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Abstract

We consider the problem of training machine learning models on distributed data
in a decentralized way. For finite-sum problems, fast single-machine algorithms
for large datasets rely on stochastic updates combined with variance reduction. Yet,
existing decentralized stochastic algorithms either do not obtain the full speedup
allowed by stochastic updates, or require oracles that are more expensive than
regular gradients. In this work, we introduce a Decentralized stochastic algorithm
with Variance Reduction called DVR. DVR only requires computing stochastic
gradients of the local functions, and is computationally as fast as a standard
stochastic variance-reduced algorithms run on a 1/n fraction of the dataset, where
n is the number of nodes. To derive DVR, we use Bregman coordinate descent
on a well-chosen dual problem, and obtain a dual-free algorithm using a specific
Bregman divergence. We give an accelerated version of DVR based on the Catalyst
framework, and illustrate its effectiveness with simulations on real data.

1 Introduction

We consider the regularized empirical risk minimization problem distributed on a network of 7 nodes.
Each node has a local dataset of size m, and the problem thus writes:

min () 2 Y fila), with fi(2) 2 2]+ fiy(), ()
i=1 j=1

zERC

where f;; typically corresponds to the loss function for training example j of machine 4, and o;
is the local regularization parameter for node 7. We assume that each function f;; is convex and
L;;-smooth (see, e.g., [30]), and that each function f; is M;-smooth. Following [40], we denote
ki = (14 Y%, L;;j)/o; the stochastic condition number of f;, and ks = max; ;. Similarly, the
batch condition number is k;, = max; M;/c;. It always holds that k;, < ks < mky, but generally
ks < mkp, which explains the success of stochastic methods. Indeed, x5 ~ m#; when all Hessians
are orthogonal to one another which is rarely the case in practice, especially for a large dataset.

Regarding the distributed aspect, we follow the standard gossip framework [5, 29, 8, 32] and assume
that nodes are linked by a communication network which we represent as an undirected graph G. We
denote N (i) the set of neighbors of node i and 1 € R the vector with all coordinates equal to 1.
Communication is abstracted by multiplication by a positive semi-definite matrix W € R™*™, which
is such that Wy, = 0 if & ¢ N(¢), and Ker(W) = Span(1). The matrix W is called the gossip

matrix, and we denote its spectral gap by v = AT, (W) /Apax (W), the ratio between the smallest

min
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non-zero and the highest eigenvalue of W, which is a key quantity in decentralized optimization.
We finally assume that nodes can compute a local stochastic gradient V f;; in time 1, and that
communication (i.e., multiplication by W) takes time 7.

Single-machine stochastic methods. Problem (1) is generally solved using first-order methods.
When m is large, computing V F' becomes very expensive, and batch methods require O(r; log( 1))
iterations, which takes time O (m#y log(e 1)), to minimize F' up to precision . In this case, updates
using the stochastic gradients V f;;, where (i, j) is selected randomly, can be much more effective [4].
Yet, these updates are noisy and plain stochastic gradient descent (SGD) does not converge to the
exact solution unless the step-size goes to zero, which slows down the algorithm. One way to fix this
problem is to use variance-reduced methods such as SAG [33], SDCA [35], SVRG [16] or SAGA [7].
These methods require O((nm + k) log(e ™)) stochastic gradient evaluations, which can be much
smaller than O(m#y log(e™1))

Decentralized methods. Decentralized adaptations of gradient descent in the smooth and strongly
convex setting include EXTRA [37], DIGing [28] or NIDS [21]. These algorithms have sparked a
lot of interest, and the latest convergence results [14, 42, 20] show that EXTRA and NIDS require
time O((kp + v 1)(m + 7)) log(e™!)) to reach precision . A generic acceleration of EXTRA
using Catalyst [20] obtains the (batch) optimal O(y/ky(1 + 7/4/7) log(e ™)) rate up to log factors.
Another line of work on decentralized algorithms is based on the penalty method [19, 9]. This
consists in performing traditional optimization algorithms to problems augmented with a Laplacian
penalty, and in particular enables the use of accelerated methods. Yet, these algorithms are sensitive
to the value of the penalty parameter (when it is fixed), since it directly influences the solution they
converge to. Another natural way to construct decentralized optimization algorithms is through dual
approaches [32, 38]. Although the dual approach leads to algorithms that are optimal both in terms of
number of communications and computations [31, 13], they generally assume access to the proximal
operator or the gradient of the Fenchel conjugate of the local functions, which is not very practical in
general since it requires solving a subproblem at each step.

Decentralized stochastic optimization. Although both stochastic and decentralized methods have
a rich litterature, there exist few decentralized stochastic methods with linear convergence rate.
Although DSA [27], or GT-SAGA [41] propose such algorithms, they respectively take time
O((mks + k2y7H1 + 1) log(e™1)) and O((m + k2y~2)(1 + 7)log(¢~1)) to reach precision &.
Therefore, they have significantly worse rates than decentralized batch methods when m = 1,
and than single-machine stochastic methods when n = 1. Other methods have better rates of
convergence [36, 12] but they require evaluation of proximal operators, which may be expensive.

Our contributions. This work develops a dual approach similar to that of [12], which leads to a
decentralized stochastic algorithm with rate O(m + ks + 7Ky /+/7), Where the |/ factor comes from
Chebyshev acceleration, such as used in [32]. Yet, our algorithm, called DVR, can be formulated in
the primal only, thus avoiding the need for computing expensive dual gradients or proximal operators.
Besides, DVR is derived by applying Bregman coordinate descent to the dual of a specific augmented
problem. Thus, its convergence follows from the convergence of block coordinate descent with
Bregman gradients, which we prove as a side contribution. When executed on a single-machine, DVR
is similar to dual-free SDCA [34], and obtains similar rates. We believe that the same methodology
could be applied to tackle non-convex problems, but we leave these extensions for future work.

We present in Section 2 the derivations leading to DVR, namely the dual approach and the dual-free
trick. Then, Section 3 presents the actual algorithm along with a convergence theorem based on
block Bregman coordinate descent (presented in Appendix A). Section 4 shows how to accelerate
DVR, both in terms of network dependence (Chebyshev acceleration) and global iteration complexity
(Catalyst acceleration [23]). Finally, experiments on real-world data are presented in Section 5, that
demonstrate the effectiveness of DVR.

2 Algorithm Design

This section presents the key steps leading to DVR. We start by introducing a relevant dual formulation
from [12], then introduce the dual-free trick based on [17], and finally show how this leads to DVR, an
actual implementable decentralized stochastic algorithm, as a special case of the previous derivations.



2.1 Dual formulation

The standard dual formulation of Problem (1) is obtained by associating a parameter vector to each
node, and imposing that two neighboring nodes have the same parameters [6, 15, 32]. This leads to
the following constrained problem, in which we write () € R¢ the local vector of node i:

i (9 (k) — p(0)
nin, ;fz(ﬂ ) such that Yk, £ € N'(k), 6% = 0'%). (2)
Following the approach of [12, 13], we further split the f;(0()) term into o;]|0®|?/2 +
i f:5(699), with the constraint that ) = (%) for all j. This is equivalent to the previ-
ous approach performed on an augmented graph [12, 13] in which each node is split into a star
network with the regularization in the center and a local summand at each tip of the star. Thus, the
equivalent augmented constrained problem that we consider writes:

i i g2 (plid) (k) — p® i i@ — glid)
i ; 5 101 +]; Fi;(09) | s.t. VE, £ € N(k), %) =0 and Vi, j, 6 = (D),
3)
We now use Lagrangian duality, and introduce two kinds of multipliers. The variable = corresponds
to multipliers associated with the constraints given by edges of the communication graph (i.e.,
0k) = 9@ if k € N(£)), that we will call communication edges. Similarly, y corresponds to the
constraints associated with the edges that are specific to the augmented graph (i.e., 6 = §(9) Vi, j)
that we call computation or virtual edges, since they are not present in the original graph and were
constructed for the augmented problem. Therefore, there are £ communication edges (number of
edges in the initial graph), and nm virtual edges. The dual formulation of Problem (3) thus writes:

el Saal)+ 3 2 F5 (A ), withga(a5) £ (0:) AT SAGe3), 0
and where (z,y) € R(FT7m)4 i5 the concatenation of vectors 2 € RF?, which is associated with
the communication edges, and y € R™™¢, which is the vector associated with computation edges.
We denote & = Diag(a;*,---,0,%,0,---,0) ® I; € RHmHEDdxn(m+1)d and A is such that for
all z € R4, Alere @ 2) = pre(ur, — ug) ® Prez for edge (k,¢), where Py = Ig if (k,¢) is a
communication edge, P;; is the projector on Ker(fi;)* £ (N epaKer(V2f;;(z)))* if (4,7) is
a virtual edge, z; ® 22 is the Kronecker product of vectors z; and 2o, and e ¢ € RE+7™ apd
ug, € R™™H1) are the unit vectors associated with edge (k, £) and node k respectively.

Note that the upper left nd x nd block of AAT (corresponding to the communication edges) is equal
to W ® I; where W is a gossip matrix (see, e.g., [32]) that depends on the pix,. In particular, W is
equal to the Laplacian of the communication graph if u2, = 1/2 for all (k, £). For computation edges,
the projectors F;; account for the fact that the parameters 6 and #07) only need to be equal on the
subspaces on which f;; is not constant, and we choose p;; such that ij = aL;; for some o > 0.
Although this introduces heavier notations, explicitly writing A as an n(1 + m)d x (E 4+ nm)d
matrix instead of an n(1 + m) x (E + nm) matrix allows to introduce the projectors P,;, which
then yields a better communication complexity than choosing P;; = I4. See [12, 13] for more details
on this dual formulation, and in particular on the construction on the augmented graph. Now that
we have obtained a suitable dual problem, we would like to solve it without computing gradients or
proximal operators of f;, which can be very expensive.

2.2 Dual-free trick

Dual methods are based on variants of Problem (4), and apply different algorithms to it. In particular,
[32, 38] use accelerated gradient descent [30], and [11, 12] use accelerated (proximal) coordinate
descent [24]. Let pcomm denote the probability of performing a communication step and p;; be the
probability that node 4 samples a gradient of f;;, which are such that for all ¢, Z;nzl Dij = 1 — Peomm.-
Applying a coordinate update with step-size 7/pcomm to Problem (4) in the direction x (associated
with communication edges) writes:

T4l = Tt — npg)ltrlrrlvqu(xt7 yt)’ (5)



where we denote V, the gradient in coordinates that correspond to  (communication edges), and
V,.i; the gradient for coordinate (ij) (computation edge). Similarly, the standard coordinate update
of a local computation edge (¢, j) can be written as:

* ij Dij %
yih = arg mﬁg{ (VisaaCeee) + nis¥ i gsi™)) vt olly = ui ”IIQ} (6)

where the minimization problem actually has a closed form solution. Yet, as mentioned before,
solving Equation (6) requires computing the derivative of f;;. In order to avoid this, a trick introduced
by [17] and later used in [39] is to replace the Euclidean distance term by a well-chosen Bregman
divergence. More specifically, the Bregman divergence of a convex function ¢ is defined as:

Dy(.y) = ¢(z) — ¢y) — Vo(y) ' (z — y). (7)
Bregman gradient algorithms typically enjoy the same kind of guarantees as standard gradient
algorithms, but with slightly different notions of relative smoothness and strong convexity [1, 25].
Note that the Bregman divergence of the squared Euclidean norm is the squared Euclidean distance,
and the standard gradient descent algorithm is recovered in that case. We now replace the Euclidean
distance by the Bregman divergence induced by function ¢ : y — (Ly;/pi?;) f7; (1i;y‘*)), which is
normalized to be 1-strongly convex since f/; is ijl-strongly convex. We introduce the constant
o > 0 such that ufj = «L;; for all computation edges (¢, j). Using the definition of the Bregman
divergence with respect to ¢, we write:

.. T .. ..
) * 3 Dij 3
Yy = arg ml]Rn (Vy,ijQA(xtayt) + 1V 7 (5, ”)) y+ 7; Dy (yyt( ]))

.
o N ij ¥
pn) Mijvfij(l%jyt( ﬁ)) y + 55 (1ijy)

yeR ij

1 an) . (i5)
—Vfij 1— — ) V5 (i —
1 fij (( Dis fj(:uJyt )

ij

an
= arg min ( Vy.ijqa(Te, ye) — (1 -
pi]

Vy,z‘jCIA(ﬂCu yt)> .

HijDij

In particular, if we know V f7 (11;; yt )) then it is possible to compute yg Jf% Besides,

i (0%
vfi] (/’[’ijt(-gi) (1 - an)vfzj (:u’ljyt )) uﬁvy,iqu(xhyt)) (8)

)

so we can also compute V f7% (1;; yﬁﬂ) and we can use it for the next step. Therefore, instead of

computing a dual gradient at each step, we can simply choose yé D = i 1y fij (zo )) for any z( )

and iterate from this. Therefore, the Bregman coordinate update applied t0 Problem (4) in the block
of direction (i, j) with y{"") = u;j1Vfi(z((J”)) yields:

A= (1= 20) o - Oy, e o =g VRGO
Pij Pijlij

The iterations of (9) are called a dual-free algorithm because they are a transformation of the iterations
from (6) that do not require computing V f; anymore. This is obtained by replacing the Euclidean
distance in (6) by the Bregman dlvergence of a function proportional to f;. Note that although
we use the same dual-free trick the tools are different since [17] applies a randomized primal-dual
algorithm with fixed Bregman divergences choice to a specific primal-dual formulation. Instead, we
apply a generic randomized Bregman coordinate descent algorithm to a specific dual formulation.

2.3 Distributed implementation

Iterations from (9) do not involve functions f7; anymore, which was our first goal. Yet, they consist in
updating dual variables associated with edges of the augmented graph, and have no clear distributed
meaning yet. In this section, we rewrite the updates of (9) in order to have an easy to implement
distributed algorithm. The key steps are (i) multiplication of the updates by A, (ii) expliciting the
gossip matrix and (iii) remarking that 0(1) (S A(zy,y:))™ converges to the primal solution for
all 7. For a vector z € R("+"m)d, we denote [z]comm € R jts restriction to the communication
nodes, and [M]comm € Rndxnd similarly refers to the restriction on communication edges of a matrix



M e Rvtnm)dx(ntnm)d By abuse of notations, we call Acomm € R™*F? the restriction of A
to communication nodes and edges. We denote P, np, the projector on communication edges, and
Peomp the projector on y. We multiply the x (communication) update in (9) by A on the left (which
is standard [32, 12]) and obtain:

Acommxt-&-l = Acommxt - Wpc_olmm [ApcommAT]comm [EA(.’L‘t, yt)}comm- (10)

NOte that [PcommATZA(xh yt)]comm == [PcommAT]comm [ZA(If, yt)]comm because Pcomm and E
are non-zero only for communication edges and nodes. Similarly, and as previously stated, one
can verify that Acomm[PeommA " Jecomm = [APeommA  Jcomm = W & Iy € R**"d where W is a

gossip matrix. We finally introduce #; € R™? which is a variable associated with nodes, and which is
such that &; = Acommax. With this rewriting, the communication update becomes:

Tpyp1 =Ty — npc_olrnm(W ® 14)Xcomm [A(Tt; Yt)] comm -

To show that [A(x¢, y¢)] is locally accessible to each node, we write:

comm

[A(z, yt)]gé)mm = (Acommxt (Z Z (er; ® Yy k])))(i)> (Z+) (Z Z i Jyt”)'

k=1j=1

We note this rescaled local vector 0; = Xcomm ([A(%+, ¥t)]comm ), and obtain for variables Z; the
gossip update of (12). Note that we directly write yf” ) instead of Py y,(” ) even though there has
been a multiplication by the matrix A. This is allowed because Equation (13) implies that (i)
yt(ij) € Ker(f;;)* for all ¢, and (ii) the value of (I — Pw)zt( ') does not matter since z( ) s only
used to compute V f;;. We now consider computation edges, and remark that:

Vi qa (@ yr) = — i (Scomm )i (A0 Ye)] comm) D = —i;0;. (11)
Plugging Equation (11) into the updates of (9), we obtain the following updates:

ft+1 =I; — (W ® Id)et, (12)

pCOml‘n

for communication edges, and for the local update of the j-th component of node i:

% an ij an @ i %
A= (1) a0 o= 2 (- vAG®)
ij

DPij

Finally, Algorithm 1 is obtained by expressing everything in terms of 9t and removing variable ;.
To simplify notations, we further consider € as a matrix in R™*4 (instead of a vector in R™%), and so
the communication update of Equation (12) is a standard gossip update with matrix W, which we
recall is such that W ® I; = [APcommAT]Comm. We now discuss the local updates of Equation (13)
more in details, which are closely related to dual-free SDCA updates [34].

3 Convergence Rate

The goal of this section is to set parameters 77 and « in order to get the best convergence guarantees.
: D=1

We introduce Kcomm = YAmax (Adomm Scomm Acomm ) /A (AL Dt Acomm ) where AT and

Amax respectively refer to the smallest non-zero and the highest eigenvalue of the corresponding

matrices. We denote D) the diagonal matrix such that (D) = o + Amax(Z?;l L;;P;;), where

\v& fij(x) < Li; Py for all ¢ € R<. Note that we use notation Keomm since it corresponds to a
condition number. In particular, Kcomm < ks When o; = o; for all ¢, j, and Kcomm more finely
captures the interplay between regularity of local functions (through Dj; and ¥¢omm) and the
topology of the network (through A) otherwise.

Theorem 1. We choose peomm = (1 + 72”“" )71, Pij X (1 = Peomm)(1 + Li;/0;) and o and 1

as in Algorithm 1. Then, there exists Cy > 0 that only depends on 8y (initial conditions) such that for
all t > 0, the error and the expected time T, required to reach precision € are such that:

i %E [Hﬁgl) — 9*||2] < (Cy (1 — %)t, andsoT, = O ([m + ks + Tﬁccjymm] logs_l) .



Algorithm 1 DVR(z)

I« = 2A$m(AI)mmDXf{1_comm), 1 = min ( pw— A;,f;‘%iﬁ; o) a(l f;’;ﬁl Lw_)) I/ Init.
2 9(()2) =—(2j2, Viij (zé”)))/ai. Il =g is arbitrary but not 6.
3: fort =0to K — 1do /I Run for K iterations
4:  Sample u; uniformly in [0, 1]. /I Randomly decide the kind of update
5. ifuy < peomm then

6: Oi1 =0y — 5 YW, /I Communication using W
7:  else

8: fori =1tondo

9: Sample j € {1,--- ,m} with probability p;;.
10: zt(fl) =209 for j # 5 /1 Only one virtual node is updated
11: ziff = <1 — S—) z,gij) + %9,@ /1 Virtual node update
12: 9&21 = Ggi) -1 (Vf”(zt(ﬂ) — Vfi; (zt(”))) I Local update using f;;

13: return 0

Proof sketch. We have seen in Section 2 that DVR is obtained by applying Bregman coordinate
descent on a well-chosen dual problem. Therefore, one of our key results consists in proving
convergence rates for Bregman coordinate descent in the relatively smooth setting. Although a similar
algorithm is analyzed in [10], we give sharper results in the case of arbitrary sampling of blocks, and
tightly adapt to the separability structure. This is crucial to our analysis since the probabilities to
sample a local gradient and to communicate can be vastly different. In order to ease the reading of
the paper, we present these results for a general setting in Appendix A, which is self-contained and
which we believe to be of independent interest (beyond its application to decentralized optimization).

Then, Appendix B focuses on the application to decentralized optimization. In particular, we recall
the Equivalence between DVR and Bregman coordinate descent applied to the dual problem of
Equation (4), and show that its structure is suited to the application of coordinate descent. Indeed, no
two virtual edges adjacent to the same node are updated at the same time with our sampling. Then,
we evaluate the relative smoothness and strong convexity constants of the augmented problem, which
is rather challenging due to the complex structure of the dual problem. This allows to derive adequate
values for parameters « and 7). Finally, we choose peomm in order to minimize the execution time of
DVR. O

We would like to highlight the fact that the convergence theory of DVR decomposes nicely into
several building blocks, and thus simple rates are obtained. This is not so usual for decentralized
algorithms, for instance many follow-up papers were needed to obtain a tight convergence theory for
EXTRA [37, 14, 42, 20]. We now discuss the convergence rate of DVR more in details.

Computation complexity. The computation complexity of DVR is the same computation complexity
as locally running a stochastic algorithm with variance reduction at each node. This is not surprising
since, as we argue later, DVR can be understood as a decentralized version of an algorithm that is
closely related to dual-free SDCA [34]. Therefore, this improves the computation complexity of
EXTRA from O (m(rp+7v~!)) individual gradients to O(m k), which is the expected improvement
for stochastic variance-reduced algorithm. In comparison, GT-SAGA [41], a recent decentralized
stochastic algorithm, has a computation complexity of order O(m + x2/~?), which is significantly
worse than that of DVR, and generally worse than that of EXTRA as well.

Communication complexity. The communication complexity of DVR (i.e., the number of commu-
nications, so the communication time is retrieved by multiplying by 7) is of order O(%comm/7), and
can be improved to O(Kcomm/ ﬁ) using Chebyshev acceleration (see Section 4). Yet, this is in
general worse than the O(k;, + v~ 1) communication complexity of EXTRA or NIDS, which can
be interpreted as a partly accelerated communication complexity since the optimal dependence is
O(\/kp/7) [31], and 21/kp/y = Kp + v~ in the worst case (k, = v~ 1). Yet, stochastic updates
are mainly intended to deal with cases in which the computation time dominates, and we show in the
experimental section that DVR outperforms EXTRA and NIDS for a wide range of communication



times 7 (the computation complexity dominates roughly as long as 7 < \/7(m + Ks)/Kcomm)- Fi-
nally, the communication complexity of DVR is significantly lower than that of DSA and GT-SAGA,
the primal decentralized stochastic alternatives presented in Section 1.

Homogeneous parameter choice. In the homogeneous case (0; = o for all 4, j), choosing the
optimal p¢omp and peomm described above leads to NAmax (W) = 0Pcomm. Therefore, the commu-
nication update becomes ;11 = (I — W/Apax(W)) 6;, which is a gossip update with a standard
step-size (independent of the optimization parameters). Similarly, an(m + ks) = Pcomp. and so the
step-size for the computation updates is independent of the network.

Links with SDCA. The single-machine version of Algorithm 1 (n = 1, pecomm = 0) is closely related

to dual-free SDCA [34]. The difference is in the stochastic gradient used: DVR uses V fij(z,gij )),
where zt(” ) is a convex combination of 0,(;) for k < t, whereas dual-free SDCA uses gﬁ” ), which is a

convex combination of V f;; (9,(:)) for k < t. Both algorithms obtain the same rates.

Local synchrony. Instead of using the synchronous communications of Algorithm 1, it is possible to
update edges one at a time, as in [12]. This can be very efficient in heterogeneous settings (both in
terms of computation and communication times) and similar convergence results can be obtained
using the same framework, and we leave the details for future work.

4 Acceleration

We show in this section how to modify DVR to improve the convergence rate of Theorem 1.

Network acceleration. Algorithm 1 depends on v~ 1, also called the mixing time of the graph,
which can be as high as O(n?) for a chain of length n [26]. However, it is possible to improve this
dependency to v~/ by using Chebyshev acceleration, as in [32]. To do so, the first step is to choose
a polynomial P of degree k and communicate with P(W) instead of W. In terms of implementation,
this comes down to performing & communication rounds instead of one, but this makes the algorithm
depend on the spectral gap of P(1V). Then, the important fact is that there is a polynomial P, of
degree [y~1/2] such that the spectral gap of P, (W) is of order 1. Each communication step with
P, (W) only takes time Tdeg(P,) = 7[y~'/2], and so the communication term in Theorem 1 can be
replaced by Thcomm?y /2, thus leading to network acceleration. The polynomial P, can for example
be chosen as a Chebyshev polynomial, and we refer the interested reader to [32] for more details.
Finally, other polynomials yield even faster convergence when the graph topology is known [2].

Catalyst acceleration. Catalyst [22] is a generic framework that achieves acceleration by solving a
sequence of subproblems. Because of space limitations, we only present the accelerated convergence
rate without specifying the algorithm in the main text. Yet, only mild modifications to Algorithm 1|
are required to obtain these rates, and the detailed derivations and proofs are presented in Appendix C.

Theorem 2. DVR can be accelerated using catalyst, so that the time T, required to reach precision £
is equal (up to log factors) to

T.=0 ({m + Vmks + T\/Kcomm X \/mﬁcommJ logsl)
v

Ks

Proof sketch. We follow the approach of [20] to derive the algorithm, and apply Catalyst acceleration
to the primal problem on the mean parameter §; (which is never explicitly computed). Indeed, this
conceptual algorithm can actually be implemented in a fully decentralized manner.

Then, we proceed to the actual proof, which requires a tight control over both primal and dual
warm-start errors. Indeed, Theorem 4 (Appendix B) controls dual variables but Catalyst acceleration
is applied to the primal variables. O

This rate recovers the computation complexity of optimal finite sum algorithms such as ADFS [12, 13].
Although the communication time is slightly increased (by a factor y/Mm&comm/%s), ADFS uses a
stronger oracle than DVR (proximal operator instead of gradient), which is why we develop DVR in
the first place. Although both ADFS and DVR are derived using the same dual formulation, both
the approach and the resulting algorithms are rather different: ADFS uses accelerated coordinate
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Figure 1: Experimental results for the RCV1 dataset with different graphs of size n = 81, with
m = 2430 samples per node, and with different regularization parameters.

descent, and thus has strong convergence guarantees at the cost of requiring dual oracles. DVR uses
coordinate descent with the Bregman divergence of ¢;; o f;; in order to work with primal oracles,
but thus loses direct acceleration, which is recovered through the Catalyst framework. Note that the
parameters of accelerated DVR can also be set such that T, = O (\/m [m +7/ \/'7] log 5*1) R
which recovers the convergence rate of optimal batch algorithms, but loses the finite-sum speedup.

5 Experiments

We investigate in this section the practical performances of DVR. We solve a regularized logistic
regression problem on the RCV1 dataset [18] (d = 47236) with n = 81 (leading to m = 2430) and
two different graph topologies: an Erdés-Rényi random graph (see, e.g., [3]) and a grid. We choose
u2, = 1/2 for all communication edges, so the gossip matrix W is the Laplacian of the graph.

Figure 1 compares the performance of DVR with that of state-of-the-art primal algorithms such as
EXTRA [37], NIDS [21], GT-SAGA [41], and Catalyst accelerated versions of EXTRA [20] and

DVR. Suboptimality refers to F’ (0150)) — F(6*), where node 0 is chosen arbitrarily and F'(6*) is
approximated by the minimal error over all iterations. Each subplot of Figure 1(a) shows the same
run with different x axes. The left plot measures the complexity in terms of individual gradients
(V fi;) computed by each node whereas the center plot measures it in terms of communications
(multiplications by W). All other plots are taken with respect to (simulated) time (i.e., computing
V fi; takes time 1 and multiplying by W takes time 7) with 7 = 250 in order to report results that are
independent of the computing cluster hardware and status. All parameters are chosen according to
theory, except for the smoothness of the f;, which requires finding the smallest eigenvalue of a d x d
matrix. For this, we start with Ly, = o; + Z;”:l L;; (which is a known upper bound), and decrease it
while convergence is ensured, leading to x; = 0.01x. The parameters for accelerated EXTRA are
chosen as in [20] since tuning the number of inner iterations does not significantly improve the results
(at the cost of a high tuning effort). For accelerated DVR, we set the number of inner iterations to
N/Pcomp (one pass over the local dataset). We use Chebyshev acceleration for (accelerated) DVR
but not for (accelerated) EXTRA since it is actually slower, as predicted by the theory.

As expected from their theoretical iteration complexities, NIDS and EXTRA perform very simi-
larly [20], and GT-SAGA is the slowest method. Therefore, we only plot NIDS and GT-SAGA in
Figure 1(a). We then see that though it requires more communications, DVR has a much lower
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Figure 2: Experimental results for the RCV1 dataset with different graphs of size n = 81, with
m = 2430 samples per node, and with different regularization parameters.

computation complexity than EXTRA, which illustrates the benefits of stochastic methods. We see
that DVR is faster overall if we choose 7 = 250, and both methods perform similarly for 7 ~ 1000,
at which point communicating takes roughly as much time as computing a full local gradient. We
then see that accelerated EXTRA has quite a lot of overhead and, despite our tuning efforts, is slower
than EXTRA when the regularization is rather high. On the other hand, accelerated DVR consistently
outperforms DVR by a relatively large margin. The communication complexity is in particular greatly
improved, allowing accelerated DVR to be the fastest method regardless of the setting.

Finally, Figure 2 presents the comparison between DVR and MSDA [32], an optimal decentralized
batch algorithm, in terms of communication complexity. To implement MSDA, we compute the dual
gradients by solving each local subproblem (V f*(x) = arg max, 2Ty — f(y)) up to precision 10~
using accelerated gradient descent. Solving the subproblems with lower precision caused MSDA
to plateau and not converge to the true optimum. In Figure 2(c), Acc. DVR comm (the brown line)
refers to Accelerated DVR with Catalyst parameter chosen to favor communication complexity (as
explained after Theorem 2). MSDA is the fastest algorithm as expected, but accelerated DVR is not
too far behind, especially given the fact that it relies on generic Catalyst acceleration, which adds some
complexity overhead. Therefore, the comparison with MSDA corroborates the fact that accelerated
DVR is competitive with optimal methods in terms of communication while enjoying a drastically
lower computational cost. Further experimental results are given in Appendix D, and the code is
available in supplementary material and at https://github.com/HadrienHx/DVR_NeurIPS.

6 Conclusion

This paper introduces DVR, a Decentralized stochastic algorithm with Variance Reduction obtained
using Bregman block coordinate descent on a well-chosen dual formulation. Thanks to this approach,
DVR inherits from the fast rates and simple theory of dual approaches without the computational
burden of relying on dual oracles. Therefore, DVR has a drastically lower computational cost
than standard primal decentralized algorithms, although sometimes at the cost of a slight increase
in communication complexity. The framework used to derive DVR is rather general and could
in particular be extended to analyze asynchronous algorithms. Finally, although deriving a direct
acceleration of DVR is a challenging open problem, Catalyst and Chebyshev accelerations allow to
significantly reduce DVR’s communication overhead both in theory and in practice.
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