A Label Noise: Effect of Identical Patches

Here, we show that false negatives that are identical to the positive — for example, patches of the sky —
do not change the sign of gradient associated with the positive. Let ¢ be the query, u be the positive,
V be the set of negatives. W.L.o.g, let the softmax temperature 7 = 1. The loss and corresponding
gradient can be expressed as follows, where Z is the partition function:

L(g,u,V) =u"q—loglexpu'q+ Z expv ' ¢l =u'q—logZ
veV

T T T T
expu' q expv q expu ' q expv ' q
—‘Aiggfu—‘}:‘442744)—(1——442?47)U—'}:‘AAZ?A*U
veV veV
Let V ~ be the set of false negatives, suchthat V- C Vand VT =V \ V. Consider the worst case,
whereby v_ = u,Vv_ € V7, so that false negatives are exactly identical to the positive:

T T T
expu' q expv.q exp vl q
VoL(g,u,V)=(1—- —F—)u— Z — v — Z — 2,
Z Z Z
v_€eV— U+€V+
(1+ |V~)expu'q expu.q
(- OV Doy s oweds,

Au

VoL(g,u,V)=u

vy eV

It is easy to see that the contribution of the negatives that are identical to the positive do not reverse
the sign of the positive gradient, i.e. A, > 0, so that in the worse case the gradient vanishes:

(1+[V-|)expu’q

A=1-
Z
o (L+[V[)expu'q
(L+[V-])expuTq+ 3, cy+expviq
>0

B Comparison to Supervised Methods on DAVIS-VOS

The proposed method outperforms many supervised methods for video object segmentation, despite
relying on a simple label propagation algorithm, not being trained for object segmentation, and not
training on the DAVIS dataset. We also show comparisons to pretrained feature baselines with larger
networks.

Method Backbone Train Data (#frames) J & Fm Im Tr Fin Fr

OSMN [115] VGG-16 I/C/D (1.2M + 227k) 54.8 52.5 60.9 57.1 66.1
SiamMask [106] ResNet-50 I/VIC/Y (1.2M + 2.7M) 56.4 54.3 62.8 58.5 67.5
OSVOS [12] VGG-16 I/D (1.2M + 10k) 60.3 56.6 63.8 63.9 73.8
OnAVOS [103] ResNet-38 I/C/P/D (1.2M + 517k) 65.4 61.6 67.4 69.1 754
OSVOS-S [65] VGG-16 I/P/D (1.2M + 17k) 68.0 64.7 74.2 71.3 80.7

FEELVOS [102]Xception-65 I/C/D/Y (1.2M + 663k) 71.5 69.1 79.1 74.0 83.8
PReMVOS [63] ResNet-101 I/C/D/P/M (1.2M + 527k) 77.8 73.9 83.1 81.8 88.9

STM [73] ResNet-50 I/D/Y (1.2M + 164k) 81.8 79.2 - 84.3 -

ImageNet [41] ResNet-50 1(1.2M) 66.0 63.7 74.0 68.4 79.2
MoCo [40] ResNet-50 1(1.2M) 65.4 63.2 73.0 67.6 78.7
Ours ResNet-18 K (20M unlabeled) 67.6 64.8 76.1 70.2 82.1

Table 3: Video object segmentation results on DAVIS 2017 val set. We show results of state-of-the-art
supervised approaches in comparison to our unsupervised one (see main paper for comparison with unsupervised
methods). Key for Train Data column: I=ImageNet, K=Kinetics, V = ImageNet-VID, C=COCO, D=DAVIS,
M=Mapillary, P=PASCAL-VOC Y=YouTube-VOS. F is a boundary alignment metric, while 7 measures region
similarity as IOU between masks.

17

C Using a Single Feature Map for Training

We follow the simplest approach for extracting nodes from an image without supervision, which is to
simply sample patches in a convolutional manner. The most efficient way of doing this would be to
only encode the image once, and pool the features to obtain region-level features [59].

We began with that idea and found that the network could cheat to solve this dense correspondence
task even across long sequences, by learning a shortcut. It is well-known that convolutional networks
can learn to rely on boundary artifacts [59] to encode position information, which is useful for the
dense correspondence task. To control for this, we considered: 1) removing padding altogether; 2)
reducing the receptive field of the network to the extent that entries in the center crop of the spatial
feature map do not see the boundary; we then cropped the feature map to only see this region; 3)
randomly blurring frames in each video to combat space-time compression artifacts; and 4) using
random videos made of noise. Surprisingly, the network was able to learn a shortcut in each case. In
the case of random videos, the shortcut solution was not nearly as successful, but we still found it
surprising that the self-supervised loss of Equation 2.2 could be optimized at all.

D Frame-rate Ablation

Effect of frame-rate at training time We ablate the effect of frame-

’ . Frame r
rate (i.e. frames per second) used to generate sequences for training, on ame rate J&Fm

downstream object segmentation performance. The case of infinite frame- 2 65.9
rate corresponds to the setting where the same image is used in each time 4 67.5
step; this experiment is meant to disentangle the effect of data augmen- 8 67.6
tation (spatial jittering of patches) from the natural “data augmentation" 30 62.3
observed in video. We observe that spatio-temporal transformations is 0o 57.5
beneficial for learning of representations that transfer better for object

segmentation.

E Hyper-parameters

We list the key hyper-parameters and ranges considered at training time. Due to computational
constraints, we did not tune the patch extraction strategy, nor several other hyper-parameters. The
hyper-parameters varied, namely edge dropout and video length, were ablated in Section 3 (shown in
bold). Note that the effective training path length is twice that of the video sequence length.

Train Hyper-parameters \ Values
Learning rate 0.0001
Temperature 7 0.07
Dimensionality d of embedding 128
Frame size 256
Video length 2,4,6,10
Edge dropout 0, 0.05,0.1, 0.2, 0.3
Frame rate 2,4,8,30
Patch Size 64
Patch Stride 32
Spatial Jittering (crop range) (0.7, 0.9)

We tuned test hyper-parameters with the ImageNet baseline. In general, we found performance to
increase given more context. Here, we show hyper-parameters used in reported experiments; we
largely follow prior work, but for the case of DAVIS, we used 20 frames of context.

18

Test Hyper-parameters \ Values

Temperature 7 0.07
Number of neighbors k 10, 20
Number of context frames m | Objects: 20
Pose: 7
Parts: 4
Spatial radius of source nodes 12, 20

F Label Propagation

We found that the performance of baselines can be improved by carefully implementing label
propagation by k-nearest neighbors. When compared to baseline results reported in [57] and [55],
the differences are:

1. Restricting the set of source nodes (context) considered for each target node, on the basis of
spatial locality, i.e. local attention. This leads to a gain of +4% J&F for the ImageNet baseline.

Many of the task-specific approaches for temporal correspondence incorporate restricted atten-
tion, and we found this rudimentary form to be effective and reasonable.

2. Computing attention over all source nodes at once and selecting the top-k, instead of indepen-
dently selecting the top-k from each frame. This leads to a gain of +3% J&F for the ImageNet
baseline.

This is more natural than computing nearest neighbors in each frame individually, and can be
done efficiently if combined with local attention. Note that the softmax over context can be
performed after nearest neighbors retrieval, for further efficiency.

F.1 Effect of Label Propagation Hyper-parameters

Effect of Context on Label Propagation Model: ImageNet Model: ImageNet
68 o
/.,/ 2 635 628
. Eo o
66 s 63.0 s
w g Se 628 628 - 627
3 —— Ours < =
> [Net > 625 i=J
o 64 mageNet 2 7] 626
= — uvec So z
S8 620 bt
< —— MoCo . o ° 625
O /o s g
— pu 615 £
_— 2 Eg 624
60 | o Eo 63.6 634 z
. 5¢ 4 610
z 623
10‘ 20 30 40
Number of Context Frames 10 20 12 20

Number of Neiahbors Radius

We study the effect of hyper-parameters of the label propagation algorithm, when applied with strong
baselines and our method. The key hyper-parameters are the length of context m, the number of
neighbors k, and the search radius r. In the figures above, we see the benefit of adding context (see
left, with k£ = 10, r = 12), effect of considering more neighbors (middle, with » = 12), and effect of
radius (right, with m = 20).

G Encoder Architecture

We use the ResNet-18 network architecture [42], modified to increase the spatial resolution of the
convolutional feature map. Specifically, we modify the stride of convolutions in the last two residual
blocks to be 1. This increases the resolution by a factor of four, so that the downsampling factor is
1/8. Please refer to Table 4 for a detailed description.

For evaluation, when applying our label propagation algorithm, we report results using the output
of res3 as node embeddings, for fair comparison to pretrained feature baselines ImageNet, MoCo,
and VINCE, which were trained with stride 2 in res3 and res4. We also found that res3 features
compared favorably to res4 features.

19

Layer Output Details
input HxW
convl H/2 x W/2 7X7, 64, stride 2
maxpool H/4x W/4 stride 2
resi H/A x W/4 3x3,64) o stride 1
3 x 3,64
res?2 H/8 x W/8 3x3,128 x 2, stride 2
3 x 3,128
res3 H/8 x W/8 3% 3,256) 2, stride 7 1
3 x 3,256
resd H/$ x W/8 38X 3,512 Swide 71

3% 3,512

Table 4: Modified ResNet-18 Architecture. Our modifications are shown in blue.

H Test-time Training Details

We adopt the same hyper-parameters for optimization as in training: we use the Adam optimizer with
learning rate 0.0001. Given an input video I, we fine-tune the model parameters by applying Algo-
rithm 1 with input frames {I;_,, ..., It, ..., [t1m }, prior to propagating labels to I;. For efficiency,
we only finetune the model every 5 timesteps, applying Adam for 100 updates. In practice, we use

m = 10, which we did not tune.

I Utility Functions used in Algorithm 1

Algorithm 2 Utility functions.

// psize : size of patches to be extracted

import torch
import kornia.augmentation as K

Turning images into list of patches
unfold = torch.nn.Unfold((psize, psize), stride=(psize//2, psize//2))

12 normalization
12_norm = lambda x: torch.nn.functional.normalize(x, p=2, dim=1)

Slightly cropping patches once extracted

spatial_jitter = K.RandomResizedCrop(size=(psize, psize), scale=(0.7, 0.9), ratio=(0.7, 1.3))

20

