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Abstract

Attention and self-attention mechanisms, are now central to state-of-the-art deep
learning on sequential tasks. However, most recent progress hinges on heuristic
approaches with limited understanding of attention’s role in model optimization
and computation, and rely on considerable memory and computational resources
that scale poorly. In this work, we present a formal analysis of how self-attention
affects gradient propagation in recurrent networks, and prove that it mitigates the
problem of vanishing gradients when trying to capture long-term dependencies
by establishing concrete bounds for gradient norms. Building on these results,
we propose a relevancy screening mechanism, inspired by the cognitive process
of memory consolidation, that allows for a scalable use of sparse self-attention
with recurrence. While providing guarantees to avoid vanishing gradients, we use
simple numerical experiments to demonstrate the tradeoffs in performance and
computational resources by efficiently balancing attention and recurrence. Based
on our results, we propose a concrete direction of research to improve scalability
of attentive networks.

1 Introduction

We live in a world where most of the information takes a sequential form, largely because it is
delivered over time. Performing computations on streams of sequential inputs requires extracting
relevant temporal dependencies and learning to recognize patterns across several timescales. Humans
can effortlessly make associations relating events stored in memory which are far from each other in
time and thus, capture long-term dependencies.

Historically, recurrent neural networks (RNNs) have been the deep network architecture of choice for
this type of task since, just like neural circuits in the brain, they enable dynamics that can be shaped to
interact with input streams. However, RNNs (including gated RNNs [35, 10]) still struggle with large
timescales as their iterative nature leads to unstable information propagation [5, 30, 35, 18].This is
because most standard RNNs rely on their current state ht, a vector of fixed dimension, to represent
a summary of relevant past information. Indeed, Bengio et al. [5] showed that without making
additional assumptions, storing information in a fixed-size state vector in a stable way necessarily
leads to vanishing gradients when back-propagating through time (see also [18]).
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Several attempts have been made to augment RNN dynamics with external memory to mitigate these
issues [37, 14, 34, 15], but it is only recently that access to externally stored information has become
effective with the introduction of attention, and more particularly soft attention mechanisms [4].
Attention provides a way by which a system can dynamically access past states and inputs across
several timescales, bypassing the need of sequential propagation and ignoring irrelevant information
(or distractor information). There is substantial empirical evidence that attention, especially self-
attention (Vaswani et al. [38], Ke et al. [22]), is very helpful to improve learning and computations
over long-term dependencies. However, to the best of our knowledge, there is currently limited
understanding of gradient scaling properties in the presence of attention. Moreover, attending over
long sequences requires to hold inputs and/or past states in memory, a process that typically scales
quadratically with sequence length.

Much like work from the ’90s established formal results for gradient exploding/vanishing in
deep/recurrent networks [5], we believe it is crucial to establish similar theoretical tools for attention
mechanisms, as these methods are under intense development where scalability and complexity are
important issues. In this paper, we contribute to this direction with a formal analysis of gradient
propagation in self-attentive systems which precisely quantify trade-offs between recurrence and
attention, offering valuable guarantees for attention mechanism development. Concretely exploiting
these theorems, we propose a simple family of screening mechanisms to maximally reduce computa-
tional complexity and memory usage, while simultaneously maintaining good gradient propagation
over large time scales. Using simple tasks for their ease of interpretation, and their variety of
computational demands, we illustrate the efficacy of this approach in numerical experiments.

The remainder of this paper is as follows. In Section 2, we give a brief outline of related cognitive
processes and neural network mechanisms. In Section 3, we present our central results: asymptotic
guarantees for gradient propagation in self-attentive recurrent networks. To illustrate how to exploit
these guarantees, in Section 4, we showcase a simple relevancy screening mechanism that aims to
efficiently consolidate relevant memory, reducing the size of the computational graph from quadratic
to linear in sequence length. Finally, in Section 5, we compare various recurrent and attention models
with our proposed relevancy screening mechanism on a series of simple numerical experiments,
while, in Section 6, we analyze their gradient propagation properties together with their GPU usage.

2 Background

To perform complex tasks, our brains rely on mechanisms to encode and retrieve information to and
from memory [40, 33]. In contrast, standard RNNs follow rigid sequential dynamics as they are
parametric i.e with a fixed-size state vector. Self-attention methods can overcome this limitation by
giving access to previous past states for computing the next state. For the sake of the discussion, we
call such RNNs, which are augmented by the memory of the past states as semi-parametric RNNs.
The use of soft-attention [4] in such models has improved performance on many tasks such as reading
comprehension, abstractive summarization, textual entailment and learning task-independent sentence
representations [29, 26, 31, 39] as well as in the self-supervised training of extremely large language
models [12, 32] due to their ability to handle long-term dependencies.

Intriguingly, the most notable advances in the use of attention is in purely attention-based systems
such as the Transformer [38], which completely foregoes recurrence and inspired some of the work
listed above. While the performance of these systems is impressive, their memory and computation
requirements grows quadratically with the total sequence length. To address this issue, many variants
that aim to "sparsify" the attention matrix have been proposed. Notably, Ke et al. [22] developed
the Sparse Attentive Backtracking model (SAB), a self-attentive Long Short-Term Memory network
(LSTM) [35] that leverages sparsity by selecting only the top-k states in memory based on an attention
score, propagating gradients only to those chosen hidden states. Recently, Zhao et al. [41] propose to
use a similar top-k attention, and Child et al. [9] introduce sparse masks which attends to roughly

√
n

locations in memory, implementing explicit selection methods for Transformers. Reformer models
[23] replace the dot-product attention by locality-sensitive hashing, changing its complexity from
O(T 2) to O(T ), where T is the sequence length. Finally, TransformerXL [11] enables learning
dependencies beyond a fixed length without disrupting temporal coherence and has resulted in state
of the art performance in language models.
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Still, most of these approaches naively sub-sample input streams for memory storage. Our brains
on the other hand, seem to select relevant information from the recent past to commit to long
term memory based on their relevancy, a process often referred to as memory consolidation [1].
Attempts at mimicking this sparse temporal selectivity process has shown great promise in a variety
of contexts [14, 28, 16, 13], and our work aims to formalize this idea for self-attentive recurrent
networks.

3 Theoretical analysis of gradient propagation

In this section, we analyze the influence of self-attention onto gradient propagation in recurrent
networks with self-attention. In order to do so let us first recall the equations of a recurrent neural
network with self-attention. We note that even though we are using "vanilla RNNs" in the formulations
of our results, any recurrent network can take its place (see Section 5 where we use LSTMs in the
experiments). Let xt ∈ Rm be the input and ht ∈ Rn be the hidden state at time step t, satisfying the
update equation for all t ≥ 1,

ht+1 = φ(V st + Uxt+1 + b) (1)
st = f(ht, ct) (2)

where φ is a non-linearity, f : Rn × Rn → Rn, V ∈ Rn×n, U ∈ Rn×m, b ∈ Rn and ct = α1,th1 +

α2,th2 + . . .+αt,tht with αi,t :=
exp (ei,t)∑t

j=1 exp (ej,t)
and ei,t := a(st−1, hi), where a : Rn×Rn → Rn

is the attention alignment function. Throughout, we assume training is done via gradient descent of a
cost function L using back-propagation.

Oftentimes, one uses st = f(ht, ct) = ht + ct (but concatenation would be more general), and
for all t > 1 and 1 ≤ j ≤ t, a(st−1, hj) = vTa · tanh (Wa · st−1 + Ua · hj), where va ∈ Rn, and
Wa, Ua ∈ Rn×n. The latter choice for alignment function is sometimes referred to as "additive
self-attention" and was used in the original paper [4]. We emphasize that the results presented in this
section hold independently of the choice of the alignment function as, we will discuss later in this
section. Lastly, while results presented below are relatively succinct, their derivations are involved
and we refer the interested reader to the Appendix for detailed proofs.

3.1 Preliminaries

Our goal in this section is to establish formal propagation rules for a system where multiple paths
of signal propagation are possible. We would like to understand the relationship between skip
connections (those coming from self-attention) and recurrent connections, as well as how the interplay
between the two leads to good gradient propagation. In order to achieve this, we seek to analyze

the asymptotic behaviour of ‖∇ht
L‖ = ‖

(
dsT
dht

)T
∇sTL‖, as T → ∞. We accomplish this by

decomposing∇ht
L with respect to all possible gradient backpropagation paths, or in other words, by

decomposing dsT
dht

into sums of products of Jacobian matrices corresponding to those gradient paths,
using Proposition 1.

Proposition 1. For all t ≥ 1, k ≥ j ≥ 0, k′ ≥ 0, let E(t)
k′ =

∂st+k′

∂ht
, and F (t)

k+1,j = ∂st+k+1

∂ht+j+1
· Jt+j +

1j=k · ∂st+k+1

∂st+k
, with Jt+j the Jacobian matrix dht+j+1

dst+j
. Then, we have

dst+k
dht

=

k∑
s=0

ξ̄
(t)
0:k(s) (3)

where for all s ≥ 1, ξ̄(t)
0:k(s) =

∑
0≤i1<...<is<k F

(t)
k,is
· F (t)

is,is−1
· . . . · F (t)

i2,i1
· E(t)

i1
and where

ξ̄
(t)
0:k(0) = E

(t)
k . (Proof in Appendix A.2, Proposition 1)

Here, each term F
(t)
k,is
· F (t)

is,is−1
· . . . · F (t)

i2,i1
·E(t)

i1
corresponds to exactly one gradient path involving

exactly s+ 1 skip connections going from t to t+ k, via the s hidden states ht+is+1, . . . , ht+i1+1.
In particular, ξ̄(t)

0:k(s) is the sum of all terms containing exactly s Jacobian matrices J , and thus the
larger s is, the more ξ̄(t)

0:k(s) is prone to vanishing.
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Intuition: In order to find paths that are not vanishing as T → ∞, we want to find gradient paths
with: (i) a bounded path length s so that the number of Jacobian matrices involved in the product is
limited. (ii) attention scores that are sufficiently bounded away from 0, so that the resulting product of
attention scores is sufficiently bounded away from 0 as well. In order to see how exactly the attention
weights come into play via matrices E and F , we refer to Proposition 2 from Appendix A.2.

Defintions: Let us fix an integer t ≥ 1, an integer s ∈ {1, 2, . . . , T − t}, and an ordered set of indices
i1, i2, . . . , is ∈ {0, 1, . . . , T − t− 1}, verifying i1 ≤ i2 ≤ . . . ≤ is.

• For sequences {g(T )}T≥1 and {f(T )}T≥1, we say that f(T ) = Ω(g(T )) if there exists
positive constants c and T0 such that f(T ) ≥ c · g(T ) for all T ≥ T0.

• At time t, we call a past hidden state hi a relevant event if the attention weight αi,t is
sufficiently bounded away from zero.

• We call the s-tuple (i1, i2, . . . , is) a dependency chain γ of depth s, as it induces a gradient
backpropagation path going via the s hidden states ht+is+1, . . . , ht+i1+1.

• We call dependency depth the smallest depth among all dependency chains where the
product of the corresponding attention scores is Ω(1) as T →∞.

The central message is that if the dependency depth is bounded from above and sufficiently small, then
we mitigate gradient vanishing. As we see below, task structure introduces different ways in which
this may happen. We now present a formal treatment for specific cases, and lay the groundwork to
take advantage of this structure during learning.

3.2 Uniform relevance case

Suppose each state has equal relevance in some task. What can be said about gradient propagation?
This translates to having each attention weight αi,t = 1/t for all t ≥ i ≥ 1. We then have dependency
chains of depth 1 but with vanishing rate Ω(1/T ), as formalized in the following theorem (cf. A.3)
Theorem 1. Let ht be the hidden state at time t of a vanilla RNN with uniform attention, under mild
assumptions on the connectivity matrix V , and trained with respect to a loss L, then if T is the total
sequence length, we have

‖∇ht
L‖ = Ω(1/T ) (4)

as T →∞. (proof in Appendix A.3, Theorem 1)

This corresponds to the case where all past events contribute equally error signals. We also note that
this result is independent of the choice of the alignment function a (cf. Remark 8 in the Appendix
A.3).

Intuition: As a "worst case scenario" Theorem 1 reveals the true trade-off of early self-attentive
recurrent networks [4]. On one hand, the lower bound obtained on gradient norm is substantially better
than in a vanilla RNN without attention, where vanishing happens at an exponential rate, as opposed
to a polynomial one here. This situation does not lend itself to sparse memory approaches as all
events need to be held in memory, thus conserving quadratically scaling complexity. In contrast many
inputs and tasks do not call for uniform attention and naturally lend themselves to sparse dependency
paths for computation. The next case treats this situation. Nevertheless, this uniform attention bound
is applicable in practice for two reasons: (1) typically, attention weights are initialized uniformly, and
early training may result in gradients best described by this regime. (2) We experimentally verified
that gradient propagation remains stable throughout training for a fully self-attentive RNN, where
this bound is relevant, see Fig 2 (Section 6).

3.3 Sparse relevance case with bounded dependency depth

Now let us look at a more realistic case where only a sparse subset of past states are relevant for
the task at hand, and the gradient needs to access those states efficiently for good learning. Figure 1
illustrates this scenario by showing the attention scores for two input examples computed by a
simple self-attentive model [4], trained on Copy and Denoise tasks respectively (see Section 5).
This structure introduces the possibility to impose sparsity in the computational graph, and to limit
memory use. With these constraints in mind, the goal is to engineer dependency chains that enable
best gradient propagation between these relevant events.
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Figure 1: Magnitude of attention weights between states in a trained, fully recurrent and fully
attentive model (Bahdanau et al. [4]). Each pixel in the lower triangle corresponds to the attention
weight of the skip connection departing from the the state marked on the y-axis to the state marked
on the x-axis. Left shows Copy task, right shows Denoise task. Task details in Section 5

Notation: We consider a κ-sparse attention mechanism of dependency depth d.

• Sparsity coefficient: κ ≥ 1. Borrowing from the SAB model [22], at each time step, attention
is allowed at most κ relevant events from the past. That is, for any t there are at most κ
indices i such that αi,t 6= 0, which gives rise to a sparse temporal segmentation via the most
relevant events.

• Maximal dependency depth: d. This is the maximal dependency depth across all time steps
t.

Theorem 2. Let ht be the hidden state at time t of a vanilla RNN with κ-sparse uniform attention
mechanism of maximal dependency depth d, and under mild assumptions on the connectivity matrix
V , then

‖∇ht
L‖ = Ω(1/κd) (5)

as T →∞. (proof in Appendix A.4, Theorem 2)

Similarly to uniform case, Theorem 2 is independent of the choice of the alignment function a (cf.
remark 19 in the appendix).

Intuition: Notice the dependency depth d affects the lower bound exponentially, while κ affects it
polynomially. In other words, the number of relevant events attended to at each time step contributes
far less to gradient vanishing than the number of events in the longest dependency chain. Theorem 2
outlines the tradeoff between computational complexity as T →∞ and gradient propagation when
balancing attention and recurrence. Attending directly to many relevant past events reduces d and
ensures good gradients at the expense of the complexity cost associated with storing past events
and computing attention scores (the strategy employed by Transformers [38]). On the other hand,
enforcing small sparsity coefficient κ helps keep computational complexity low (O(κT )), but forces
the error gradient through recurrent paths, thereby augmenting the dependency depth d and degrading
gradient signal strength. Importantly, κ and d co-vary in ways that depend on the task’s underlying
relevancy structure, a point that is explained in detail in Appendix C (See Fig 3). In the extreme case
where κ and d are assumed to be bounded, we have Ω(1/κd) = Ω(1), and thus we mitigate gradient
vanishing. In other situations where κ and d scale in other ways, an explicit sparsification strategy
can be derived by exploiting Theorem 2, as we illustrate in the next section.

4 Relevancy screening mechanism

Equipped with the results from the previous section, we wish to refine heuristics that strike a balance
between good gradient propagation and computational/memory complexity. Building on the SAB
model [22], we remark that although sparse attention attends to the top-κ events at any point in time,
attention scores must be computed on all events stored in memory to extract the κ best ones. Thus,
the resource bottleneck is not controlled by κ, but rather by the number of stored events in memory.
In SAB, there is a naive attempt to control this number by only recording network states at each 10
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time steps. However, this reduces the size of the computational graph only by a constant factor, but
retains O(T 2) complexity. In contrast, Theorem 2 tells us that the only important events to conserve
for good gradient propagation are the relevant ones (also see Remark 6 in Appendix A.2). Thus, we
propose to reduce complexity while maintaining good gradient propagation by selectively storing
events that are predicted to be relevant in the future, using a relevancy screening mechanism.

Algorithm 1 Relevancy Screening
1: procedure: RelRNN(st−1,xt)

Require: Previous macro-state - st−1

Require: Input - xt, ν > 0, ρ > 0

Require: Short-term buffer s(i)
t−1 ∈ St−1

Require: Relevant set r(i)
t−1 ∈ Rt−1

2: ht ← φ(V st−1 + Uxt + b)
3: St = St−1.add(ht)
4: if t− ν > 0 then
5: St = St.remove(ht−ν)
6: if t− ρ > 0 and C(t− ρ) = True then
7: Rt = Rt−1.replaceWith(ht−ρ)
8: Mt = [St, Rt]
9: for all m(i) ∈Mt do

10: z̃(i) ← vTa · tanh (Wast−1 + Uam
(i))

11: z ← softmax(z̃)
12: st = ht +

∑
i z

(i)m(i)

13: return st

The idea is simple: devise a screening function C(i)
which estimates the future relevance of hi, and store
selected events in a relevant set Rt = {hi|i <
t ∧ C(i) = True} for future attention. In prin-
ciple, one can explicitly control how Rt grows with
t, thus mitigating the complexity scaling outlined
above. Here, C(i) could take many forms, the best
of which depends on task structure. In what follows,
we present an example screening mechanism meant
to showcase the lessons learned from Theorem 2,
but we refer the interested reader to Section 7 for
further possibilities.

We take inspiration from memory consolidation prin-
ciples in human cognition [1], which defines the
transfer of events from short-term to long-term mem-
ory. We remark that for some tasks such as those de-
picted in Figure 1, relevance varies very little across
time. To implement relevancy screening for such
tasks, at every time step t we attend to two subsets
of the past hidden states. We call the first subset
a short-term buffer St = {ht−ν , ht−ν+1, .., ht−1}
which consists of the hidden states of the last ν time
steps, while the second subset is the relevant set
Rt. We compute the relevance score at time step

i, β(i) =
∑i+ν−1
j=i αi,j , measuring the integrated attention scores over our short-term buffer St.

More precisely, C(i) is satisfied if β(i) is part of the top ρ relevance scores when compared to all
previously observed hidden states, where ρ is a fixed hyper-parameter satisfying ρ ≥ |Rt| for all t.
The pseudo-code in Algorithm 1 describes the screening mechanisms and the interaction between
the short-term buffer St and a finite size relevant set Rt. ’.replaceWith()’ is a function replacing the
hidden state with the lowest relevance score by the hidden state in the argument.

To see how the relevancy screening mechanism is grounded in the theory developed in Section 3, note
that the sets St and Rt give rise to a sparse attention mechanism with sparsity coefficient κ satisfying
κ = ν + ρ ≥ |St| + |Rt|. Hence, memory complexity is constant while the O(T 2) bottleneck of
computational complexity is replaced byO((ρ+ν) ·T ) = O(T ). Lastly, applying Theorem 2, we get
the following guarantee for all t ≥ 0: ‖∇ht

L‖ = Ω(1/(ρ+ ν)d) as T →∞. Thus the choices of ν
and ρ not only directly impact computational complexity and gradient propagation, but also indirectly
influence gradient propagation via the implicit effect of κ = ν + ρ on d as already discussed in
Section 3. Finally, as already mentioned, see Fig 3 in Appendix C, where we perform an experimental
trade-off analysis between κ and d by tweaking ρ and ν in the relevancy screening mechanism.

5 Experiments

Before describing experiments, we make a few remarks. First, we stress that Relevancy Screening
can be applied to any semi-parametric attentive model but we refer to the version presented below,
which uses an RNN/LSTM base, as RelRNN/RelLSTM ("Relevance RNN /LSTM"). Second, our
objective is not to find state-of-the-art performance but to highlight the advantages of event relevancy
and selective sparsity. Finally, we note that relevancy-based sparsity does not necessarily improve
performance over fully attentive models, but rather allows efficient and scalable usage. As we show
below, RelRNN and RelLSTM perform almost identically to other self-attentive recurrent models
(e.g. [4, 22]) on simple tasks, but use considerably less memory and compute complexity. In what
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Table 1: Results for Transfer Copy task.

T 100 200 400 2000 5000

orth-RNN 99% 4% 16% 10% 0%
expRNN 100% 86% 73% 58% 50%

MemRNN 99% 99% 99% 92% OOM
RelRNN 100% 99% 99% 99% 99%

LSTM 99% 64% 48% 19% 14%
h-detach 100% 91% 77% 51% 42%

SAB 99% 95% 95% 95% 95%
RelLSTM 100% 99% 99% 99% 99%

Table 2: Results for Denoise task.

T 100 300 500 1000 2000

orth-RNN 90% 71% 61% 29% 3%
expRNN 34% 25% 20% 16% 11%

MemRNN 99% 99% 99% 99% OOM
RelRNN 100% 99% 99% 99% 99%

LSTM 82% 41% 33% 21% 15%
GORU 92% 93% 91% 93% 73%
SAB 99% 99% 99% 99% 99%

RelLSTM 100% 99% 99% 99% 99%

follows, we denote MemRNN/MemLSTM for vanilla self-attention RNN/LSTM as defined in [4].
We also refer to Appendices C, B, D for additional experimental results and implementation details.

5.1 Tasks with sparse dependency chains

A good stereotypical task type that captures sparse sequences of important events are memorization
tasks. Here, the network has to memorize a sequence of relevant characters presented among several
non-relevant ones, store it for some given time delay and output them in the same order as they were
read towards the end of the sequence.

Copy task [19]: The characters to be copied are presented in the first 10 time steps, then must
be outputted after a long delay of T time steps (see full description in Arjovsky et al. [2]). Thus,
all the relevant events occur in the first 10 time steps. This can be corroborated by the attention
score found in Figure 1 which was generated using full self-attention. Henaff et al. [17] show that
orthogonal RNNs (orth-RNN) provide an optimal solution. We also consider expRNN [7] which does
optimization in the unitary space and is so far the best purely performing recurrent model for large
time delays for this task.

Table 5 (Appendix D) reports test performances of orth-RNN, expRNN, MemRNN, SAB, RelRNN
and RelLSTM for T = {100, 200, 300, 500, 1000, 2000} on the Copy Task. We find that orth-RNN
solves this task up to T = 500, but that accuracy decays beyond that point, similarly to LSTM.
RelRNN, RelLSTM, SAB and expRNN perfectly solve this task with 100% accuracy for all T ,
while Fig 4 in Appendix D shows that RelRNN learn copy and denoise tasks with significantly fewer
number of updates as compared to other baselines. MemRNN solves this task until T = 100 but
overflows memory (OOM) afterwards.

Transfer Copy task: An important advantage of sparse attentive recurrent models such as RelRNN
is that of generalization. This is illustrated by the Transfer Copy scores [19] where models are
trained on Copy task for T = 100 and evaluated for T > 100. Table 1 shows results for the models
listed above, in addition to h-detach [3], an LSTM-based model with improved gradient propagation.
Importantly, where purely recurrent networks performed well on the original task, all fail to transfer,
with discrepancy growing with T . As expected, MemRNN and SAB keep good performance but
RelRNN outperforms them, with almost perfect performance for all T . While both SAB and RelRNN
use sparse memory storage and retrieval, the distinguishing factor is RelRNN’s use of relevancy
screening, indicating it’s importance for transfer. The performance of RelLSTM on Transfer Copy is
exactly the same as RelRNN.

Denoise task Jing et al. [21]: This generalizes the Copy task as the symbols that need to be copied
are now randomly distributed among the T time steps, requiring the model to selectively pick the
inputs that need to be copied. We test our method against all the previously mentioned models in
addition to GORU [21] for various values of T (Table 2). RelLSTM performs exactly as RelRNN
and again, we see RelRNN maintain complete performance across all T values, outperforming all
purely recurrent models. MemRNN performs as RelRNN/RelLSTM but fails to train due to memory
overflow beyong T = 500.

5.2 Tasks with dense temporal dependencies

In contrast to sparse information found in the tasks above, we now illustrate RelRNN and RelLSTM’s
performance on tasks with densely distributed information on long sequences.
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Table 3: PTB and pMNIST results.
PTB Task pMNIST

Model BPC Accuracy Accuracy

RNN 1.56 66% 90.4%
orth-RNN 1.53 66% 93.4%
expRNN 1.49 68% 96.6%
RelRNN 1.43 69% 92.8%

LSTM 1.36 73% 91.1%
h-detach - - 92.3%

SAB 1.37 - 94.2%
RelLSTM 1.36 73% 94.3%

Here, we perform tests on pMNIST [24], a variant of
MNIST [25] where pixels are fed sequentially in a
permuted order to the network, as well as character
level Penn Tree Bank corpus (PTB) [27] where the
next letter in a text needs to be predicted.
See Table 3 for results. Implementation details and
further test data found in Appendix D, including at-
tention heatmaps such as the ones found in Figure 1,
showing dense attention for RelRNN in both tasks.
We note that gated RNNs such as LSTMs are known
to perform well here, and that orthogonal RNNs such
as those tested here are also very good. The full
attention model (MemRNN) fails to train on the opti-
mization setup used here for both tasks, again due to

overflow in memory.

6 Analysis

In this section we analyze the maximal GPU usage and gradient norm of ‖∇htL‖ across time t for
the Denoise Task. All the models were run using a NVIDIA TitanXP GPU and their peak usage
was recorded in order to quantify the amount of computational resources used for each of them. We
varied sequence length T from 200 to 2000 in order to measure the trend in the usage. To measure
propagating gradients as a function of t, we trained models on T = 1000 and computed log ‖∇ht

L‖.
As illustrated in Figure 2 (center), we confirm MemRNN scales quadratically with T , same as SAB
which shows an improvement but only by a constant factor. We also confirm that RelLSTM scales
linearly with T similar to RNN and LSTM. Figure 2 (left) shows that the gradient norms for RNN
explode and for LSTM vanish as t increases. The gradient norms of all attention models were stable,
as expected from the results of Section 3. To better visualize the interplay between gradient norm
and GPU usage, Figure 2 (right) shows the final averaged log gradient norm against Max GPU usage
for different times T = {400, 600, 800}. As expected, purely recurrent models (RNN, LSTM) show
very little GPU usage differences across distinct T values, while their performance and gradients
degrade with increasing t. Note that the RNN’s gradients explode while the LSTM’s vanish, both
exponentially in t. Standard self attentive models (MemRNN, SAB) on the other hand, show opposite
trends, with stable gradients but GPU usage quadratically increasing in T . As expected from Theorem
2 (Section 3), RelLSTM shows both stable gradients and stable GPU usage2.

The optimal trade-off between memory usage and good gradient propagation achieved by RelLSTM
highlights the importance of a dynamic memory that attempts to predict relevancy in order to only
store exactly those events that help with learning. We note the Denoise task has a small number of
relevant events and that not all tasks share this structure. Nevertheless, this experiment highlights
how important resource gains can be made by shifting efforts from offsetting memory growth by a
constant factor, to a relevancy screening method.

7 Conclusion & Discussion

Our main contribution is a formal analysis of gradient propagation in self-attention RNNs, from
which we derive two quantities that are governing gradient propagation: sparsity and dependency
depth. Meanwhile we identify event relevancy as a key concept to efficiently scale attentive systems to
very long sequential computations. This is illustrated via a Relevancy Screening Mechanism, inspired
by the cognitive process of memory consolidation in the brain, that efficiently selects network states,
called relevant events, to be committed to long-term memory based on a screening heuristic operating
on a fixed-size short-term memory buffer. We showcase the benefits of this mechanism in an attentive
RNN and LSTM which we call RelRNN and RelLSTM respectively, using simple but illustrative
numerical experiments, and demonstrate the optimal trade-off between memory usage and good
gradient propagation it achieves.

2The measurements for both GPU usage and gradient norm are identical for both RelLSTM and RelRNN.
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Figure 2: (Left) gradient norm plots of ‖∇ht
L‖ in log scale after training for Denoise Task with

t ranging from 0 (latest time step) to 1000 (furthest time step).(Center) Maximal GPU usage as
a function of total sequence length T .(Right) Mean log gradient norm v.s. Max GPU usage for
T = 400, 600, 800. Model testing accuracy is 100% unless indicated by marker label (see Table 2).

As outlined in Sections 3 and 4, this trade-off is a reflection of the task-specific balance between
sparsity and dependency depth parameters. While our proposed relevancy screening mechanism
exploits "local" attention scores (measured while events are in short-term memory buffer), we
acknowledge other types of relevancy could be formulated with heuristics better suited to distinct
environments. For instance, promising directions include leveraging predictive coding principles to
select "surprising events", or neural networks could be used to learn the screening function C(i) in
an end-to-end fashion.

Broader Impact

We provide a framework for researchers to shape gradient propagation and memory footprint in
self-attentive RNNs, which is helpful in tasks requiring ongoing online predictions that cannot be
based on future inputs (i.e. in an online sequential setting) and where long-term credit assignment is
crucial, such as various RL tasks [16, 20]. The added resource gains can save GPU hours and thus
have a positive environmental impact. Along this line, we firmly believe that researchers should take
environmental impact of model training seriously, and we are hopeful that our work contributes to
this direction.

Meanwhile, the theoretical tools provided in the proofs lay the ground for more theoretical work on
attentive systems to emerge in the future. More effective RNN models can amplify already existing
biases in RNN-based NLP systems through an increased exposure to bias. Finally, we cannot exclude
that the cognitive inductive bias we use to build our relevancy screening mechanism may induce
prediction quality disparity (e.g. in language modelling) because of the memory tokens it throws
away.
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