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Abstract
For the gradient computation across the time domain in Spiking Neural Networks
(SNNs) training, two different approaches have been independently studied. The
first is to compute the gradients with respect to the change in spike activation
(activation-based methods), and the second is to compute the gradients with respect
to the change in spike timing (timing-based methods). In this work, we present
a comparative study of the two methods and propose a new supervised learning
method that combines them. The proposed method utilizes each individual spike
more effectively by shifting spike timings as in the timing-based methods as well as
generating and removing spikes as in the activation-based methods. Experimental
results showed that the proposed method achieves higher performance in terms of
both accuracy and efficiency than the previous approaches.

1 Introduction

Spiking neural networks (SNNs) have been studied not only for their biological plausibility but also
for computational efficiency that stems from information processing with binary spikes [1]. One of
the unique characteristics of SNNs is that the states of the neurons at different time steps are closely
related to each other. This may resemble the temporal dependency in recurrent neural networks
(RNNs), but in SNNs direct influences between neurons are only through the binary spikes. Since the
true derivative of the binary activation function, or thresholding function, is zero almost everywhere,
SNNs have an additional challenge in precise gradient computation unless the binary activation
function is replaced by an alternative as in [2].

Due to the difficulty of training SNNs, in some recent studies, parameters trained in non-spiking NNs
were employed in SNNs. However, this approach is only feasible by using the similarity between
rate-coded SNNs and non-spiking NNs [3, 4] or by abandoning several features of spiking neurons
to maximize the similarity between SNNs and non-spiking NNs [5–7]. The unique characteristics
of SNNs that enable efficient information processing can only be utilized with dedicated learning
methods for SNNs. In this context, several studies have reported promising results with the gradient-
based supervised learning methods that takes account of those characteristics [8–13].

Previous works on gradient-based supervised learning for SNNs can be classified into two categories.
The methods in the first category work around the non-differentiability of the spiking function with
the surrogate derivative [14] and compute the gradients with respect to the spike activation [11–13].
The methods in the second category focus on the timings of existing spikes and computes the gradients
with respect to the spike timing [8–10, 15]. Let us call those methods as the activation-based methods
and the timing-based methods, respectively. Until now, the two approaches have been thought
irrelevant to each other and studied independently.

The problem with previous works is that both approaches have limitations in computing accurate
gradients, which become more problematic when the spike density is low. The computational cost of
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Figure 1: Computational graphs representing (a) the RNN-like description and (b) the SRM-based description
of our SNN model. Black solid arrows represent accumulation and decaying. Black dashed arrows represent
synaptic integration, red solid arrows represent the spiking function, and red dashed arrows represent reset paths.

the SNN is known to be proportional to the number of spikes, or the firing rates [6, 16, 17]. To make
the best use of the computational power of SNNs and use them more efficiently than non-spiking
counterparts, it is important to reduce the required number of spikes for inference. If there are only
a few spikes in the network, the network becomes more sensitive to the change in the state of each
individual spike such as the generation of a new spike, the removal of an existing spike, or the shift
of an existing spike. Training SNNs with fewer spikes requires the learning method to be aware of
those changes through gradient computation.

In this work, we investigated the relationship between the activation-based methods and the timing-
based methods for supervised learning in SNNs. We observed that the two approaches are complemen-
tary when considering the change in the state of individual spikes. Then we devised a new learning
method called activation- and timing-based learning rule (ANTLR) that enables more precise gradient
computation by combining the two methods. In experiments with random spike-train matching task
and widely used benchmarks (MNIST and N-MNIST), our method achieved the higher accuracy than
that of existing methods when the networks are forced to use fewer spikes in training.

2 Backgrounds

2.1 Neuron model

We used a discrete-time version of a leaky integrate-and-fire (LIF) neuron with the current-based
synapse model. The neuronal states of postsynaptic neuron j are formulated as

Vj [t] = αV (1 − Sj [t− 1])Vj [t− 1] + βV Ij [t] + βbiasVbias,j (1)

Ij [t] = αI(1 − Sj [t− 1])Ij [t− 1] + βI
∑
i

wi,jSi[t] (2)

Sj [t] = Θ(Vj [t]) =

{
1, if Vj [t] ≥ θ

0, otherwise
(3)

where Vj [t] is a membrane potential, Ij [t] is a synaptic current, Sj [t] is a binary spike activation. wi,j
is a synaptic weight from presynaptic neuron i. Vbias,j is a trainable bias parameter. Θ and θ are the
spiking function and the threshold, respectively. αV and αI are the decay coefficients for the potential
and the current. βV , βI , and βbias are the scale coefficients. We call this type of description as the
RNN-like description since the temporal dependency between variables resembles that in Recurrent
Neural Networks (RNNs) [14] (Figure 1a). The term (1− Sj [t− 1]) was introduced in Vj [t] and Ij [t]
to reset both the potential and the synaptic current. Note that this model can express various types of
commonly used neuron models by changing the decay coefficients (Figure A1 in Appendix A).
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Figure 2: Various types of back-propagation derived from different neuron model descriptions. Black solid
arrows, black dashed arrows, red solid arrows, and red dashed arrows represent back-propagation paths for
accumulation and decaying, synaptic integration, spiking function, and reset paths, respectively.

The same neuron model can also be formulated using the spike response kernel ε[τ ] =
βIβV

∑τ
k=0 α

k
Iα

τ−k
V as

Vj [t] =
∑
i

∑
t̂i∈Ti,j,t

wi,jε[t− t̂i] =

t∑
τ=t̂last

j [t]+1

∑
i

wi,jε[t− τ ]Si[τ ] (4)

Sj [t] = Θ(Vj [t]) (5)

where t̂i is a spike timing of neuron i, Ti,j,t = {τ |t̂last
j [t] < τ ≤ t, Si[τ ] = 1}, and t̂last

j [t] is the last spike
timing of neuron j before t. We call this type of description as the SRM-based description as it
is in the form of the Spike Response Model (SRM) [18] (Figure 1b). Detailed explanations on the
equivalence of the two descriptions are given in Appendix B.

2.2 Existing gradient computation methods

2.2.1 Activation-based methods

To back-propagate the gradients to the lower layers, the activation-based methods [2, 11–13] approxi-
mate the derivative of the spiking function which is zero almost everywhere. It is similar to what
non-spiking NNs do to the quantized activation functions such as the thresholding function for Binary
Neural Networks [19]. The approximated derivative is called the surrogate derivative [14], and we
will denote this as σ(V [t]) ≈ ∂S[t]

∂V [t]
.

RNN-like method Since the forward pass of the RNN-like description of the neuron model re-
sembles that of non-spiking RNNs (Figure 1a), back-propagation can also be treated like the Back-
Propagation-Through-Time (BPTT) [20] (Figure 2a, the equations are in Appendix C) [2, 12].

SRM-based method However, from the SRM-based description of the same model (Figure 1b),
back-propagation is derived in a slightly different way using the kernel function ε between each layer
(Figure 2b) [11]. From Equation 4, we can obtain the gradient of the membrane potential of the
postsynaptic neuron j at arbitrary time step ta with respect to the spike activation of the presynaptic
neuron i at time step t as

∂Vj [ta]

∂Si[t]
=

{
wi,jε[ta − t] if t > t̂last

j [ta] and ta ≥ t

0 else
(6)

Interestingly, we found that the SRM-based method (Figure 2b) is functionally equivalent to the
RNN-like method except that the diagonal reset paths are removed (Figure 2c, See Appendix D
for detailed explanation). In fact, neglecting the reset paths in back-propagation can improve the
learning result as it can avoid the accumulation of the approximation errors [21]. Via the reset paths
(red dashed arrows in Figure 2a), the same gradient value recursively passes through the surrogate
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derivative (red solid arrows in Figure 2a), as many times as the number of time steps. Even though
the amount of the approximation error from a single surrogate derivative is tolerable, the accumulated
error can be orders of magnitude larger because the number of time steps is usually larger than
hundreds. We experimentally observed that propagating gradients via the reset paths significantly
degrades training results regardless of the task and network settings. In this regard, we used the
SRM-based method instead of the RNN-like method to represent the activation methods throughout
this paper.

2.2.2 Timing-based methods

The timing-based methods [8–10, 15] exploit the differentiable relationship between the spike timing t̂
and the membrane potential at the spike timing V (t̂). The local linearity assumption of the membrane
potential around t̂ leads to ∂t̂i

∂Vi(t̂i)
= − 1

V ′i (t̂i)
where V ′(t) is the time derivative of the membrane

potential at time t. In this work, we used approximated time derivative V ∗[t] = V [t]− V [t− 1] for
discrete time domain as ∂t̂i

∂Vi[t̂i]
≈ − 1

V ∗i [t̂i]
. Note that computing the gradient of a spike timing does

not require the derivative of the spiking function Θ.

From Equation 4 of the SRM-based description, we can obtain the gradient of the membrane potential
of the postsynaptic neuron j at arbitrary time step ta with respect to the spike timing t̂i of the
presynaptic neuron i as

∂Vj [ta]

∂t̂i
=

{
wi,j

∂ε[ta−t̂i]
∂t̂i

= wi,jε
∗[ta − t̂i] if t̂i > t̂last

j [ta] and ta ≥ t̂i

0 else
(7)

where ε∗[t] is the approximated time derivative of SRM kernel ε in discrete time domain. Figure 2d
depicts how the timing-based method propagates the gradients. Only in the time steps with spikes,
∂L
∂t̂

is propagated to ∂L
∂V

and then is propagated to the lower layer with Equation 7.

Commonly, the timing-based methods limit each neuron to emit at most one spike in their networks. In
the multi-spike situation, considering the effect of timing change requires complicated computations
due to a recursive effect on subsequent spike timings [22]. However, in the neuron model with
the reset in both potential and current, an infinitesimal timing change does not affect subsequent
spike timings. It allows us to seamlessly extend the application of the the timing-based methods to
multi-spike situations without increasing the computational cost.

3 Activation- and Timing-based Learning Rule (ANTLR)

3.1 Complementary nature of activation-based methods and timing-based methods

Calculating the gradients is to estimate how much the network output varies when the parameters
or the variables are changed. One of the main findings in our study is that the activation-based and
timing-based methods are complementary in the way they consider the change in the network.

The change in the spike-train of neuron i can be represented by the generation, the removal, and
the shift of spikes. The generation or the removal of a spike is expressed as the change of the spike
activation: ∆Si[t] = +1 for generation and ∆Si[t] = −1 for removal. The activation-based methods,
which calculate the gradient with respect to the spike activations ∂L

∂S[t]
, then naturally can consider the

generations and the removals. On the other hand, the shift of a spike is expressed as the change of the
spike timing: ∆t̂i (Figure 3a). The timing-based methods, which calculate the gradient with respect
to the spike timings ∂L

∂t̂
, easily take account of the spike shifts.

The problem in the activation-based methods is that they cannot deal with the spike shifts accurately.
In terms of the spike activations, the spike shift is interpreted as a pair of opposite spike activation
changes with causal relationship through the reset path: ∆Si[tbefore] = −1,∆Si[tafter] = +1 (Figure 3b).
Because of the major role of the reset path in the spike shift, gradient computation methods with the
spike activations cannot consider the shift without precisely computing the gradients related to the
reset paths. Unfortunately, as explained in Section 2.2.1, the SRM-based activation-based method
does not have a reset path so that it is not possible to consider the spike shift at all. The RNN-like
activation-based method has the reset paths, but it suffers from accuracy loss due to the accumulated
errors in the reset path. Although the shift of an individual spike does not make a huge difference

4



Spike Timing

 

 

Time

P
o
te

n
ti

al

 

 

 

(a)

 

 

Time

P
o
te

n
ti

al

 Reset

+ -
 

 

Spike Activation

(b)

Figure 3: The spike timing shift ( 1©→ 2©) can be described using the change in (a) the spike timing or (b) the
spike activation. The spike activation change in the earlier time step causes the activation change in the later
time step via the reset path (red arrow).

to the whole network in the situation where many spikes are generated and removed, it becomes
important when there are not many spikes in the network.

The problem in the timing-based methods is that the generation and the removal of spikes cannot be
described with the spike timings. The timing-based methods also cannot anticipate the spike number
change in the network, which happens by the generation or the removal of spikes. Even though
the generation and the removal happen less often compared to the spike shift when the parameters
are updated by small amounts, their influences to the network are usually more significant. The
timing-based methods may unintentionally generate/remove spikes as a result of parameter update
while they try to shift the spike timings to reduce the loss, but these unintended generations/removals
of spikes do not contribute to training.

3.2 Combining activation-based gradients and timing-based gradients

To overcome the limitations in previous works, we propose a new method of back-propagation for
SNNs, called an activation- and timing-based learning rule (ANTLR), that combines the activation-
based gradients and the timing-based gradients together. The activation-based methods and the
timing-based methods back-propagate the gradient through different intermediate gradients, which are
∂L
∂S

and ∂L
∂t̂

, respectively. For this reason, the two approaches have been treated as completely different
approaches. However, there is another intermediate gradient ∂L

∂V
calculated in both approaches. ∂L

∂V
in

the activation-based methods is propagated from ∂L
∂S

and carries information about the generation and
the removal of the spikes whereas ∂L

∂V
in the timing-based methods is propagated from ∂L

∂t̂
and carries

information about the spike shift.

The main idea of ANTLR is to (1) combine the activation-based gradients ∂L
∂V
|act and the timing-based

gradients ∂L
∂V
|tim by taking weighted sum and (2) propagate the combined gradients ∂L

∂V
|ant (Figure 4).

In ANTLR, the gradients are back-propagated to the lower layers as

∂L

∂Vj [t]

∣∣∣∣
ant

= λact
∂L

∂Vj [t]

∣∣∣∣
act

+ λtim
∂L

∂Vj [t]

∣∣∣∣
tim

(8)

∂L

∂Vi[t]

∣∣∣∣
act

=
∑
j

∑
ta

∂L

∂Vj [ta]

∣∣∣∣
ant

∂Vj [ta]

∂Si[t]

∂Si[t]

∂Vi[t]
(9)

∂L

∂Vi[t̂i]

∣∣∣∣
tim

=
∑
j

∑
ta

∂L

∂Vj [ta]

∣∣∣∣
ant

∂Vj [ta]

∂t̂i

∂t̂i

∂Vi[t̂i]
(10)

where last two terms in Equation 9 are calculated using the activation-based method as in Section 2.2.1
and last two terms in Equation 10 are calculated using the timing-based method as in Section 2.2.2.
To train SNNs using ANTLR and other methods, we implemented CUDA-compatible gradient
computation functions in PyTorch [23] (implementation details1 are described in Appendix E).

We introduced the coefficients λact, λtim to balance the gradients from two methods. However, in this
work, we used the simplest setting λact = λtim = 1 to focus on showing the fundamental benefits of
combining them. Optimal configuration of λact, λtim should further be studied, as it depends on several

1The source code is available at https://github.com/KyungsuKim42/ANTLR.
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Type Count Spike-train Latency

Loss (L)
∑
o{(
∑
τ So[τ ])− no}2/T

∑
o

∑
τ do[τ ]2 −

∑
o yo log po

∂L
∂So[t]

2{(
∑
τ So[τ ])− no}/T 2

∑
τ κ[τ − t]do[τ ] 0

∂L
∂t̂o

0 −2
∑
τ κ
∗[τ − t̂o]do[τ ] −β(po − yo)

Compatible with Activation, ANTLR Activation, Timing, ANTLR Timing, ANTLR

o represents an index of the output neurons, do[τ ] = (κ ∗ So)[τ ] − (κ ∗ Star
o )[τ ], po = e−βt̂

first
o /

∑
x e
−βt̂first

x , κ represents
an exponential kernel, β is a scaling factor, no represents a target spike number, and yo represents a target probability

Table 1: Three different types of loss functions and corresponding activation-based gradient ∂L
∂So[t]

and
timing-based gradient ∂L

∂t̂o

factors. For example, the scale of the activation-based gradient can be arbitrarily changed by the
hyper-parameters of the surrogate derivative, so the optimal configurations can be different depending
on such hyper-parameters. Note that ANTLR with the setting λact = 1, λtim = 0 is equivalent to the
activation-based method whereas ANTLR with λact = 0, λtim = 1 is equivalent to the timing-based
method. Therefore, ANTLR can also be regarded as a unified framework that covers the two distinct
approaches.

3.3 Loss functions

We used three types of widely used loss functions which are count loss, spike-train loss, and latency
loss (Table 1). Count loss is defined as a sum of squared error between the output and target number
of spikes of each output neuron. Spike-train loss is a sum of squared error between the filtered output
spike-train and the filtered target spike-train. Latency loss is defined as the cross-entropy of the
softmax of negatively weighted first spike timings of output neurons. Note that the count loss cannot
provide the gradient with respect to the spike timing whereas the latency loss cannot provide the
gradient with respect to the spike activation. It makes those loss types inapplicable to certain types of
learning methods. We want to emphasize that ANTLR can use all the loss types.

3.4 Estimated loss landscape

We conducted a simple experiment to visualize the gradients computed by each method. A fully-
connected network with two hidden layers of 10-50-50-1 neurons was trained to minimize the
spike-train loss with three random input spikes for each input neuron and a single target spike for
the target neuron. After reaching to the global optimum of zero loss, we perturbed all trainable
parameters (weights and biases) along first two principal components of the gradient vectors used
in training and measured the true loss (Figure 5a). The lowest point at the center (dark blue region)
represents the global minimum, and subtle loss increase around the center shows the effect of the
spike timing shift. Dramatic increase of the loss depicted in the right corner shows the loss increase
from the spike number change. To emphasize the subtle height difference due to the spike timing
shift, we highlighted the area adjacent to the global optimum where the number of spikes does not
change using the color scheme in Figure 5e.

Different learning methods provide different gradient values based on their distinct approaches. Using
each method’s gradient vector at each parameter point, we visualized the estimated loss landscape
using the surface reconstruction method [24, 25] (Figure 5b to 5d). The results of the activation-based
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Figure 6: Averaged training loss over 100 trials of random spike-train matching task with three input spikes and
(a) a single target spike and (b) three target spikes. Note that the y axis is in logarithmic scale.

method (Figure 5b) well demonstrated the steep loss change due to the spike number change, whereas
the timing-based method (Figure 5c) could not take account of it. On the other hand, the timing-based
method captured the subtle loss change due to the spike timing shift while the activation-based method
showed almost flat loss landscape in the region without the spike number change. By combining both
methods, ANTLR was able to capture those features at the same time (Figure 5d).

4 Experimental results

We evaluated practical advantages of ANTLR compared to other methods using 3 different tasks: (1)
random spike-train matching, (2) latency-coded MNIST, and (3) N-MNIST. Hyper-parameters for
training were grid-searched for each task (detailed experimental settings are in Appendix F). Since
different training options (e.g. loss type) are available for different learning methods, we tested every
option available to each method and reported the best (in terms of accuracy and efficiency) results
from each method. The timing-based methods cannot train parameters when a neuron does not emit
any spike (dead neuron problem), so we added a no-spike penalty for the timing-based methods
that increases the incoming synaptic weights of the neurons without any spike and encourages every
neuron to emit at least one spike as in [8].

4.1 Random spike-train matching

Using the same experiment setup as in Section 3.4 except the varying number of the target spikes
and the different network size of 10-50-50-5, we measured the training loss of the networks trained
by different learning methods (Figure 6). This task was used to see the basic performance of the
learning methods in a situation where each spike significantly affects the training results. During
50000 training iterations, both the activation-based method and ANTLR showed noticeable decrease
in loss whereas the timing-based method failed to train the network as it cannot handle the spike
number change. ANTLR outperformed other methods with much faster convergence and lower loss.

4.2 Latency-coded MNIST

In this experiment, we applied the latency coding to the input data of MNIST dataset [26] as in [8–10].
The larger intensity value of each pixel was represented by the earlier spike timing of corresponding
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Figure 7: Test accuracy and the required number of hidden and output spikes to classify a single sample on (a)
latency-coded MNIST task and (b) latency-coded MNIST task with the single-spike restriction. The values in
the legend represent the mean and standard deviation of 16 trials.

input neuron. We used this conversion to reduce the total number of spikes and make the situation
where each learning method should take account of the precise spike timing for a better result.

The timing-based method and ANTLR used the latency loss, and the activation-based method used
the count loss with the target spike number of 1/0 for correct/wrong labels. To generate at least a
single spike for the target output neuron, we added a variant of the count loss {min(

∑
τ Sd[τ ], 1)−1}2

(d is the index of the desired class label) to the total loss for ANTLR.

Note that the target spike number for the activation-based method is much smaller than that from
previous works since we applied the latency coding to the input to reduce the number of input spikes.
The output class can either be determined using the output neuron emitting the most spikes (most-
spike decision scheme) or the neuron emitting the earliest spike (earliest-spike decision scheme). The
timing-based method and ANTLR used the earliest-spike decision scheme whereas the activation-
based method used the most-spike decision scheme considering the loss types they used.

We trained the network with a size of 784-800-10 and 100 time steps using a mini-batch size of
16 and the split of 50000/10000 images for training/validation dataset. The results of test accuracy
and the number of spikes used for each sample are shown in Figure 7a. The number of spikes used
to finish a task was usually not presented in previous works, but we included it to demonstrate the
efficiency of the networks trained by different methods. The results show that ANTLR achieved the
highest accuracy compared to other methods. The number of spikes for the timing-based method was
exceptionally higher than the others, because of the no-spike penalty that encourages every neuron to
emit at least one spike and its inability to remove existing spikes during training. With the help of
the activation-based part, ANTLR can add/remove spikes in both hidden and output neurons while
allowing some neurons not to emit any spikes. Figure 7b shows a different scenario we tested, where
each neuron is restricted to emit at most one spike as in [8–10, 15]. We tested this situation to further
reduce the number of spikes. However, this modification did not change the trend of the results as the
number of spikes was already small in the first place.

4.3 N-MNIST

In contrast to the MNIST dataset which is static, the spiking version of MNIST, called N-MNIST is
a dynamic dataset that contains the samples of the input spikes in 34x34 spatial domain with two
channels along 300 time steps [27]. The same loss and the classification settings as in Section 4.2
were used here except the target spike number for the activation-based method, which is increased
to 10/0 considering the increased number of input spikes in the N-MNIST dataset. Note that the
latency loss and the earliest-spike decision scheme have never been used for the N-MNIST dataset,
but we intentionally used them to reduce the number of spikes. We trained the network with a size of
2x34x34-800-10 using a mini-batch size of 16 and the results are shown in Figure 8a.

Due to the large target spike number, the activation-based method required much more spikes than
ANTLR. The timing-based method again used large number of spikes because of its limitation in
removing spikes. We also tested the scenario where the single-spike restriction is applied (Figure 8b).
Since the activation-based method had to use the target spike number of 1/0 due to the restriction,
its accuracy result was degraded whereas the timing-based method showed improvement in both
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Figure 8: Test accuracy and the required number of hidden and output spikes to classify a single sample on (a)
N-MNIST task and (b) N-MNIST task with the single-spike restriction. The values in the legend represent the
mean and standard deviation of 16 trials.

accuracy and efficiency. This supports the fact that the activation-based method favors the multi-spike
situation and the timing-based method favors the single-spike situation.

Several previous works using the existing learning methods reported higher accuracy than our results,
but they did not report exact results of spike numbers. Our experiments using similar settings
implied that previous works with high accuracy were benefited from the large number of spikes used
(Appendix G). In this study, we focus on the cases in which the networks are forced to use fewer
spikes for high energy efficiency. We believe that such cases represent more desirable environments
for application of SNNs.

5 Discussion and conclusion

In this work, we presented and compared the characteristics of two existing approaches of gradient-
based supervised learning methods for SNN and proposed a new learning method called ANTLR that
combines them. The experimental results using various tasks showed that the proposed method can
improve the accuracy of the network in the situations where the number of spikes are constrained, by
precisely considering the influence of individual spikes. Experiments and analysis of ANTLR on
larger datasets remain as a future study.

It is known that both the temporal coding and the rate coding play important roles for information
processing in biological neurons [28]. Interestingly, the timing-based methods are closely related to
the temporal coding since they explicitly consider the spike timings in gradient computation. On the
other hand, the activation-based methods are more favorable to the rate coding in which the spike
timing change does not contain information. Even though we did not explicitly address the concept
of the temporal coding and the rate coding in this work, to the best of our knowledge, this work is the
first work that tries to unify the different learning methods suitable for different coding schemes.

Some other works that were not mentioned in this paper also have shown notable results as supervised
learning methods for SNNs [29–31], but these methods are not classified as activation-based or
timing-based. In these methods, a scalar variable mediates the back-propagation from the whole
spike-train of a postsynaptic neuron to the whole spike-train of a presynaptic neuron. This variable
may be able to capture the current state of the spike-train and its influence to another neuron, but it
cannot cope with the change in the spike-train such as the generation, the removal, or the timing shift
during training. This limitation may not be problematic with the rate coding in which the change
in the state of individual spikes does not make a huge difference, but it is a critical problem when
training SNNs with fewer spikes for higher efficiency.

Broader Impact

The purpose of our work is to improve the general supervised learning performance of SNNs. Even
though we can use SNNs for any cognitive task, the complexity of problems that SNNs are currently
targeting is very limited. This is because of the fundamental problems of the existing learning
methods that are addressed in this work. Nevertheless, SNNs have significant implications as a
biologically plausible artificial neural network, which helps bridge the gap between our understanding
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of biological neurons and the remarkable success of deep learning. In particular, the successful use of
SNNs can provide clues to the high energy efficiency of the biological brains. We believe our work
lays the groundwork for such a research direction.
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