
We thank all five reviewers for their detailed and incisive feedback. We respond in order below:1

R1: Comparison with inexact methods Aligning with prior exact papers [10, 18], we focus on comparisons with exact2

methods. We tested AustereMH [16], an inexact method, on robust linear regression in Section 5.1 with N = 5000. We3

computed the MSE between estimated and true parameters. MH, TunaMH and AustereMH obtained MSE 0.149, 0.154

and 1.19 respectively, indicating inexact method error can be large on typical problems. We added this to the Appendix.5

R1: More difficult problem Our next step is to apply TunaMH to more difficult problems, such as a threshold testing6

with a large real-world dataset [Pierson, et al. Fast Threshold Tests for Detecting Discrimination, AISTATS 2018.]7

R1: Confusion about M(θ, θ′) We added additional explanation here.8

R2 : What if E[B] > N E[B] is typically << N , and can be decreased using small step sizes. If E[B] > N , we can9

simply use standard MH in that iteration, similar to [10]. This does not affect the properties of TunaMH. We added this.10

R3: Theorem 1 (1) We believe the example in Theorem 1 is natural. The target (marginal) distribution is uniform,11

the proposal is a random walk, and the state space is integers on [0, . . . ,K − 1] (If X = 0, the example can just be12

a random walk of k without augmenting z). This is one of the simplest types of Markov chains and is encountered13

in many real applications. (2) Theorem 1 is compatible with the TV bound of MHSubLhd (Proposition 3.2 in [6]).14

Proposition 3.2 assumes PMH has a bounded mixing time; it is well-known that this produces a TV bound for any kernel15

by coupling [17]. Our theorem doesn’t have this assumption; it suggests that for MHSubLhd with given user-specified16

error, there exists a target distribution and proposal satisfying Theorem 1, on which PMH either does not have bounded17

mixing time or the mixing time is large enough such that the TV bound is greater than δ. We added this to the Appendix.18

R3: PDMPs; Examples of U , C, M We have (1) weakened the language and added the suggested reference; (2) added19

an example for logistic regression.20

R3: Theorem 2 Given the spectral gap bound, we can immediately show that TunaMH inherits geometric ergodicity21

from MH and obtain an asymptotic variance bound — a known result [17]. In fact, the spectral gap bound and the22

asymptotic variance bound are equivalent, so the impact of χ on the variance is similar to that on the spectral gap. We23

unfortunately do not understand the suggestion for the corollary.24

R3: Theorem 3 impact Similar to Theorem 1, we constructed a random walk example over two states — a simple and25

natural problem. The impact is 3-fold: it (1) provides an upper bound on performance for algorithms of Algorithm 1’s26

form; (2) shows the upper bound is achievable (e.g. TunaMH); (3) suggests directions for developing new algorithms.27

To be significantly faster than TunaMH, we either need more assumptions about the problem or new stateful algorithms.28

R3: Asymptotics in M and C In Theorem 3 M and C are the only problem parameters; these two values determine a29

problem’s lowest possible batch size. Thus, asymptotic optimality in M and C indicates asymptotic optimality in any30

problem parameter (including N ). When explicitly assuming the relation of N and M , C (as in prior work [10]), in31

Corollary 1 we show how the bound depends on N and TunaMH is asymptotically optimal in N .32

R3: Claim about control variates We empirically observe SMH with control variates does not work well in high33

dimension. We conjecture this is because the batch size bound (Eq.13 in [10]) becomes looser quickly as d increases.34

R3&R5: Results in low dimension We ran experiments (Section 5.1) with d = 10 and N = 105. The ESS/S for SMH,35

FlyMC, TunaMH are 0.02, 0.75, & 1.7; SMH-1, SMH-2, FlyMC-MAP and TunaMH-MAP are 174.7, 5969.5, 730.8, &36

730.1 respectively. This suggests TunaMH is significantly better without MAP/control variates. With MAP/control37

variates, TunaMH is better than SMH-1, similar to FlyMC and worse than SMH-2. We will add this to the Appendix.38

R3: A in Appendix A denotes the SubsMH of the minibatch MH method in question. The expectation in L425, L42639

and L433 are all taken over the randomness in SubsMH. We have clarified this.40

R4: Table 2; other distributions for batch size (1) We fixed Table 2 to make χ values clearer. (2) We were unable to41

identify a distribution other than Poisson to get nice results. It is possible one does exist, which we leave to future work.42

R5: Assumption 1 For consistency we use the same language as in prior work [10] to describe the bounds in Assumption43

1 and in FlyMC. One can get the required bound in FlyMC by triangle inequality, but the tightness of the bound highly44

depends on the reference point θ0. Thus it is typically harder to get a tight bound on |Ui(θ)| than |Ui(θ)− Ui(θ
′)|. We45

agreed that Assumption 1 is still a strong requirement. We have clarified these points in the paper.46

R5: Reproducibility; Clarity about SMH and FMH We (1) will release the code and associated documentation upon47

publication; (2) have cleaned up our SMH/FMH language to be more precise.48

R5: “Form minibatch” steps Thinning is a well-known technique (Lewis and Shedler, 1979) used in many papers [7,49

8, 24]. We developed the “Form minibatch” steps, including ejection, by replacing the global bounds with the local50

bounds in Algorithm 4 in the Appendix of [24] (explained in Appendix C). We clarified this and now also cite [10].51


