
We thank the reviewers for their thoughtful feedback and effort. It is a pleasure to receive such meaningful reviews.1

Texture-less Patches (R1). Our model handles ambiguity by forming “soft" matches: in contrast to previous work [5],2

it considers a distribution over possible matches. Moreover, we can show that when a match is fundamentally ambiguous,3

the gradients of the loss are not detrimental because they “cancel": e.g., when a set of potential matches are identical4

(e.g. texture-less patches of the sky), the matching distribution will be perfectly uniform over this set, and the sum of5

gradients they contribute will be zero in the worst case. We will provide a proof in an updated version.6

Partial Occlusions (R1, R2). The soft matching formulation is also robust to partial occlusion; by considering a7

distribution over matches for each node, it can form many-to-one and one-to-many matches, as well as matches at a8

region-level. Moreover, edge dropout (as well as spatial jittering) at training-time simulate similar challenges, providing9

further robustness, as can be seen in the improvement in J-recall in Table 1.10

Object Moves out of Camera (R1, R2). Indeed, object disappearances do occur in less curated videos, such as those11

of our training set, Kinetics. The fact that our model learns a useful representation despite their presence suggests12

that it is robust to such cases. We hypothesize this is because total occlusions are infrequent and thus contribute only13

occasional label noise into the soft matching problem. Moreover, the use of sub-cycles (L148) also allows for learning14

from sub-sequences that may not be affected by total occlusions. Interestingly, we found that skip connections in time15

used to address occlusion in previous work [5] to not be beneficial. Incorporating additional temporal context in the16

right way is an important direction for future work.17

Shortcut Solutions (R1, R2, R4). As the reviewers point out, learning from raw video involves the challenges18

mentioned above, such that it may be easier to learn a shortcut solution than model pixel appearance. As we mentioned19

in Footnote 1 ( L145) and Appendix C (L9), we observed that naively using a single spatial feature map to obtain node20

embeddings at training time can lead to the network solving the matching objective without using visual appearance.21

This is evidenced by a solution obtaining very low training error (despite a large training dataset), even when asked to22

match high-resolution maps, while transferring poorly to downstream label propagation tasks. It can also be qualitatively23

observed in visualizations of feature maps, which we will add to the Appendix. Even after reducing boundary effects24

(which have been shown to be useful for encoding positional information [3]) by considering architectures without25

padding, as well as mitigating leakage of global information through batch normalization [2], we found that a shortcut26

could still be learned. Ultimately, we adopt a simple solution used in prior work [1, 4]: removing relative position27

cues altogether, by cropping the image to obtain patches. This works because predicting relative position of crops is28

challenging [1, 4]. This leads to meaningful modeling of visual appearance, as indicated in our evaluation experiments.29

Feature Extraction (R1, R3). We extract separate patches at training time. At test-time, we can efficiently compute30

node embeddings by creating a single feature map and then flattening the spatial dimensions. We follow previous31

work [5]: our encoder makes a feature map 1/8 the the image resolution (e.g. 112× 60 for 900× 480px test images),32

and the label map is up-sampled with nearest-neighbor interpolation for evaluation.33

Contrastive Learning with “Latent" Views (R1). By “latent" view, we mean that the corresponding positive view34

for each query is not known, as is the case in learning correspondence without labels; this is in contrast to typical35

contrastive learning settings, in which positive views are generated by hand-crafted data augmentation strategies. As36

scenes changes between frames, it is rare that corresponding nodes have exactly the same representation; it is invariance37

to spatio-temporal changes, rather than semantics, that we seek to learn. In our work, we leverage a path-level constraint38

(cycle-consistency) to guide the inference of latent views. We will clarify this in an updated version.39

Image Classification Tasks (R3). Our main interest is a sense of similarity useful for finding space-time correspon-40

dence. While approaches like MoCo [2], seek invariance across instances of the same class, our representation distinctly41

should not. We view these two aims to play complementary roles in the spectrum of information needed to model42

instances and categories, in that we capture the natural data augmentation exhibited in dynamic scenes. More technically,43

unlike methods that rely on negatives drawn from other examples, our negatives come from within instance itself, so as44

to distinguish its parts from one another. That said, it is definitely interesting to consider how spatio-temporal invariance45

can give rise to semantic representations, and we will investigate image classification in an updated version.46

Extending Related Work (R1, R3). We completely agree that connections to recent work on attention-based47

architectures for encoding sets and graphs, as well as the work of Dwibedi et al, are interesting and deserve discussion.48

If accepted, we look forward to using the extra page in the camera-ready to do so.49

Clarification in Pseudocode (R3). We appreciate that reviewers took the time to read our pseudocode, and hope it50

was of help. Indeed, the output dimension of that operation is B x (T-1) x P x P. We will clarify this.51

Training Hyper-parameters (R1, R3). While our hyper-parameters (Appendix E) follow prior work [2, 4] due to52

computational constraints, we agree that leveraging more recent hyper-parameters might result in further improvements.5354

[1] C Doersch et al. Unsupervised visual representation learning by context prediction. In ICCV, 2015.55

[2] K He et al. Momentum contrast for unsupervised visual representation learning. In CVPR, 2020.56

[3] M Islam et al. How much position information do convolutional neural networks encode? ICLR, 2020.57

[4] A Oord et al. Representation learning with contrastive predictive coding. arXiv:1807.03748, 2018.58

[5] X Wang et al. Learning correspondence from the cycle-consistency of time. In CVPR, 2019.59


