

2≤i≤m−1

(αi[t− ai−1]+ − αi[t− ai]+) + αm[t− am−1]+ .

Note that f can be implemented by a network of depth 2 and width poly(n). In order to avoid bias in
the output neuron, we implement the additive constant term f(a1) by adding a hidden neuron with
fan-in 0 and bias 1, and connecting it to the output neuron with weight f(a1).

Let ε = 1
poly(d) . Let N : Rd → R be a neural network of a constant depth and poly(d)

width, such that Ex∼µ(N(x) − f(x))2 ≤
(
ε
d

)2
. For z ∈ Rd−1 and t ∈ R we denote

zi,t = (z1, . . . , zi−1, t, zi, . . . , zd−1) ∈ Rd. Since µ is such that the components are drawn in-
dependently, then for every i ∈ [d] we have

E
x∼µ

(N(x)− f(x))2 = E
z∼µ[d]\i

E
t∼µi

(N(zi,t)− f(zi,t))
2 ≤

( ε
d

)2

,

and therefore for every i there exists y ∈ Rd−1 such that

E
t∼µi

(N(yi,t)− f(yi,t))
2 ≤

( ε
d

)2

.

Let f ′i : R→ R such that

f ′i(t) = N(yi,t)−
∑

j∈[d]\{i}

fj((yi,t)j) .

Note that

E
t∼µi

(f ′i(t)− fi(t))
2

= E
t∼µi

N(yi,t)−
∑

j∈[d]\{i}

fj((yi,t)j)− fi(t)

2

= E
t∼µi

(N(yi,t)− f(yi,t))
2 ≤

( ε
d

)2

. (14)

Now, the function f ′i can be implemented by a neural network of depth 2 and width poly(d) as follows.
First, note the by Lemma A.12 it is sufficient to show that f ′i can be implemented by a network N ′i of
a constant depth and poly(d) width. Since N is a network of constant depth, y is a constant, and
fj((yi,t)j) for j ∈ [d] \ {i} are also constants, implementing such N ′i is straightforward.

Let N ′ be the depth-2, width-poly(d) network such that N ′(x) =
∑
i∈[d] f

′
i(xi). This network is

obtained from the networks for f ′i . For every i ∈ [d] let gi : Rd → R be such that gi(x) = fi(xi).
Also, let g′i : Rd → R be such that g′i(x) = f ′i(xi). Note that f(x) =

∑
i∈[d] gi(x) and N ′(x) =∑

i∈[d] g
′
i(x). Now, by Eq. 14, for every i ∈ [d] we have

E
x∼µ

(g′i(x)− gi(x))
2

= E
t∼µi

(f ′i(t)− fi(t))
2 ≤

( ε
d

)2

.

Therefore, ‖g′i − gi‖L2(µ) ≤ ε
d .

Hence, we have

‖N ′ − f‖L2(µ) =

∥∥∥∥∥∥
∑
i∈[d]

g′i −
∑
i∈[d]

gi

∥∥∥∥∥∥
L2(µ)

≤
∑
i∈[d]

‖g′i − gi‖L2(µ) ≤ d ·
ε

d
= ε .

25



B Almost-bounded conditional density

In this section we show for some common distributions that they indeed have almost-bounded
conditional densities.

B.1 Gaussians, mixtures of Gaussians and Gaussian smoothing

We use the following property of conditional normal distributions.
Lemma B.1. (e.g., [4]) Let N (µ,Σ) be a multivariate normal distribution on Rd. For x ∈ Rd we
partition x such that x = (xa, xb), where xa ∈ Rq and xb ∈ Rd−q. Accordingly, we also partition
µ = (µa, µb) and

Σ =

[
Σaa Σab
Σba Σbb

]
,

where the dimensions of the mean vectors and the covariance matrix sub-blocks are chosen to match
the sizes of xa, xb. Let Λ = Σ−1. We denote its partition that correspond to the partition of x by

Λ =

[
Λaa Λab
Λba Λbb

]
.

Then, the distribution of xa conditional on xb = c is the normal distribution N (µ̄, Σ̄), where

µ̄ = µa − Λ−1
aa Λab(c− µb) = µa + ΣabΣ

−1
bb (c− µb) ,

and
Σ̄ = Λ−1

aa = Σaa − ΣabΣ
−1
bb Σba .

Proposition B.1. Let δ = 1
poly(d) . Let Σ be a positive definite matrix of size d× d whose minimal

eigenvalue is at least δ. Let µ ∈ Rd. Then, the multivariate normal distribution N (µ,Σ) has an
almost-bounded conditional density.

Proof. Let Λ = Σ−1. Let λ1, . . . , λd be the eigenvalues of Σ. The eigenvalues of Λ are λ−1
1 , . . . , λ−1

d

and are at most M = 1
δ . Thus, trace(Λ) =

∑
i∈[d] λ

−1
i ≤ dM . Since Λ is positive definite then

all entries on its diagonal are positive, and since their sum is bounded by dM , then we have
0 < Λii ≤ dM for every i ∈ [d].

Let x ∼ N (µ,Σ), let c ∈ Rd−1, and let i ∈ [d]. We now consider the conditional distribution
xi | x1, . . . , xi−1, xi+1, . . . , xd = c. This conditional distribution corresponds to Lemma B.1 with
q = 1. Namely, this is a univariate normal distribution with variance Λ−1

aa where Λaa ∈ R. Since all
entries on the diagonal of Λ are bounded by dM , then the variance σ2 of the conditional distribution
satisfies σ2 ≥ (dM)−1. Since the density of a univariate normal distribution with variance σ2 is

bounded by 1√
2πσ2

, then the density of the conditional distribution is at most 1√
2πσ2

≤
√

dM
2π =

poly(d).

We now consider Gaussian mixtures.
Proposition B.2. Let Σ1, . . . ,Σk be positive definite matrices with eigenvalues at least δ = 1

poly(d) .
Let µ1, . . . , µk be vectors in Rd. For j ∈ [k] let f j be the density function of the normal distribution
N (µj ,Σj). Let f be a density function such that f(x) =

∑
j∈[k] wjf

j(x) with
∑
j∈[k] wj = 1.

Then, f has an almost-bounded conditional density.

Proof. Let i ∈ [d] and let c ∈ Rd−1. For t ∈ R we denote ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈
Rd. As we showed in the proof of Proposition B.1, there is M = poly(d) (that depends on δ) such
that for every j ∈ [k] we have

f ji|[d]\i(t|c) =
f j(ci,t)∫

R f
j(ci,t)dt

≤M .

Hence, we have

fi|[d]\i(t|c) =

∑
j∈[k] wjf

j(ci,t)∫
R
∑
j∈[k] wjf

j(ci,t)dt
≤
∑
j∈[k] wjM

∫
R f

j(ci,t)dt∑
j∈[k] wj

∫
R f

j(ci,t)dt
= M .
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Likewise, we show that the density obtained by applying Gaussian smoothing to a density function,
has an almost-bounded conditional density.
Proposition B.3. Let δ = 1

poly(d) , and let Σ be a positive definite matrix of size d×d whose minimal
eigenvalue is at least δ. Let g be the density function of the multivariate normal distributionN (0,Σ).
Let f be a density function and let f ′ = f ? g be the convolution of f and g. That is, f ′ is the density
function obtained from f by Gaussian smoothing. Then, f ′ has an almost-bounded conditional
density.

Proof. Let i ∈ [d] and let c ∈ Rd−1. For t ∈ R we denote ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈
Rd. For y ∈ Rd, let gy : Rd → R be such that gy(x) = g(x− y). Note that gy is the density of the
normal distribution N (y,Σ). By the proof of Proposition B.1, there is M = poly(d) (that depends
on δ) such that for every y, and every c, t and i, we have

g(ci,t − y)∫
R g(ci,t − y)dt

=
gy(ci,t)∫

R g
y(ci,t)dt

= gyi|[d]\i(t|c) ≤M . (15)

Recall that
f ′(ci,t) = (f ? g)(ci,t) =

∫
Rd
f(y)g(ci,t − y)dy .

Now, we have

f ′i|[d]\i(t|c) =
f ′(ci,t)∫

R f
′(ci,t)dt

=

∫
Rd f(y)g(ci,t − y)dy∫

R
[∫

Rd f(y)g(ci,t − y)dy
]
dt

(Eq. 15)

≤
∫
Rd f(y)M

[∫
R g(ci,t − y)dt

]
dy∫

R
[∫

Rd f(y)g(ci,t − y)dy
]
dt

=
M
∫
Rd
∫
R f(y)g(ci,t − y)dtdy∫

Rd
∫
R f(y)g(ci,t − y)dtdy

= M .

B.2 Uniform distribution on the ball

In the cases of Gaussians, Gaussian mixtures, and Gaussian smoothing, we showed that the conditional
density of xi|x1, . . . , xi−1, xi+1, . . . , xd = c is bounded for every c ∈ Rd−1. Note that the definition
of almost-bounded conditional density allows the conditional density to be greater than M for some
set of c ∈ Rd−1 with a small marginal probability. In the case of the uniform distribution over a
ball in Rd, we show that we cannot bound the conditional density for all c ∈ Rd−1, but we can
bound it for a set in Rd−1 with large marginal probability, which is sufficient by the definition of
almost-bounded conditional density.

Let µ be the uniform distribution over the ball of a constant radius R in Rd. Let c ∈ Rd−1 be such
that

∑
j∈[d−1] c

2
j = R2 − 1

2d
. Let i ∈ [d]. For t ∈ R, let ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈ Rd.

Note that µi|[d]\i(t|c) = 0 for every t such that
∑
j∈[d−1] c

2
j + t2 > R2, namely, for every

|t| >
√
R2 −

∑
j∈[d−1]

c2j =

√
1

2d
=

1

2d/2
.

Hence, the conditional density µi|[d]\i(t|c) =
µ(ci,t)
µ[d]\i(c) is uniform on the interval

[
− 1

2d/2
, 1

2d/2

]
.

Therefore, we have

µi|[d]\i(t|c) =
1

2 · 1
2d/2

= 2
d
2−1 .

Thus, for such c we cannot bound µi|[d]\i(t|c) with a polynomial. However, as we show in the
following proposition, the marginal probability to obtain such c is small, and µ has an almost-
bounded conditional density.
Proposition B.4. Let µ be the uniform distribution over the ball of radius R ≥ 1

poly(d) in Rd. Then,
µ has an almost-bounded conditional density.
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Proof. Let ε = 1
poly(d) and let M =

√
d

2R
√

2ε
. Let i ∈ [d] and let c ∈ Rd−1. We de-

note r =
√∑

j∈[d−1] c
2
j . Note that µi|[d]\i(t|c) is the uniform distribution over the interval[

−
√
R2 − r2,

√
R2 − r2

]
. Hence, for every t in this interval we have

µi|[d]\i(t|c) =
1

2
√
R2 − r2

.

Note that if r2 ≤ R2 − 1
4M2 then µi|[d]\i(t|c) ≤M . Therefore, we have

Prc∼µ[d]\i

(
∃t s.t. µi|[d]\i(t|c) > M

)
≤ Prc∼µ[d]\i

 ∑
j∈[d−1]

c2j > R2 − 1

4M2


≤ Prx∼µ

∑
j∈[d]

x2
j > R2 − 1

4M2

 .

Let Vd(R) be the volume of the ball of radius R in Rd. Recall that Vd(R) = Vd(1) ·Rd. Note that
the above equals to

1

Vd(R)
·

(
Vd(R)− Vd

(√
R2 − 1

4M2

))
= 1−

(√
R2 − 1

4M2

)d
Rd

= 1−
(

1− 1

4M2R2

)d/2
.

By Bernoulli’s inequality, for every z ≥ −1 and y ≥ 1 we have (1 + z)y ≥ 1 + yz. Therefore, the
above is at most

1−
(

1− d

8M2R2

)
=

d

8M2R2
.

Plugging in M =
√
d

2R
√

2ε
, we obtain

Prc∼µ[d]\i

(
∃t s.t. µi|[d]\i(t|c) > M

)
≤ ε .

B.3 Distributions from existing depth-separation results

As we described in Section 1, the depth-separation result of [30], and the results that rely on it (e.g.,
[24, 32, 17]), are with respect to the uniform distribution on [0, 1]d. Thus, each component is chosen
i.i.d. from the uniform distribution on the interval [0, 1], and therefore its conditional density is
bounded by the constant 1.

The depth-separation result of [6] is for the function f(x1,x2) = sin(πd3〈x1,x2〉) with respect
to the uniform distribution on Sd−1 × Sd−1, namely, both x1 and x2 are on the unit sphere. In
[25], it is shown that this result can be easily reduced to a depth-separation result for the function
f(x) = sin(1

2πd
3 ‖x‖) and an L∞-type approximation. Moreover, from their proof it follows that

this reduction applies also to an L2 approximation with respect to an input x = x1+x2

2 where x1 and
x2 are drawn i.i.d. from the uniform distribution on Sd−1. We now show that this distribution has an
almost-bounded conditional density. We first find the density function of ‖x‖.
Lemma B.2. Let x = x1+x2

2 where x1 and x2 are drawn i.i.d. from the uniform distribution on
Sd−1. Then, the distribution of ‖x‖ has the density

fr(r) =
1

B
(

1
2 ,

d−1
2

)2d−1rd−2(1− r2)
d−3
2 ,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function, and r ∈ (0, 1).
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Proof. Let x = x1+x2

2 where x1 and x2 are drawn i.i.d. from the uniform distribution on Sd−1. Note
that

‖x‖2 =
1

4

(
‖x1‖2 + ‖x2‖2 + 2x>1 x2

)
=

1

4

(
2 + 2x>1 x2

)
=

1

2

(
1 + x>1 x2

)
. (16)

Since x1 and x2 are independent and uniformly distributed on the sphere, then the distribution of
x>1 x2 equals to the distribution of (1, 0, . . . , 0)x2, which equals to the marginal distribution of the
first component of x2. Let z be the first component of x2. By standard results (cf. [8]), the distribution
of z2 is Beta( 1

2 ,
d−1

2 ), namely, a Beta distribution with parameters 1
2 ,

d−1
2 . Thus, the density of z2 is

fz2(y) =
1

B
(

1
2 ,

d−1
2

)y− 1
2 (1− y)

d−3
2 ,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function, and y ∈ (0, 1).

Performing a variable change, we obtain the density of |z|, which equals to the density of |x>1 x2|.

f|x>1 x2|(y) = f|z|(y) = fz2(y2) ·2y =
1

B
(

1
2 ,

d−1
2

)y−1(1−y2)
d−3
2 ·2y =

2

B
(

1
2 ,

d−1
2

) (1−y2)
d−3
2 ,

where y ∈ (0, 1). Let fx>1 x2
be the density of x>1 x2. Note that for every y ∈ (−1, 1) we have

fx>1 x2
(y) = fx>1 x2

(−y). Hence, for every y ∈ (−1, 1),

fx>1 x2
(y) =

1

2
f|x>1 x2|(|y|) =

1

B
(

1
2 ,

d−1
2

) (1− y2)
d−3
2 .

Performing a variable change again, we obtain the density of 1√
2
·
√

1 + x>1 x2.

f 1√
2
·
√

1+x>1 x2
(y) = fx>1 x2

(2y2 − 1) · 4y =
1

B
(

1
2 ,

d−1
2

) (1− (4y4 − 4y2 + 1))
d−3
2 · 4y

=
1

B
(

1
2 ,

d−1
2

) (2y)d−3(1− y2)
d−3
2 · 4y =

1

B
(

1
2 ,

d−1
2

)2d−1yd−2(1− y2)
d−3
2 .

Note that by Eq. 16 we have

‖x‖ =

√
1 + x>1 x2

2
,

and therefore the density of ‖x‖ is

fr(r) = f 1√
2
·
√

1+x>1 x2
(r) =

1

B
(

1
2 ,

d−1
2

)2d−1rd−2(1− r2)
d−3
2 .

Proposition B.5. Let x = x1+x2

2 where x1 and x2 are drawn i.i.d. from the uniform distribution on
Sd−1. Then the distribution of x has an almost-bounded conditional density.

Proof. Let ε = 1
poly(d) . Let fr be the distribution of ‖x‖. By Lemma B.2, we have

fr(r) =
1

B
(

1
2 ,

d−1
2

)2d−1rd−2(1− r2)
d−3
2 . (17)

Let µ : Rd → R be the density function on Rd that is induced by fr. That is, x ∼ µ has the same
distribution as ru where r ∼ fr and u is distributed uniformly on Sd−1. Let i ∈ [d]. For simplicity,
we always assume in this proof that d ≥ 5 (note that the definition of almost-bounded conditional
density is not sensitive to the behavior of the density for small values of d).

We will first find δ1, δ2 ≤ 1
poly(d) such that

Prc∼µ[d]\i (δ1 ≤ ‖c‖ ≤ 1− δ2) ≥ 1− ε . (18)
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Then, we will show that there is M = poly(d) such that for every c ∈ Rd−1 with δ1 ≤ ‖c‖ ≤ 1− δ2
and every t ∈ (−1, 1) we have

µi|[d]\i(t|c) ≤M . (19)

We start with δ2. Note that

B

(
1

2
,
d− 1

2

)
=

Γ( 1
2 )Γ(d−1

2 )

Γ(d2 )
≥

Γ( 1
2 )Γ(d2 − 1)

Γ(d2 )
=

Γ( 1
2 )

d
2 − 1

≥
2Γ( 1

2 )

d
=

2
√
π

d
≥ 1

d
. (20)

Let δ2 = 1−
√

1− ε
32d . By the above and Eq. 17, for every r ∈ (1− δ2, 1) we have

fr(r) ≤ d2d−1rd−2(1− r2)
d−3
2 ≤ d2d−1

(
1− (1− δ2)2

) d−3
2 = d2d−1

( ε

32d

) d−3
2

.

Hence,

Prc∼µ[d]\i (‖c‖ ≥ 1− δ2) ≤ Prr∼fr (r ≥ 1− δ2) ≤ d · 2d−1
( ε

32d

) d−3
2 · δ2

≤ d · 4
d−3
2 · 4

( ε

32d

) d−3
2

= 4d
( ε

8d

) d−3
2 ≤ 4d · ε

8d
=
ε

2
. (21)

We now turn to δ1. By [8], the marginal distribution c ∼ µ[d]\i is such that ‖c‖ = rα, where r and
α are independent, r ∼ fr, and α2 ∼ Beta

(
d−1

2 , 1
2

)
, namely, a Beta distribution with parameters

d−1
2 , 1

2 . Hence, we have

Prc∼µ[d]\i (‖c‖ ≤ δ1) ≤ Prr∼fr
(
r ≤

√
δ1

)
+ Prβ∼Beta( d−1

2 , 12 )

(√
β ≤

√
δ1

)
. (22)

We now bound the two part of the above right hand side. For δ = ε
16d , we have by Eq. 17 and 20 that

for every r ∈ (0, δ),

fr(r) ≤ d2d−1rd−2(1−r2)
d−3
2 ≤ d2d−1δd−2 = d2d−1

( ε

16d

)d−2

= 2d
( ε

8d

)d−2

≤ 2d· ε
8d

=
ε

4
.

Thus, for δ1 = δ2 we have

Prr∼fr

(
r ≤

√
δ1

)
= Prr∼fr (r ≤ δ) ≤ δ · ε

4
≤ ε

4
. (23)

Moreover, we have

Prβ∼Beta( d−1
2 , 12 )

(√
β ≤

√
δ1

)
= Prβ∼Beta( d−1

2 , 12 ) (β ≤ δ1)

=

∫ δ1

0

1

B
(
d−1

2 , 1
2

)β d−1
2 −1(1− β)

1
2−1dβ

≤ δ1 ·
1

B
(
d−1

2 , 1
2

) · δ d−3
2

1 · 1√
1− δ1

Since 0 < δ1 ≤ 1
2 , and by plugging in Eq. 20, the above is at most

d · δ
d−1
2

1 · 1√
1− 1

2

≤ d · δ
1
2
1 ·
√

2 =
√

2d · ε

16d
≤ ε

4
. (24)

Combining Eq. 22, 23 and 24, we have

Prc∼µ[d]\i (‖c‖ ≤ δ1) ≤ ε

2
.

Then, Eq. 18 follows by combining the above with Eq. 21. Thus, it remains to show that there is
M = poly(d) such that for every c ∈ Rd−1 with δ1 ≤ ‖c‖ ≤ 1− δ2 and every t ∈ (−1, 1), Eq. 19
holds.
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Let Ad be the surface area of the unit sphere in Rd. Note that for every x 6= 0 in the unit ball, we
have

µ(x) =
fr(‖x‖)
‖x‖d−1

Ad
=

1

B
(

1
2 ,

d−1
2

)2d−1 ‖x‖d−2
(1− ‖x‖2)

d−3
2 · 1

‖x‖d−1
Ad

=
1

AdB
(

1
2 ,

d−1
2

)2d−1(1− ‖x‖2)
d−3
2 · 1

‖x‖
.

For t ∈ R, we denote ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈ Rd. Now, we have

µ[d]\i(c) =

∫ 1

−1

µ(ci,t)dt =

∫ √1−‖c‖2

−
√

1−‖c‖2

1

AdB
(

1
2 ,

d−1
2

)2d−1(1− (‖c‖2 + t2))
d−3
2 · 1√

‖c‖2 + t2
dt .

Performing the variable change z =

√
‖c‖2 + t2, the above equals

2

∫ 1

‖c‖

1

AdB
(

1
2 ,

d−1
2

)2d−1(1− z2)
d−3
2 · 1

z
· z√

z2 − ‖c‖2
dz

≥ 2

∫ 1

‖c‖

1

AdB
(

1
2 ,

d−1
2

)2d−1(1− z2)
d−3
2 · 1

z
dz

=
2d

AdB
(

1
2 ,

d−1
2

) ∫ 1

‖c‖
(1 + z)

d−3
2 (1− z)

d−3
2 · 1

z
dz

≥ 2d

AdB
(

1
2 ,

d−1
2

) (1 + ‖c‖)
d−3
2

∫ 1

‖c‖
(1− z)

d−3
2 dz .

By plugging in ∫ 1

‖c‖
(1− z)

d−3
2 dz = − (1− z) d−3

2 +1

d−3
2 + 1

∣∣∣∣∣
1

‖c‖

=
2(1− ‖c‖) d−1

2

d− 1
,

we get
2d+1(1 + ‖c‖) d−3

2 (1− ‖c‖) d−1
2

AdB
(

1
2 ,

d−1
2

)
(d− 1)

.

Hence,

µi|[d]\i(t|c) =
µ(ci,t)

µ[d]\i(c)

≤ 1

AdB
(

1
2 ,

d−1
2

)2d−1(1− ‖ci,t‖2)
d−3
2 · 1

‖ci,t‖
·

AdB
(

1
2 ,

d−1
2

)
(d− 1)

2d+1(1 + ‖c‖) d−3
2 (1− ‖c‖) d−1

2

= (1− ‖ci,t‖2)
d−3
2 · 1

‖ci,t‖
· d− 1

22(1 + ‖c‖) d−3
2 (1− ‖c‖) d−1

2

≤ (1 + ‖c‖)
d−3
2 (1− ‖c‖)

d−3
2 · 1

‖c‖
· d− 1

4(1 + ‖c‖) d−3
2 (1− ‖c‖) d−1

2

=
1

‖c‖
· d− 1

4(1− ‖c‖)
.

Now, since δ1 ≤ ‖c‖ ≤ 1− δ2, the above is at most

1

δ1
· d− 1

4δ2
≤ poly(d) .
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[7] showed separation between depth 2 and 3 for a poly(d)-Lipschitz radial function f : Rd → R
with respect to a distribution with density

µ(x) =

(
Rd
‖x‖

)d
J2
d/2(2πRd ‖x‖) ,

where Rd is the radius of the unit-volume Euclidean ball in Rd, and Jd/2 is a Bessel function of
the first kind. An analysis of its conditional density requires some investigation of Bessel functions
and is not included here. However, it is not hard to show that for every polynomial p(d), there is a
distribution µ′ (obtained by applying Gaussian smoothing to µ and has an almost-bounded conditional
density by Proposition B.3), such that the function f can be expressed by a depth-3 network but
cannot be approximated by a depth-2 network with a Lipschitz constant bounded by p(d). This
follows from the fact that if there was a Lipschitz approximating network under µ′, it would also be
approximating under the slightly different distribution µ.
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