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Abstract

Metropolis-Hastings (MH) is a commonly-used MCMC algorithm, but it can be
intractable on large datasets due to requiring computations over the whole dataset.
In this paper, we study minibatch MH methods, which instead use subsamples to
enable scaling. We observe that most existing minibatch MH methods are inexact
(i.e. they may change the target distribution), and show that this inexactness can
cause arbitrarily large errors in inference. We propose a new exact minibatch
MH method, TunaMH, which exposes a tunable trade-off between its batch size
and its theoretically guaranteed convergence rate. We prove a lower bound on
the batch size that any minibatch MH method must use to retain exactness while
guaranteeing fast convergence—the first such bound for minibatch MH—and show
TunaMH is asymptotically optimal in terms of the batch size. Empirically, we
show TunaMH outperforms other exact minibatch MH methods on robust linear
regression, truncated Gaussian mixtures, and logistic regression.

1 Introduction

Bayesian inference is widely used for probabilistic modeling of data. Specifically, given a dataset
D = {xi}Ni=1 and a θ-parameterized model, it aims to compute the posterior distribution

π(θ) ∝ exp
�
−�N

i=1 Ui(θ)
�
,where Ui(θ) = − log p(xi|θ)− 1

N log p(θ).

Here p(θ) is the prior and the p(xi|θ) give the likelihood of observing xi given the parameter θ.
We assume the data are conditionally independent given θ. The Ui have a natural interpretation
as component energy functions with π acting as a Gibbs measure. In practice, computing π(θ)
is often intractable and thus requires using approximate methods, such as Markov chain Monte
Carlo (MCMC). MCMC uses sampling to estimate the posterior and is guaranteed to converge
asymptotically to the true distribution, π [9].

The Metropolis-Hastings (MH) algorithm [16, 21] is one of the most commonly used MCMC methods.
In each step, MH generates a proposal θ� from a distribution q(·|θ), and accepts it with probability

a(θ, θ�) = min
�
1, π(θ�)q(θ|θ�)

π(θ)q(θ�|θ)

�
= min

�
1, exp

��N
i=1(Ui(θ)− Ui(θ

�))
�
· q(θ|θ�)
q(θ�|θ)

�
. (1)

If accepted, the chain transitions to θ�; otherwise, it remains at the current state θ. This accept/reject
step can be quite costly when N is large, since it entails computing a sum over the entire dataset.

Prior work has proposed many approaches to mitigate the cost of this decision step [5]. One popular
approach involves introducing stochasticity: instead of computing over the entire dataset, a subsample,
or minibatch, is used to compute an approximation. These minibatch MH methods can be divided into
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two classes, exact and inexact, depending on whether or not the target distribution π is necessarily
preserved. Inexact methods introduce asymptotic bias to the target distribution, trading off correctness
for speedups [6, 17, 23, 24, 26]. Exact methods either require impractically strong constraints on
the target distribution [20, 27], limiting their applicability in practice, or they negatively impact
efficiency, counteracting the speedups that minibatching aims to provide in the first place [4, 12].
Moreover, all existing exact methods operate on the belief that there is a trade-off between batch
size and convergence rate—between scalability and efficiency. Yet no prior work formally exposes
this trade-off, and most prior work gives no convergence rate guarantees. Given these various
considerations, it is not entirely clear how to evaluate which minibatch MH method to use.

In this paper we forge a path ahead to untangle this question. While inexact methods have been
prominent recently due to their efficiency, they are not reliable: we show that the stationary distribution
of any inexact method can be arbitrarily far from the target π. This means they can yield disastrously
wrong inference results in practice, and it is difficult to tell just how bad those results can be.

We therefore turn our attention to exact methods and introduce TunaMH.2 Compared to prior work,
we make milder assumptions, which enables TunaMH to apply to a wider variety of inference tasks.
More specifically, we require local rather than global bounds on the target distribution [20, 27] and do
not rely on the Bernstein-von Mises approximation [5, 7, 12]. TunaMH is guaranteed to retain sample
efficiency in the presence of minibatching: its convergence rate (measured by the spectral gap) is
within a constant factor of standard, non-minibatch MH. More importantly, TunaMH also enables us
to rigorously characterize the trade-off between scalability and efficiency. It has a hyperparameter χ,
which enables tuning the trade-off between expected batch size and convergence rate.

By exposing this trade-off, our analysis raises the natural question: is TunaMH optimal for this
trade-off? That is, could another exact algorithm use an asymptotically smaller average batch size
while having the same convergence rate guarantees? We explore this in Section 4; under the same
mild assumptions we use to derive TunaMH, we prove a lower bound on the expected batch size for
any exact minibatch MH method that can keep a reasonable convergence rate. To our knowledge,
we are the first to prove a lower bound of this nature for minibatch MH. Moreover, TunaMH is
asymptotically optimal in balancing the expected batch size and convergence rate. It remains exact
and efficient while on average using the smallest possible number of samples. In summary:

• We demonstrate that any inexact minibatch MH method can be arbitrarily inaccurate (Section 2.1).
• We introduce a new exact method, TunaMH (Section 3), with a lower bound on its convergence

rate (in terms of the spectral gap) and a tunable hyperparameter to balance the trade-off between
convergence rate and batch size.

• We prove a lower bound on the batch size for any exact minibatch MH method given a target
convergence rate—the first such lower bound in this area. This result indicates that the expected
batch size of TunaMH is asymptotically optimal in terms of the problem parameters (Section 4).

• We show empirically that TunaMH outperforms state-of-the-art exact minibatch MH methods on
robust linear regression, truncated Gaussian mixture, and logistic regression (Section 5).

2 Preliminaries and Drawbacks of Prior Minibatch MH Methods

We first formally define the class of methods that we study theoretically in this paper: minibatch
MH methods of the form of Algorithm 1. This class contains methods that sample a proposal from
distribution q (which we always assume results in the chain being ergodic), and choose to accept or
reject it by calling some randomized subroutine, SubsMH, which outputs 1 or 0 for “accept" or “reject,"
respectively. Algorithms in this class have several notable properties. First, SubsMH is stateless: each
acceptance decision is made independently, without carrying over local state associated with the
MH procedure between steps. Many prior methods are stateless [6, 12, 17, 26]. We do not consider
stateful methods, in which the decision depends on previous state; they are difficult to analyze due to
running on an extended state space [3, 24]. Second, SubsMH takes a function that computes energy
differences Ui(θ)− Ui(θ

�) and outputs an acceptance decision. We evaluate efficiency in terms of
how many times SubsMH calls this function, which we term the batch size the method uses. Third,
SubsMH takes parameters that bound the maximum magnitude of the energy differences. Specifically,
as in Cornish et al. [12], we assume:

2TunaMH since it tunes the efficiency-scalability trade-off and uses a Poisson (French for “fish") variable.
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Algorithm 1 Stateless, Energy-Difference-Based Minibatch Metropolis-Hastings

given: state space Θ, energy functions U1, . . . , UN : Θ → R, proposal dist. q, initial state θ ∈ Θ
given: parameters c1, . . . , cN , C, M from Assumption 1, randomized algorithm SubsMH
loop

sample θ� ∼ q(·|θ)
define function ΔU : {1, . . . , N} → R, such that ΔU(i) = Ui(θ)− Ui(θ

�)
call subroutine o ← SubsMH(ΔU,N, q(θ|θ�)/q(θ�|θ), c1, . . . , cN , C,M(θ, θ�))
if o = 1, update θ ← θ�

end loop

Assumption 1. For some constants c1, . . . , cN ∈ R+, with
�

i ci = C, and symmetric function M :
Θ×Θ → R+, for any θ, θ� ∈ Θ, the energy difference is bounded by |Ui(θ)−Ui(θ

�)| ≤ ciM(θ, θ�).

One can derive such a bound, which can be computed in O(1) time, for many common inference
problems: for example, if each energy function Ui is Li-Lipschitz continuous, then it suffices to set
ci = Li and M(θ, θ�) = �θ − θ�� (See Appendix J for examples of ci and M on common problems).
Note that the SubsMH method may choose not to use these bounds in its decision. We allow this so
the form of Algorithm 1 can include methods that do not require such bounds. Most existing methods
can be described in this form [4, 6, 12, 17, 26]. For example, standard MH can be written by setting
SubsMH to a subroutine that computes the acceptance rate a as in (1) and outputs 1 (i.e., accept) with
probability a.

Such minibatch MH methods broadly come in two flavors: inexact and exact. We next establish the
importance of being exact and demonstrate how TunaMH resolves drawbacks in prior work.

2.1 The Importance of Being Exact

Inexact methods are popular due to helping scale MH to new heights [6, 17, 24, 26]. They approximate
the MH acceptance ratio to within an error tolerance (> 0), trading off exactness for efficiency gains.
Surprisingly, the bias from inexactness can be arbitrarily large even when the error tolerance is small.
Theorem 1. Consider any minibatch MH method of the form in Algorithm 1 that is inexact (i.e. does
not necessarily have π as its stationary distribution for all π satisfying Assump. 1). For any constants
δ ∈ (0, 1) and ρ > 0, there exists a target distribution π and proposal distribution q such that if we
let π̃ denote a stationary distribution of the inexact minibatch MH method on this target, it satisfies

TV(π, π̃) ≥ δ and KL(π, π̃) ≥ ρ.

where TV is the total variation distance and KL is the Kullback–Leibler divergence.

Theorem 1 shows that when using any inexact method, there always exists a target distribution π
(factored in terms of energy functions Ui) and proposal distribution q such that it will approximate π
arbitrarily poorly. This can happen even when individual errors are small; they can still accumulate a
very large overall error. We prove Theorem 1 via a simple example—a random walk along a line, in
which the inexact method causes the chain to step towards one direction more often than the other,
even though its steps should be balanced (Appendix A). Note that it may be possible to avoid a large
error by using some specific proposal distribution, but such a proposal is hard to know in general.

We use AustereMH [17] and MHminibatch [26] to empirically validate Theorem 1. For these inexact
methods, we plot density estimates with the number of states K = 200 in Figure 1a (see Appendix
J.1 for using other K); the stationary distribution diverges from the target distribution significantly.
Moreover, the TV distance between the density estimate and the true density increases as K increases
on this random walk example (Figure 1b). By contrast, our exact method (Section 3) keeps a small
TV distance on all K and estimates the density accurately with an even smaller average batch size.
We also tested AustereMH on robust linear regression, a common task, to show that the error of
inexact methods can be large on standard problems (Appendix J.1).

2.2 Issues with Existing Exact Methods

This observation suggests that we should be using exact methods when doing minibatch MH. However,
existing approaches present additional drawbacks, which we discuss below.
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(a) (b) (c)

Figure 1: Existing MH method issues. (a)-(b) Inexact methods can diverge a lot from true distribution.
“dTV ” and “B” denote the TV distance and the batch size respectively. (c) SMH has low and TunaMH
with different values of hyperparameter χ has high acceptance rates.

Factorized MH and Scalable MH are stateless, exact minibatch methods. Factorized MH (FMH)
decomposes the acceptance rate into a product of factors, which allows for rejecting a proposal
based on a minibatch of data [4, 10, 11]. Truncated FMH (TFMH) is a FMH variant that maintains
geometric ergodicity; it falls back on standard MH in a step when the bound on the factors reaches a
certain threshold [12]. No matter how this threshold is set, we can construct tasks where TFMH is
either arbitrarily inefficient (rejecting arbitrarily often, slowing convergence), or degrades entirely to
standard MH.

Statement 1. For any constant p ∈ (0, 1), there exists a target distribution such that TFMH either
has an acceptance rate which is less than p times that of standard MH, or it completely degrades to
standard MH (summing over the whole dataset at each step).

We prove this statement in Appendix C using an example of a uniform distribution along a line, where
we let xi take one of two values, {−M/N,M/N} with M > 0. We show that the acceptance rate of
TFMH can be arbitrarily low by increasing M , which we also empirically verify in Figure 1c.

To improve the acceptance rate of TFMH, Scalable MH (SMH) introduces control variates, which
approximate Ui with a Taylor series around the mode [12]. However, it only works with unimodal
posteriors and high-quality Bernstein-von Mises approximations—conditions that do not hold for
many common inference tasks.

PoissonMH is a stateless minibatch MH method adapted from an algorithm designed for scaling
Gibbs sampling on factor graphs [27]. However, unlike our method, it requires strong assumptions—
specifically, a global upper bound on the energy. Such an upper bound usually does not exist and,
even if it does, can be very large, resulting in an impractically large batch size.

FlyMC is a stateful method, which means it uses auxiliary random variables to persist state across
different MH steps [20]. It requires a lower bound on the likelihood function, which is typically more
demanding than Assumption 1 and does not have theoretical performance guarantees.

Other exact methods exist based on Piecewise Deterministic Markov Processes [7, 8]. They require
regularity conditions only available for some problems, so their practical utility is limited.

3 TunaMH: Asymptotically Optimal Exact MH

In this section, we present our method, TunaMH, which evades the issues of prior exact methods
discussed in Section 2.2. Like SMH [12], our method works on distributions for which an a priori
bound on the energy differences is known (Assumption 1).

Our algorithm, presented in Algorithm 2, takes as parameters c1, . . . , cN , C, and M from Assumption
1, along with an additional hyperparameter, χ > 0. It proceeds in four steps. First, like any MH
method, it generates a proposal θ� from given distribution q. Second, it samples a batch size B
from a Poisson distribution. This makes the expected number of energy functions Ui evaluated by
our method at each step E[B] = χC2M2(θ, θ�) + CM(θ, θ�)3. Importantly, this means the batch

3Note that E[B] is typically << N and can be decreased using small step sizes. If, however, E[B] > N ,
then we can simply use standard MH in that iteration, similar to TFMH.
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Algorithm 2 TunaMH

given: initial state θ ∈ Θ; proposal dist. q; hyperparameter χ; Asm. 1 parameters ci, C, M
loop

propose θ� ∼ q(·|θ) and compute M(θ, θ�)

� Form minibatch I
sample B ∼ Poisson

�
χC2M2(θ, θ�) + CM(θ, θ�)

�

initialize minibatch indices I ← ∅ (an initially empty multiset)
for b ∈ {1, . . . , B} do

sample ib such that P(ib = i) = ci/C, for i = 1 . . . N

with probability χcibCM2(θ,θ�)+ 1
2 (Uib

(θ�)−Uib
(θ)+cibM(θ,θ�))

χcibCM2(θ,θ�)+cibM(θ,θ�) add ib to I
end for
� Accept/reject step based on minibatch I
compute MH ratio r ← exp

�
2
�

i∈I artanh
�

Ui(θ)−Ui(θ
�)

ciM(θ,θ�)(1+2χCM(θ,θ�))

��
· q(θ�|θ)
q(θ|θ�)

with probability min(1, r), set θ ← θ�

end loop

size may vary from iteration to iteration, and the expected size depends on θ and θ�. For example,
TunaMH may tend to set B larger for larger-distance proposals with a higher M(θ, θ�). Third, it
samples (with replacement) a minibatch of size B, but for each data point it samples, it has some
probability of ejecting this point from the minibatch. Finally, it accepts the proposed θ� with some
probability, computed using a sum over the post-ejection minibatch. Our method can be derived
by carefully replacing the auxiliary variables in PoissonMH with local Poisson variables whose
distributions change each iteration depending on the pair (θ, θ�) (Appendix D). By construction
TunaMH is exact; it preserves the target distribution π as its stationary distribution. This is because
TunaMH is reversible, meaning its transition operator T satisfies π(θ)T (θ, θ�) = π(θ�)T (θ�, θ) for
any θ, θ� ∈ Θ. This is a common condition that guarantees that a MCMC method has π as its
stationary distribution [9, 18].

Compared to previous exact methods, a significant benefit of TunaMH is that we can prove theoretical
guarantees on its efficiency. Specifically, its convergence speed is guaranteed to be close to standard
MH and χ allows us to control how close. To show this, we lower bound the convergence rate of
TunaMH in terms of the spectral gap, which is commonly used to characterize convergence speed in
the MCMC literature [15, 18, 25, 27, 28]. The larger the spectral gap, the faster the chain converges.
Definition 1. The spectral gap of a reversible Markov chain is the distance between the largest and
second-largest eigenvalues of its transition operator. That is, if the eigenvalues of the transition
operator are 1 = λ1 > λ2 ≥ λ3 · · · , then the spectral gap is γ = 1− λ2.
Theorem 2. TunaMH (Algorithm 2) is reversible with stationary distribution π. Let γ̄ denote the
spectral gap of TunaMH, and let γ denote the spectral gap of standard MH with the same target
distribution and proposal distribution. Then,

γ̄ ≥ exp
�
− 1

χ − 2
�

log 2
χ

�
· γ.

Intuitively, this theorem (proof in Appendix E) suggests the convergence rate of TunaMH is at most a
constant slower than that of standard MH, and can be increased by adjusting the hyperparameter χ.
Recall that χ also controls the batch size of TunaMH. Effectively, this means χ is a dial that allows
us to directly tune the trade-off between convergence rate and batch size. When χ is large, the batch
size B is large and the spectral gap ratio, γ̄/γ, is close to 1: the larger batch size is less scalable but
keeps a high convergence rate. Conversely, when χ is small, the batch size is small and the spectral
gap ratio is close to 0: we trade off slow-downs in convergence rate for scalability. For example, for
any 0 < κ < 1, to guarantee the spectral gap ratio γ̄/γ ≥ κ it suffices to set (Appendix F)

χ = 4
(1−κ) log(1/κ) , giving an average batch size of E[B] = 4C2M2(θ,θ�)

(1−κ) log(1/κ) + CM(θ, θ�). (2)

In practice, we usually want to minimize the wall-clock time to achieve a certain estimate error, which
requires tuning χ to optimally balance scalability and efficiency. We attempt to derive a theoretically
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optimal value of χ in Appendix G by minimizing the product of the relaxation time—a measure
of the number of steps needed—and the expected wall-clock time per step. Note that this product
may be loose in bounding the total wall-clock time (we leave tightening this bound to future work),
making the derived χ larger than necessary. In Section 5 we give a simple heuristic to tune χ, which
works well and is generally better than the derived value.

Theorem 2 only requires the mild constraints of Assumption 1 on the target distribution, so applies in
many scenarios and compares well to other exact methods. SMH further requires a Bernstein-von
Mises approximation to have guarantees on its batch size and acceptance rate. PoissonMH provides
convergence rate guarantees, but demands the strong assumption that the target distribution has a
global upper bound on the energy. FlyMC does not have any theoretical guarantees on performance.

4 Towards Optimal Exact Minibatch MH

In Theorem 2, we expose the trade-off between convergence rate and batch size in TunaMH. Here,
we take this analysis a step further to investigate the limits of how efficient an exact minibatch MH
method can be. To tackle this problem, we derive a lower bound on the batch size for any minibatch
MH method that retains exactness and fast convergence. We then show that TunaMH is asymptotically
optimal in terms of its dependence on the problem parameters C and M . In other words, it is not
possible to outperform TunaMH in this sense with a method in the class described by Algorithm 1.
Theorem 3. Consider any stateless exact minibatch MH algorithm described by Algorithm 1, any
state space Θ (with |Θ| ≥ 2), any C > 0, and any function M : Θ × Θ → R+. Suppose that the
algorithm guarantees that, for some constant κ ∈ (0, 1), for any distribution, the ratio between the
spectral gap of minibatch MH γ̂ and the spectral gap of standard MH γ is bounded by γ̂ ≥ κγ. Then
there must exist a distribution π over Θ and proposal q such that the batch size B of that algorithm,
when deciding whether to accept any transition θ → θ�, is bounded from below by

E[B] ≥ ζ · κ ·
�
C2M2(θ, θ�) + CM(θ, θ�)

�
(3)

for some constant ζ > 0 independent of algorithm and problem parameters.

To prove this theorem, we construct a random walk example over two states, then consider the
smallest batch size a method requires to distinguish between two different stationary distributions (Ap-
pendix H). The impact of Theorem 3 is three-fold:

First, it provides an upper bound on the performance of algorithms of Algorithm 1’s form: in each
iteration, the average batch size of any exact minibatch MH method of the form of Algorithm 1 must
be set as in (3) in order to maintain a reasonable convergence rate. To the best of our knowledge, this
is the first theorem that rigorously proves a ceiling for the possible performance of minibatch MH.

Second, TunaMH achieves this upper bound. In fact, Theorem 3 suggests that TunaMH is asymp-
totically optimal in terms of the problem parameters, C and M . To see this, observe that when we
ignore κ, both expressions that bound E[B] in (2) and (3) are O– (C2M2(θ, θ�) + CM(θ, θ�)). Thus
TunaMH reaches the lower bound, achieving asymptotic optimality in terms of C and M . (Of course,
this sense of “optimality” does not rule out potential constant-factor improvements over TunaMH or
improvements that depend on κ.)

Lastly, this result suggests directions for developing new exact minibatch MH algorithms: to be
significantly faster than TunaMH, we either need to introduce additional assumptions to the problem
or to develop new stateful algorithms.

In prior work, when assuming a very concentrated posterior, some methods’ batch size can scale in
O(1) [5, 7, 12] or O(1/

√
N) [12] in terms of the dataset size N while maintaining efficiency. Theo-

rem 3 is compatible with these results, further demonstrating this is essentially the best dependency on
N an exact minibatch MH method can achieve. We show this by explicitly assuming the dependency
of C and M on N , as in SMH [12], yielding the following corollary (proof in Appendix I):
Corollary 1. Suppose that C increases linearly with N (C = O– (N)) and M(θ, θ�) scales in
O– (N−(h+1)/2) for some constant h > 0. Then the lower bound in Theorem 3 becomes O– (N (1−h)/2).
In particular, it is O– (1) when h = 1, and O– (1/

√
N) when h = 2.

That is, TunaMH matches the state-of-the-art’s dependency on N , and this dependency is optimal.
Similarly, since C and M are the only problem parameters in the lower bound in Theorem 3, we can
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also get the optimal dependency on the other problem parameters by explicitly assuming the relation
of them with C and M .

5 Experiments

We compare TunaMH to MH, TFMH, SMH (i.e. TFMH with MAP control variates) and FlyMC.
We only include PoissonMH in the Gaussian mixture experiment, as it is not applicable in the other
tasks. All of these methods are unbiased, so they have the same stationary distribution. To ensure fair
wall-clock time comparisons, we coded each method in Julia; our implementations are at least as fast
as, if not faster than, prior implementations. For each trial, we use Gaussian random walk proposals.
We tune the proposal stepsize separately for each method to reach a target acceptance rate, and report
averaged results and standard error from the mean over three runs. We set χ to be roughly the largest
value that keeps χC2M2(θ, θ�) < 1 in most steps; we keep χ as high as possible while the average
batch size is around its lower bound CM(θ, θ�). We found this strategy works well in practice. We
released the code at https://github.com/ruqizhang/tunamh.

5.1 Robust Linear Regression

We first test TunaMH on robust linear regression [12, 20]. We use a Student’s t-distribution with
degree of freedom v = 4 and set data dimension d = 100 (Appendix J). We tune each method
separately to a 0.25 target acceptance rate. To measure efficiency, we record effective sample size
(ESS) per second—a common MCMC metric for quantifying the number of effectively independent
samples a method can draw from the posterior each second [9]. Figure 2a shows TunaMH is the most
efficient for all dataset sizes N ; it has the largest ESS/second. For minibatch MH methods, Figure 2b
compares the average batch size. TunaMH’s batch size is significantly smaller than FlyMC’s—about
35x with N = 105. TFMH has the smallest batch size, but this is because it uses a very small step
size to reach the target acceptance rate (Table 2 in Appendix J.2). This leads to poor efficiency, which
we can observe in its low ESS/second.

MAP variants Since TFMH and FlyMC have variants that use the maximum a posteriori (MAP)
solution to boost performance, we also test TunaMH in this scheme. SMH uses MAP to construct
control variates for TFMH to improve low acceptance rates. We consider both first- and second-order
approximations (SMH-1 and SMH-2). FlyMC uses MAP to tighten the lower bound (FlyMC-MAP).
For our method (TunaMH-MAP) and MH (MH-MAP), we simply initialize the chain with the MAP
solution. Figure 2c shows that TunaMH performs the best even when previous methods make use of
MAP. With control variates, SMH does increase the acceptance rate of TFMH, but this comes at the
cost of a drastically increased batch size (Figure 2d) which we conjecture is due to the control variates
scaling poorly in high dimensions (d = 100).4 FlyMC-MAP tightens the bounds, entailing a decrease
in the batch size. However, as clear in the difference in ESS/second, it is still less efficient than
TunaMH due to its strong dependence between auxiliary variables and the model parameters—an
issue that previous work also documents [24].

5.2 Truncated Gaussian Mixture

Next we test on a task with a multimodal posterior, a very common problem in machine learning.
This demonstrates the advantage of TunaMH not relying on MAP, because MAP is a single solution
and therefore is unable to reflect all possible modes in multimodal distributions. As a result, methods
that rely on MAP tuning or MAP-based control variates are unable to perform well on such problems.

We consider a Gaussian mixture. To get bounds on TunaMH, TFMH, SMH, and FlyMC, we truncate
the posterior, bounding θ1, θ2 ∈ [−3, 3] similar to Zhang and De Sa [27]. We can include PoissonMH
because its required bound exists after truncation. As in Seita et al. [26], we use a tempered posterior
π(θ) ∝ exp (−β

�
i Ui(θ)) with N = 106 and β = 10−4. Figure 3a compares performance,

showing symmetric KL versus wall-clock time. TunaMH is the fastest, converging after 1 second,
whereas the others take much longer. As expected, SMH-1 performs worse than TFMH, verifying the
control variate is unhelpful for multimodal distributions. FlyMC and FlyMC-MAP are also inefficient;
their performance is on par with standard MH, indicating negligible benefits from minibatching.

4Control variates worked well in the SMH paper [12] because all experiments had small dimension (d = 10).
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(a) (b)

(c) (d)

Figure 2: Robust linear regression, d = 100. (a) ESS/second without MAP. (b) Average batch size
without MAP. (c) ESS/second with MAP. (d) Average batch size with MAP.

(a) (b) (c)

Figure 3: Truncated Gaussian mixture. (a) Symmetric KL comparison. (b) True distribution. (c)
Denstity estimate of TunaMH after 1 second.

TunaMH also performs significantly better in terms of batch size, especially in comparison to
PoissonMH (Table 1). This is due to TunaMH’s local bound on the energy, as opposed to PoissonMH’s
global bound. This also allows TunaMH to run on more problem types, such as robust linear (Section
5.1) and logistic (Section 5.3) regression. To illustrate the estimate quality, we also visualize the
density estimate after 1 second; TunaMH’s estimate (Figure 3c) is very close to the true distribution
(Figure 3b), while the other methods do not provide on-par estimates within the same time budget
(Appendix J.3).

5.3 Logistic Regression on MNIST

Lastly we apply TunaMH to logistic regression on the MNIST image dataset of handwritten number
digits. Mirroring the work of FlyMC [20], we aim to classify 7s and 9s using the first 50 principal
components as features. We set χ = 10−5 following our heuristic. In Figure 4a we see that TunaMH
is the fastest of all methods to converge, as measured by wall-clock time. We also compare average
batch size in Table 1. TunaMH’s average batch size is 4x smaller than FlyMC’s. TFMH again has the
smallest batch size, but sacrifices efficiency by using a small step size in order to achieve the target
acceptance rate. Thus, overall, TFMH is again inefficient in these experiments.

Effect of Hyperparameter χ To understand the effect of χ in TunaMH, we report results with
varying χ. Figure 4b plots test accuracy as a function of the number of iterations. As χ increases,
TunaMH’s convergence rate approaches standard MH. This verifies our theoretical work: χ acts like
a dial to control convergence rate and batch size trade-off—mapping to the efficiency-scalability
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Table 1: Avg. batch size ± SE from the mean on 3 runs. PoissonMH not applicable to logistic reg.
Tasks TFMH FlyMC PoissonMH TunaMH

Gaussian Mixture 13.91± 0.016 811.52± 234.16 3969.67± 327.26 86.45± 0.04
Logistic Regression 39.28± 0.12 1960.19± 150.96 — 504.07± 0.33

(a) (b) (c)

Figure 4: MNIST logistic regression. (a) Test accuracy comparison. (b)-(c) TunaMH’s test accuracy
for various χ. Batch size for χ = 10−5, 10−4, 5× 10−4 is 504.07, 810.35 and 2047.91 respectively.

trade-off. Figure 4c shows TunaMH’s wall-clock time performance is not sensitive to χ, as the
performance is superior to standard MH regardless of how we set it. However, χ needs to be tuned in
order to achieve the best performance. Previous methods do not have such a dial, so they are unable
to control this trade-off to improve the sampling efficiency.

6 Conclusion and Future Work

After demonstrating that inexact methods can lead to arbitrarily incorrect inference, we focus our
work in this paper on exact minibatch MH methods. We propose a new exact method, TunaMH,
which lets users trade off between batch size and guaranteed convergence rate—between scalability
and efficiency. We prove a lower bound on the batch size that any minibatch MH method must
use to maintain exactness and convergence rate, and show TunaMH is asymptotically optimal. Our
experiments validate these results, demonstrating that TunaMH outperforms state-of-the-art exact
methods, particularly on high-dimensional and multimodal distributions.

To guide our analysis, we formalized a class of stateless, energy-difference-based minibatch MH
methods, to which most prior methods belong. While TunaMH is asymptotically optimal for this
class, future work could develop new exact methods that are better by a constant factor or on some
restricted class of distributions. It would also be interesting to develop effective theoretical tools for
analyzing stateful methods, since these methods could potentially bypass our lower bound.

Broader Impact

Our work shines a light on how to scale MCMC methods responsibly. We make the case that inexact
minibatch MH methods can lead to egregious errors in inference, which suggests that—particularly for
high-impact applications [14, 22]—we should avoid their use. We provide an alternative: a minibatch
MH method that guarantees correctness, while also maintaining an optimal balance between efficiency
and scalability, enabling its safe use on large-scale applications.
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