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A Tree-based discretization for regression problems

Algorithm 1 describes the CTREE algorithm, which we use for estimating expected (context-
dependent) reward wherever the rewards are continuous. The algorithm operates on a complete binary
tree of depth D that maintains a GLN at each non-leaf node. We assume that our tree divides the
bounded reward range [rmin, rmax] uniformly into 2d bins at each level d ≤ D. By labelling left
branches of a node by 0, and right branches with a 1, we can associate a unique binary string b1:d

to any single internal (d < D) or leaf (d = D) node in the tree. The dth element, when it exists,
is denoted as bd. The root node is denoted by empty string ε. All nodes of the tree can thus be
represented as B≤D = {ε} ∪

⋃D
d=1 Bd and all non-leaf nodes with B<D ≡ B≤D−1.

We define a vector v of dimension 2D, whose components correspond to the ordered list of midpoints
in our discretized range, via

v = (rmin + (DEC(b) +1/2)(rmax − rmin)/2D+1)b∈BD

where DEC converts a binary string to a decimal. This quantity is used by the CTREE algorithm in
conjunction with the probability of each possible path down the tree to approximate the context
dependent expected reward.

Given a context x, a tree estimating the value of an action, i.e. the GLN parameters for each non-leaf
node of the tree (Θb)b∈B<D , the probability of a reward corresponding to a bin specified by b1:D is
given by

P (b1:D|x) =

D∏
i=1

∣∣∣1− bi − GLN(x |Θb<i
)
∣∣∣ .

Then, we can obtain the expected reward of an action given a context by weighting each bin midpoint
with its corresponding probability, that is

∑
b∈BD P (b|xt) vb.

Whenever a reward r is observed, all the GLNs along the path b to reach the target bin are updated
with a target 0 or 1 depending on if it requires traversing left or right to reach the bin containing r, i.e.
b is the first D digits of the binary expansion of r/(rmax − rmin).

We can adapt the algorithm we proposed for Bernoulli bandit problems to bounded-continuous bandit
problems by (I) estimating expected rewards E[r |x, a] utilizing CTREEs (rather than using a single
GLN per action) and (II) aggregating counts across all gating units of 2D − 1 many GLNs for each
action. We should note that even though this exponential term might initially seem discouraging,
we set D = 3 in our experiments and observe no significant improvements for larger D. This is
also consistent with findings from distributional RL [BDM17], where a surprisingly small number of
bins/quantiles are sufficient for state of the art performance on Atari games.
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Algorithm 1 CTREE, performs regression utilizing a tree-based discetization, where nodes are
composed of GLNs.

1: Input: Vector of precomputed bin midpoints v
2: Input: Observed context xt at time step t
3: Input: Weights for each GLN, (Θb)b∈B<D

4: Output: Estimate of E[r|x]

5: return
∑
b∈BD P (b|xt) vDEC(b)

B Proofs: Asymptotic Convergence

Below, we provide the proofs for the Asymptotic Convergence section.

Lemma 1 (action lemma) For s ∈ SU , if Nt(s)→∞, then Nt(su, a)→∞ ∀u ∈ U ∀a ∈ A.

Proof. Fix some s for which the assumption Nt(s)→∞ is satisfied. That is, st := g(xt) equals s
infinitely often. Yet another way of expressing this is that set T := {t ∈ N : st = s} is infinite.

Assume there is a set of actions A0 ⊆ A for which the pseudocount in signature s is bounded, i.e.
A0 = {a : N

∧

t(s, a) 6→ ∞}, which implies there exist finite ca and ta for which

N
∧

t(s, a) = ca <∞ ∀t ≥ ta ∀a ∈ A0

We will show that this leads to a contradiction. Assume t ∈ T and t ≥ ta∀a ∈ A0. Then for a ∈ A0

we have

GLNUBt̄a(xt) ≥ rmin + C

√
log t

N
∧

t̄(st, a)
= C

√
log t

ca

since GLNt̄a(x) ≥ rmin, and st = s. On the other hand, for t ∈ T and a 6∈ A0 we have N
∧

t̄(s, a)→
∞, which implies

GLNUBt̄a(xt) ≤ rmax + C

√
log t

N
∧

t̄(s, a)
= o(

√
log t)

since GLNt̄a(x) ≤ rmax. Both bounds together imply that for sufficiently large t ∈ T ,

GLNUBt̄a0(xt) > GLNUBt̄a1(xt) ∀a0 ∈ A0 ∀a1 6∈ A0

Hence for such a t, GLCB takes some action a0 ∈ A0, leading to a contradictionN
∧

t(s, a0) ≥ ca0 +1.
Therefore, the assumption a0 ∈ A0 was wrong, and by induction A0 = {}, hence N

∧

t(s, a) → ∞
∀a ∈ A, which implies Nt(su, a)→∞ ∀u ∈ U .

Proposition 2 (convergence of GLN) Let a ∈ A and x ∈ X . Then the estimation error
EstErr(x) := GLNt̄a(x) − GLN∞a (x) → 0 w.p.1. for t → ∞ if Nt(su, a) → ∞ ∀u ∈ U w.p.1,
where su := gu(x).

The Proposition as stated (only) establishes that the limit exists. Roughly, on-average within each
context cell g−1

u (su), GLN∞a is equal to the true expected reward, which by Theorem 6 below implies
that in a sufficiently large GLN, GLN∞a (x) is arbitrarily close to the true expected reward E[r|x, a].

Proof sketch. The condition means, every signature appears infinitely often for each unit u, which
suffices for GLN to converge. For the first layer, this essentially follows from the convergence of
SGD on i.i.d. data. Since the weights of layer 1 converge, the inputs to the higher GLN layers are
asymptotically i.i.d., and a similar analysis applies to the higher layers. See [VLB+17, Thm.1] for
details and proof.

Theorem 3 (convergence of GLCB) For any finite or continuous X 3 x, EstErr(x) := GLNt̄a(x)−
GLN∞a (x)→ 0 w.p.1 for t→∞ for all a ∈ A and ∀x : P (s) > 0, where s := g(x).
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Proof. By assumption, x1, ..., xt are sampled i.i.d. from probability measure P with x ∈ X , where
X may be discrete or continuous (X ⊆ [0; 1]d in the experiments). Then P (s) := P [g(x) = s]
is a discrete probability (mass function) over finite space SU 3 s. Note that P (s) = 0 implies
Nt(s) = 0, hence such s can safely been ignored. Consider P (s) > 0, which implies Nt(s)→∞
for t→∞ w.p.1, ,indeed, Nt(s) grows linearly w.p.1. By Lemma 1, this implies Nt(su, a)→∞
∀u ∈ U ∀a ∈ A w.p.1. By Proposition 2, this implies GLNt̄a(x)→ GLN∞a (x) w.p.1 ∀a.

Lemma 4 (sub-optimal action lemma) Sub-“optimal” actions are taken with vanishing frequency.
Formally, Nt(s, a) = o(t) w.p.1 ∀a 6∈ Π̃(x), where s = g(x).

Proof. Since P (s) = 0 trivially implies Nt(s, a) = 0, we can assume P (s) > 0. Assume Nt(s, a)
grows faster than log t. Then√

log t

N
∧

t(st, at)
≤

√
log t

Nt(st, at)

w.p.1−→ 0 for t→∞ (1)

This step uses N̂t ≥ Nt, which implies GLNUBt̄a → GLN∞a < maxa GLN∞a ← maxa GLNt̄a ≤
maxa GLNUBt̄a. The convergence for t→∞ w.p.1 follows from (1) and Theorem 3. The inequality
is strict for sub-“optimal” a. Hence GLCB does not take action a 6∈ Π̃(x) anymore for large t, which
contradicts Nt(su, a)→∞.

Theorem 5 (pseudo-regret / policy error) Let PolErr(x) := GLN∞π̃(x)(x) − GLN∞πt(x)(x) be the
simple regret incurred by the GLCB (learning) policy πt(x). Then the total pseudo-regret

Regret(x1:T ) :=

T∑
t=1

PolErr(xt) = o(T ) w.p.1

which implies PolErr(x)→ 0 in Cesaro average.

Proof. Regret(x1:T ) :=
∑

t:at 6∈Π̃(xt)

PolErr(xt)

≤ rmax
∑
s∈SU

#{(xt, at) : at 6∈ Π̃(xt) ∧ g(xt) = s}

≤ rmax max
x:g(x)=s

∑
s∈SU

∑
a6∈Π̃(x)

NT (s, a) = o(T )

The last equality follows from Lemma 4.

Theorem 6 (representation error) Let Q(x, a) := E[r|x, a] = P [r = 1|x, a] be the true expected
reward of action a in context x. Let π∗(x) := arg maxaQ(x, a) be the (Bayes) optimal policy
(in hindsight). Then, for Lipschitz Q and sufficiently large GLN, Q can be represented arbitrarily
well, i.e. the (asymptotic) representation error (also known as approximation error) RepErr(x) :=
maxa |Q(x, a)− GLN∞a (x)| can be made arbitrarily small.

Proof. Follows from [VLB+17, Thm.14] in the Bernoulli case, and similarly for CTREE, since the
reward distribution and hence expected reward can be approximated arbitrarily well for sufficiently
large tree depth D.

Corollary 7 (Simple Q-regret)
Q(x, π∗(x))−Q(x, πt(x)) ≤ PolErr(x) + 2RepErr(x)

Proof. Follows from
Q(x, π∗(x)) = max

a
Q(x, a)

≤ RepErr(x) + max
a

GLN∞a (x)

= RepErr(x) + GLN∞π̃(x)(x), and

Q(x, a) ≥ GLN∞a (x)− RepErr(x)

and the definition of PolErr(x) in Theorem 5.
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C Experimental details.

Baseline Algorithms. We briefly describe the algorithms we used for benchmarking below. All of
the methods store the data and perform mini-batch (neural network) updates to learn action values. All
besides Neural Greedy quantify uncertainties around the expected action values and utilize Thompson
sampling by drawing action value samples from posterior-like distributions.

• Neural Greedy estimates action-values with a neural network and follows ε-greedy policy.
• Neural Linear utilizes a neural network to extract latent features, from which action values

are estimated using Bayesian linear regression. Actions are selected by sampling weights
from the posterior distribution, and maximizing action values greedily based on the sampled
weights, similar to [SRS+15].

• Linear Full Posterior (LINFULLPOST) performs a Bayesian linear regression on the contexts
directly, without extracting features.

• Bootstrapped Network (BOOTRMS) trains a set of neural networks on different subsets
of the dataset, similarly to [OBPVR16]. Values predicted by the neural networks form the
posterior distribution.

• Bayes By Backprop (BBB) [BCKW15] utilizes variational inference to estimate posterior
neural network weights. BBBALPHADIV utilizes Bayes By Backprop, where the inference
is achieved via expectation propagation [HLLR+16].

• Dropout policy treats the output of the neural network with dropout [SHK+14] – where each
units output is zeroed with a certain probability – as a sample from the posterior distribution.

• Parameter-Noise (PARAMNOISE) [PHD+18] obtains the posterior samples by injecting
random noise into the neural network weights

• Constant-SGD (CONSTSGD) policy exploits the fact that stochastic gradient descent (SGD)
with a constant learning rate is a stationary process after an initial “burn-in” period. The
analysis in [MHB16] shows that, under some assumptions, weights at each gradient step
can be interpreted as samples from a posterior distribution.

Processing of datasets. For GLCB we require contexts to be in in [0, 1] and rewards to be in [a, b]
for a known a and b. To achieve this for Bernoulli bandit tasks (adult, census, covertype, and statlog),
letX be a T×dmatrix with each row corresponding to a dataset entry and each column corresponding
to a feature. We linearly transform each column to the [0, 1] range, such that min(X.j) = 0 and
max(X.j) = 1 for each j. Rescaling for the jester, wheel and financial tasks are trivial. We use the
default parameters of the wheel environment, meaning δ = 0.95 as of February 2020.

Further Experimental Results. We present the cumulative rewards used for obtaining the rank-
ings (Table 2 of main text) in Table 1.

adult census covertype statlog financial jester wheel
algorithm

BBAlphaDiv 18±2 932±12 1838±9 2731±15 1860±1 3112±4 1776±11
BBB 399±8 2258±12 2983±11 4576±10 2172±18 3199±4 2265±44
BootRMS 676±3 2693±3 3002±7 4583±11 2898±4 3269±4 1933±44
Dropout 652±5 2644±8 2899±7 4403±15 2769±4 3268±4 2383±48
GLCB (ours) 742±3 2804±3 2825±3 4814±2 3092±3 3216±3 4308±11
LinFullPost 463±2 1898±2 2821±6 4457±2 3122±1 3193±4 4491±15
NeuralLinear 391±2 2418±2 2791±6 4762±2 3059±2 3169±4 4285±18
ParamNoise 273±3 2284±5 2493±5 4098±10 2224±2 3084±4 3443±20
RMS 598±5 2604±14 2923±8 4392±17 2857±5 3266±8 1863±44
constSGD 107±3 1399±22 1991±9 3896±18 1862±1 3136±4 2265±31

Table 1: Cumulative rewards averaged over 500 random environment seeds. Best performing policies
per task are shown in bold. ± term is the standard error of the mean.

Computing Infrastructure. All computations are run on single-GPU machines.
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Hyperparameter Bernoulli bandits Continuous bandits Symbol
GLN network shape [100, 10, 1] [100, 10, 1] -

number of hyperplanes per unit 8 2 -
UCB exploration bonus 0.03 0.1 C

bias scale 0.05 0.001 -
initial learning rate 0.1 1 -

learning rate decay parameter 0.1 0.01 -
initial switching rate 10 1 -

switching rate decay parameter 1 0.1 -
tree depth - 3 D

Table 2: GLCB hyperparameters used for the experiments.

GLCB hyperparameters. We sample the hyperplanes weights used in gating functions uniformly
from a unit hypersphere, and biases from N (d/2,bias scale) i.i.d. where d is the context dimension.
This term is needed to effectively transform context ranges from [0, 1]d to [−1/2, 1/2]d. We set the
GLN weights such that for each unit the weights sum up to 1 and are equal. We decay the learning
rate and the switching alpha of GLN via initial value/(1 + decay rate×Nt−1(a)) where Nt−1(a)
is the number of times the given action is taken up until time t. We display the hyperparameters we
use in the experiments in Table 2, most of which are chosen via grid search.

D List of Notation.

We provide a partial list of notation in Table 3, covering many of the variables introduced in Section
3 (Gated Linear Contextual Bandits) of the main text.
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Symbol Explanation
K0 − 1 Dimension of a context

X ⊆ [0; 1]K0−1 A context set
x ∈ X A context
a ∈ A Action from finite set of actions
Q(x, a) True action value = expected reward of action a in context x

ε ∈ (0, 1/2) GLN output clipping parameter
ε Empty string

Θt
a Parameters of GLNta

GLN(x|Θt
a) ∈ [ε, 1− ε] GLN used for estimating the reward probability of action a at time t

GLNta : X → [ε, 1− ε] Equivalent to GLN(x|Θt
a).

U ∈ N Number of GLN units
U = {1, 2, . . . , U} Index set for GLN units or gating functions
u = (i, j) ∈ U Index of gating function or GLN unit/neuron j in layer i

S Number of signatures
S = {1, 2, 3 . . . , S} Signature space of a gating function

su ∈ S Signature of unit u
s ∈ SU Total signature of all units U

gu : X → S Gating function for unit u of GLNa for all a
g : X → SU Gating function applied element-wise to all U
τ/t/T ∈ N Some/current/maximum time step/index
> Boolean value for True

t̄ ∈ N t̄ ≡ t− 1
x<t ∈ X t−1 Set of observed contexts that are observed up until time t̄
Nt̄(su, a) Number of times uth unit had signature su given past contexts x<t
N
∧

t̄(g(x), a) Pseudocount of (x, a) at time t̄, calculated from x<t
C ∈ R>0 UCB-like exploration constant

rxat ∈ {0, 1} Binary reward of action a at context x at time t
θxa ∈ [0, 1] Reward probability of action a at context x
[rmin, rmax] Range of continuous rewards

D Depth of decision tree
v Vector of midpoints of the leaf bins

B = {0, 1} Binary alphabet
B≤D/B<D/BD All/interior/leaf nodes of a tree

b1:D Indicator for a leaf node/bin
P (b1:D|x) Probability of x belonging to leaf b1:D

Table 3: A (partial) list of variables used in the paper and their explanations.
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