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Abstract

Motivated by the problem of sampling from ill-conditioned log-concave distribu-
tions, we give a clean non-asymptotic convergence analysis of mirror-Langevin
diffusions as introduced in [Zha+20]. As a special case of this framework, we
propose a class of diffusions called Newton-Langevin diffusions and prove that they
converge to stationarity exponentially fast with a rate which not only is dimension-
free, but also has no dependence on the target distribution. We give an application
of this result to the problem of sampling from the uniform distribution on a convex
body using a strategy inspired by interior-point methods. Our general approach fol-
lows the recent trend of linking sampling and optimization and highlights the role
of the chi-squared divergence. In particular, it yields new results on the convergence
of the vanilla Langevin diffusion in Wasserstein distance.

1 Introduction

Sampling from a target distribution is a central task in statistics and machine learning with applications
ranging from Bayesian inference [RC04; DM+19] to deep generative models [Goo+14]. Owing
to a firm mathematical grounding in the theory of Markov processes [MT09], as well as its great
versatility, Markov Chain Monte Carlo (MCMC) has emerged as a fundamental sampling paradigm.
While traditional theoretical analyses are anchored in the asymptotic framework of ergodic theory,
this work focuses on finite-time results that better witness the practical performance of MCMC for
high-dimensional problems arising in machine learning.

This perspective parallels an earlier phenomenon in the much better understood field of optimiza-
tion where convexity has played a preponderant role for both theoretical and methodological ad-
vances [Nes04; Bub15]. In fact, sampling and optimization share deep conceptual connections
that have contributed to a renewed understanding of the theoretical properties of sampling algo-
rithms [Dal17a; Wib18] building on the seminal work of Jordan, Kinderlehrer and Otto [JKO98].

We consider the following canonical sampling problem. Let π be a log-concave probability measure
over Rd so that π has density equal to e−V , where the potential V : Rd → R is convex. Throughout
this paper, we also assume that V is twice continuously differentiable for convenience, though many
of our results hold under weaker conditions.

Most MCMC algorithms designed for this problem are based on the Langevin diffusion (LD), that is
the solution (Xt)t≥0 to the stochastic differential equation (SDE)

dXt = −∇V (Xt) dt+
√

2 dBt, (LD)
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with (Bt)t≥0 a standard Brownian motion in Rd. Indeed, π is the unique invariant distribution of (LD)
and suitable discretizations result in algorithms that can be implemented when V is known only up to
an additive constant, which is crucial for applications in Bayesian statistics and machine learning.

A first connection between sampling from log-concave measures and optimizing convex functions is
easily seen from (LD): omitting the Brownian motion term yields the gradient flow ẋt = −∇V (xt),
which results in the celebrated gradient descent algorithm when discretized in time [Dal17a; Dal17b].
There is, however, a much deeper connection involving the distribution of Xt rather than Xt itself,
and this latter connection has been substantially more fruitful: the marginal distribution of a Langevin
diffusion process (Xt)t≥0 evolves according to a gradient flow, over the Wasserstein space of proba-
bility measures, that minimizes the Kullback-Leibler (KL) divergence DKL(· ‖ π) [JKO98; AGS08;
Vil09]. This point of view has led not only to a better theoretical understanding of the Langevin
diffusion [Ber18; CB18; Wib18; DMM19; VW19] but it has also inspired new sampling algorithms
based on classical optimization algorithms, such as proximal/splitting methods [Ber18; Wib18;
Wib19; SKL20], mirror descent [Hsi+18; Zha+20], Nesterov’s accelerated gradient descent [Che+18;
Ma+19; DR20], and Newton methods [Mar+12; Sim+16; WL20].

Our contributions. This paper further exploits the optimization perspective on sampling by es-
tablishing a theoretical framework for a large class of stochastic processes called mirror-Langevin
diffusions (MLD) introduced in [Zha+20]. These processes correspond to alternative optimization
schemes that minimize the KL divergence over the Wasserstein space by changing its geometry. They
show better dependence in key parameters such as the condition number and the dimension.

Our theoretical analysis is streamlined by a technical device which is unexpected at first glance, yet
proves to be elegant and effective: we track the progress of these schemes not by measuring the
objective function itself, the KL divergence, but rather by measuring the chi-squared divergence to
the target distribution π as a surrogate. This perspective highlights the central role of mirror Poincaré
inequalities (MP) as sufficient conditions for exponentially fast convergence of the mirror-Langevin
diffusion to stationarity in chi-squared divergence, which readily yields convergence in other well-
known information divergences, such as the Kullback-Leibler divergence, the Hellinger distance, and
the total variation distance [Tsy09, §2.4].

Figure 1: Samples from the poste-
rior distribution of a 2D Bayesian
logistic regression model using
the Newton-Langevin Algorithm
(NLA), the Unadjusted Langevin
Algorithm (ULA), and the Tamed
Unadjusted Langevin Algorithm
(TULA) [Bro+19]. For details, see
Section E.2.

We also specialize our results to the case when the mirror map
equals the potential V . This can be understood as the sam-
pling analogue of Newton’s method, and we therefore call it
the Newton-Langevin diffusion (NLD). In this case, the mirror
Poincaré inequality translates into the Brascamp-Lieb inequal-
ity which automatically holds when V is twice-differentiable
and strictly convex. In turn, it readily implies exponential con-
vergence of the Newton-Langevin diffusion (Corollary 1) and
can be used for approximate sampling even when the second
derivative of V vanishes (Corollary 2). Strikingly, the rate of
convergence has no dependence on π or on the dimension d
and, in particular, is robust to cases where ∇2V is arbitrarily
close to zero. This scale-invariant convergence parallels that of
Newton’s method in convex optimization and is the first result
of this kind for sampling.

This invariance property is useful for approximately sam-
pling from the uniform distribution over a convex body C,
which has been well-studied in the computer science litera-
ture [FKP94; KLS95; LV07]. By taking the target distribution
π ∝ exp(−βV ), where V is any strictly convex barrier func-
tion, and β, the inverse temperature parameter, is taken to
be small (depending on the target accuracy), we can use the
Newton-Langevin diffusion, much in the spirit of interior point methods (as promoted by [LTV20]),
to output a sample which is approximately uniformly distributed on C; see Corollary 3.

Throughout this paper, we work exclusively in the setting of continuous-time diffusions such as (LD).
We refer to the works [DM15; Dal17a; Dal17b; RRT17; CB18; Wib18; DK19; DMM19; DRK19;
Mou+19; VW19] for discretization error bounds, and leave this question open for future works.
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Related work. The discretized Langevin algorithm, and the Metropolis-Hastings adjusted version,
have been well-studied when used to sample from strongly log-concave distributions, or distributions
satisfying a log-Sobolev inequality [Dal17b; DM17; CB18; Che+19; DK19; DM+19; Dwi+19;
Mou+19; VW19]. Moreover, various ways of adapting Langevin diffusion to sample from bounded
domains have been proposed [BEL18; Hsi+18; Zha+20]; in particular, [Zha+20] studied the dis-
cretized mirror-Langevin diffusion. Finally, we note that while our analysis and methods are inspired
by the optimization perspective on sampling, it connects to a more traditional analysis based on
coupling stochastic processes. Quantitative analysis of the continuous Langevin diffusion process
associated to SDE (LD) has been performed with Poincaré and log-Sobolev inequalities [BGG12;
BGL14; VW19], and with couplings of stochastic processes [CL89; Ebe16].

Notation. The Euclidean norm over Rd is denoted by ‖·‖. Throughout, we simply write
∫
g to denote

the integral with respect to the Lebesgue measure:
∫
g(x) dx. When the integral is with respect to a

different measure µ, we explicitly write
∫
g dµ. The expectation and variance of g(X) when X ∼ µ

are respectively denoted Eµ g =
∫
g dµ and varµ g :=

∫
(g − Eµ g)

2
dµ. When clear from context,

we sometimes abuse notation by identifying a measure µ with its Lebesgue density.

2 Mirror-Langevin diffusions

Before introducing mirror-Langevin diffusions, our main objects of interest, we provide some intuition
for their construction by drawing a parallel with convex optimization.

2.1 Gradient flows, mirror flows, and Newton’s method

We briefly recall some background on gradient flows and mirror flows; we refer readers to the
monograph [Bub15] for the convergence analysis of the corresponding discrete-time algorithms.

Suppose we want to minimize a differentiable function f : Rd → R. The gradient flow of f is the
curve (xt)t≥0 on Rd solving ẋt = −∇f(xt). A suitable time discretization of this curve yields the
well-known gradient descent (GD).

Although the gradient flow typically works well for optimization over Euclidean spaces, it may suffer
from poor dimension scaling in more general cases such as Banach space optimization; a notable
example is the case when f is defined over the probability simplex equipped with the `1 norm. This
observation led Nemirovskii and Yudin [NJ79] to introduce the mirror flow, which is defined as
follows. Let φ : Rd → R ∪ {∞} be a mirror map, that is a strictly convex twice continuously
differentiable function of Legendre type1. The mirror flow (xt)t≥0 satisfies ∂t∇φ(xt) = −∇f(xt),
or equivalently, ẋt = −[∇2φ(xt)]

−1∇f(xt). The corresponding discrete-time algorithms, called
mirror descent (MD) algorithms, have been successfully employed in varied tasks of machine
learning [Bub15] and online optimization [BC12] where the entropic mirror map plays an important
role. In this work, we are primarily concerned with the following choices for the mirror map:

1. When φ = ‖ · ‖2/2, then the mirror flow reduces to the gradient flow.

2. Taking φ = f and the discretization xk+1 = xk − hk [∇2f(xk)]
−1∇f(xk) yields another

popular optimization algorithm known as (damped) Newton’s method. Newton’s method
has the important property of being invariant under affine transformations of the problem,
and its local convergence is known to be much faster than that of GD; see [Bub15, §5.3].

2.2 Mirror-Langevin diffusions

We now introduce the mirror-Langevin diffusion (MLD) of [Zha+20]. Just as LD corresponds to the
gradient flow, the MLD is the sampling analogue of the mirror flow. To describe it, let φ : Rd → R
be a mirror map as in the previous section. Then, the mirror-Langevin diffusion satisfies the SDE

Xt = ∇φ?(Yt), dYt = −∇V (Xt) dt+
√

2 [∇2φ(Xt)]
1/2

dBt , (MLD)

1This ensures that ∇φ is invertible, c.f. [Roc97, §26].
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where φ? denotes the convex conjugate of φ [BL06, §3.3]. In particular, if we choose the mirror map
φ to equal the potential V , then we arrive at a sampling analogue of Newton’s method, which we call
the Newton-Langevin diffusion (NLD),

Xt = ∇V ?(Yt), dYt = −∇V (Xt) dt+
√

2 [∇2V (Xt)]
1/2

dBt. (NLD)

From our intuition gained from optimization, we expect that NLD has special properties, such as
affine invariance and faster convergence. We validate this intuition in Corollary 1 below by showing
that, provided π is strictly log-concave, the NLD converges to stationarity exponentially fast, with no
dependence on π. This should be contrasted with the vanilla Langevin diffusion (LD), for which the
convergence rate depends on the Poincaré constant of π, as we discuss in the next section.

We end this section by comparing MLD and NLD with similar sampling algorithms proposed in the
literature inspired by mirror descent and Newton’s method.

Mirrored Langevin dynamics. A variant of MLD, called “mirrored Langevin dynamics”, was in-
troduced in [Hsi+18]. The mirrored Langevin dynamics is motivated by constrained sampling and
corresponds to the vanilla Langevin algorithm applied to the new target measure (∇φ)#π. In contrast,
MLD can be understood as a Riemannian diffusion w.r.t. the Riemannian metric induced by the
mirror map φ. Thus, the motivations and properties of the two algorithms are different, and we refer
to [Zha+20] for further comparison of the two algorithms.

An earlier draft of [Hsi+18] also introduced MLD, along with a continuous-time analysis of the
diffusion. Their convergence analysis is based on the classical Bakry-Émery criterion (see [BGL14]),
which is generally harder to check than the mirror Poincaré inequality (MP) that we introduce below;
in particular, when φ = V , we show that the mirror Poincaré inequality holds automatically.

Quasi-Newton diffusion. The paper [Sim+16] proposes a quasi-Newton sampling algorithm, based on
L-BFGS, which is partly motivated by the desire to avoid computation of the third derivative∇3V
while implementing the Newton-Langevin diffusion. We remark, however, that the form of NLD
employed above, which treats V as a mirror map, does not in fact require the computation of∇3V ,
and thus can be implemented practically; see Section 5. Moreover, since we analyze the full NLD,
rather than a quasi-Newton implementation, we are able to give a clean convergence result.

Information Newton’s flow. Inspired by the perspective of [JKO98], which views the Langevin
diffusion as a gradient flow in the Wasserstein space of probability measures, the paper [WL20]
proposes an approach termed “information Newton’s flow” that applies Newton’s method directly
on the space of probability measures equipped with either the Fisher-Rao or the Wasserstein metric.
However, unlike LD and NLD that both operate at the level of particles, information Newton’s flow
faces significant challenges at the level of both implementation and analysis.

3 Convergence analysis

3.1 Convergence of gradient flows and mirror flows

We provide a brief reminder about the convergence analysis of gradient flows and mirror flows defined
in Section 2.1 to provide intuition for the next section. Throughout, let f be a differentiable function
with minimizer x∗.

Consider first the gradient flow for f : ẋt = −∇f(xt). We get ∂t[f(xt) − f(x∗)] = −‖∇f(xt)‖2
from a straightforward computation. From this identity, it is natural to assume a Polyak-Łojasiewicz
(PL) inequality, which is well-known in the optimization literature [KNS16] and can be employed
even when f is not convex [Che+20]. Indeed, if there exists a constant CPL > 0 with

f(x)− f(x∗) ≤ CPL

2
‖∇f(x)‖2 ∀x ∈ Rd , (PL)

then ∂t[f(xt) − f(x∗)] ≤ − 2
CPL

[f(xt) − f(x∗)]. Together with Grönwall’s inequality, it readily
yields exponentially fast convergence in objective value: f(xt) ≤ f(x0) e−2t/CPL .

A similar analysis may be carried out for the mirror flow. Fix a mirror map φ and consider the mirror
flow: ẋt = −[∇2φ(xt)]

−1∇f(xt). It holds ∂t[f(xt)− f(x∗)] = −〈∇f(xt), [∇2φ(xt)]
−1∇f(xt)〉.
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Therefore, the analogue of (PL) which guarantees exponential decay in the objective value is the
following inequality, which we call a mirror PL inequality:

f(x)− f(x∗) ≤ CMPL

2
〈∇f(x), [∇2φ(x)]

−1∇f(x)〉 ∀x ∈ Rd. (MPL)

Next, we describe analogues of (PL) and (MPL) that guarantee convergence of LD and MLD.

3.2 Convergence of mirror-Langevin diffusions

The above analysis employs the objective function f to measure the progress of both the gradient
and mirror flows. While this is the most natural choice, our approach below crucially relies on
measuring progress via a different functional F . What should we use as F ? To answer this question,
we first consider the simpler case of the vanilla Langevin diffusion (LD), which is a special case
of MLD when the mirror map is φ = ‖·‖2/2. We keep this discussion informal and postpone rigorous
arguments to Appendix A.

Since the work of [JKO98], it has been known that the marginal distribution µt at time t ≥ 0 of
LD evolves according to the gradient flow of the KL divergence DKL(· ‖ π) with respect to the
2-Wasserstein distance W2; we refer readers to [San17] for an overview of this work, and to [AGS08;
Vil09] for comprehensive treatments. Therefore, the most natural choice for F is, as in Section 3.1,
the objective function DKL(· ‖ π) itself. Following this approach, one can compute [Vil03, §9.1.5]

∂tDKL(µt ‖ π) = −
∫ ∥∥∇ ln

dµt
dπ

∥∥2 dµt = −4

∫ ∥∥∇√dµt
dπ

∥∥2 dπ.

In this setup, the role of the PL inequality (PL) is played by a log-Sobolev inequality of the form

entπ(g2) :=

∫
g2 ln(g2) dπ −

( ∫
g2 dπ

)
ln
( ∫

g2 dπ
)
≤ 2CLSI

∫
‖∇g‖2 dπ. (LSI)

When g =
√

dµt/dπ, (LSI) reads DKL(µt ‖ π) ≤ 2CLSI

∫ ∥∥∇√dµt/dπ
∥∥2 dπ , which implies

exponentially fast convergence: DKL(µt ‖ π) ≤ DKL(µ0 ‖ π) e−2t/CLSI by Grönwall’s inequality.

A disadvantage of this approach, however, is that the log-Sobolev inequality (LSI) does not hold
for any log-concave measure π, or it may hold with a poor constant CLSI. For example, it is known
that the log-Sobolev constant of an isotropic log-concave distribution must in general depend on the
diameter of its support [LV18]. In contrast, we work below with a Poincaré inequality, which is
conjecturally satisfied by such distributions with a universal constant [KLS95].

Motivated by [BCG08; CG09], we instead consider the chi-squared divergence

F (µ) = χ2(µ ‖ π) := varπ
dµ

dπ
=

∫ (dµ

dπ

)2
dπ − 1, if µ� π ,

and F (µ) =∞ otherwise. It is well-known that the law (µt)t≥0 of LD satisfies the Fokker-Planck
equation in the weak sense [KS91, §5.7]:

∂tµt = div
(
µt∇ ln

µt
π

)
.

Using this, we can compute the derivative of the chi-squared divergence:

1

2
∂tF (µt) =

∫
µt
π
∂tµt =

∫
µt
π

div
(
µt∇ ln

µt
π

)
= −

∫ 〈
∇ ln

µt
π
,∇µt

π

〉
µt = −

∫ ∥∥∇µt
π

∥∥2 π ,
and exponential convergence of the chi-squared divergence follows if π satisfies a Poincaré inequality:

varπ g ≤ CP Eπ[‖∇g‖2] for all locally Lipschitz g ∈ L2(π). (P)

Thus, when using the chi-squared divergence to track progress, the role of the PL inequality is played
by a Poincaré inequality. As we discuss in Sections 4.1 and 4.3 below, the Poincaré inequality is
significantly weaker than the log-Sobolev inequality.

A similar analysis may be carried out for MLD using an appropriate variation of Poincaré inequalities.
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Definition 1 (Mirror Poincaré inequality). Given a mirror map φ, we say that the distribution π
satisfies a mirror Poincaré inequality with constant CMP if

varπ g ≤ CMP Eπ〈∇g, (∇2φ)
−1∇g〉 for all locally Lipschitz g ∈ L2(π). (MP)

When φ = ‖ · ‖2/2, (MP) is simply called a Poincaré inequality and the smallest CMP for which the
inequality holds is the Poincaré constant of π, denoted CP.

Using a similar argument as the one above, we show exponential convergence of MLD in χ2(· ‖ π)
under (MP). Together with standard comparison inequalities between information divergences [Tsy09,
§2.4], it implies exponential convergence in a variety of commonly used divergences, including
the total variation (TV) distance ‖· − π‖TV, the Hellinger distance H(·, π), and the KL divergence
DKL(· ‖ π).

Theorem 1. For each t ≥ 0, let µt be the marginal distribution of MLD with target distribution π at
time t. Then if π satisfies the mirror Poincaré inequality (MP) with constant CMP, it holds

2‖µt − π‖2TV, H
2(µt, π), DKL(µt ‖ π), χ2(µt ‖ π) ≤ e−

2t
CMP χ2(µ0 ‖ π), ∀ t ≥ 0 .

We give two proofs of this result in Appendix A.

Recall that LD can be understood as a gradient flow for the KL divergence on the 2-Wasserstein space.
In light of this interpretation, the above bound for the KL divergence yields a convergence rate in
objective value, and it is natural to wonder whether a similar rate holds for the iterates themselves in
terms of 2-Wasserstein distance. From the works [Din15; Led18; Liu20], it is known that a Poincaré
inequality (P) implies the transportation-cost inequality

W 2
2 (µ, π) ≤ 2CPχ

2(µ ‖ π), ∀µ� π. (1)

Initially unaware of these works, we proved that a Poincaré inequality implies a suboptimal chi-
squared transportation inequality. Since the suboptimal inequality already suffices for our purposes,
we state and prove it in Appendix B. We thank Jon Niles-Weed for bringing this to our attention.

The inequality (1) implies that if π has a finite Poincaré constant CP then Theorem 1 also yields
exponential convergence in Wasserstein distance. In the rest of the paper, we write this result as

1

2CP
W 2

2 (µt, π) ≤ e−
2t

CMP χ2(µ0 ‖ π) ,

for any target measure π that satisfies a mirror Poincaré inequality, with the convention that CP =∞
when π fails to satisfy a Poincaré inequality. In this case, the above inequality is simply vacuous.

4 Applications

We specialize Theorem 1 to the following important applications.

4.1 Newton-Langevin diffusion

For NLD, we assume that V is strictly convex and twice continuously differentiable; take φ = V .
In this case, the mirror Poincaré inequality (MP) reduces to the Brascamp-Lieb inequality, which
is known to hold with constant CMP = 1 for any strictly log-concave distribution π [BL76; BL00;
Gen08]. It yields the following remarkable result where the exponential contraction rate has no
dependence on π nor on the dimension d.

Corollary 1. Suppose that V is strictly convex and twice continuously differentiable. Then, the law
(µt)t≥0 of NLD satisfies

2‖µt − π‖2TV, H
2(µt, π), DKL(µt ‖ π), χ2(µt ‖ µ),

1

2CP
W 2

2 (µt, π) ≤ e−2tχ2(µ0 ‖ π).
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Figure 2: Approximately sampling from π ∝
e−‖·‖ by sampling from πβ ∝ e−‖·‖−β‖·−1‖

2

(β = .0005). Algorithms are initialized at
a random X0 with ‖X0‖ = 1000. The plot
shows the squared distance of the running
means to 0.

If π is log-concave, then it satisfies a Poincaré in-
equality [AB15; LV17] so that the result in Wasser-
stein distance holds. In fact, contingent on the fa-
mous Kannan-Lovász-Simonovitz (KLS) conjecture
([KLS95]), the Poincaré constant of any log-concave
distribution π is upper bounded by a constant, inde-
pendent of the dimension, times the largest eigen-
value of the covariance matrix of π.

At this point, one may wonder, under the same as-
sumptions as the Brascamp-Lieb inequality, whether
a mirror version of the log-Sobolev inequality (LSI)
holds. This question was answered negatively
in [BL00], thus reinforcing our use of the chi-squared
divergence as a surrogate for the KL divergence.

If the potential V is convex, but degenerate (i.e., not strictly convex) we cannot use NLD directly with
π as the target distribution. Instead, we perturb π slightly to a new measure πβ , which is strongly
log-concave, and for which we can use NLD. Crucially, due to the scale invariance of NLD, the time
it takes for NLD to mix does not depend on β, the parameter which governs the approximation error.

Corollary 2. Fix a target accuracy ε > 0. Suppose π = e−V is log-concave and set πβ ∝ e−V−β‖·‖
2

,
where β ≤ ε2/(2

∫
‖ · ‖2 dπ). Then, the law (µt)t≥0 of NLD with target distribution πβ satisfies

‖µt − π‖TV ≤ ε by time t = 1
2 ln[2χ2(µ0 ‖ πβ)] + ln(1/ε).

Proof. From our assumption, it holds

DKL(π ‖ πβ) =

∫
ln

dπ

dπβ
dπ = β

∫
‖ · ‖2 dπ + ln

∫
e−β‖·‖

2

dπ ≤ β
∫
‖ · ‖2 dπ ≤ ε2

2
.

Moreover, Theorem 1 with the above choice of t yields DKL(µt ‖ πβ) ≤ ε2/2. To conclude, we use
Pinsker’s inequality and the triangle inequality for ‖ · ‖TV.

Convergence guarantees for other cases where φ is only a proxy for V are presented in Appendix C.

4.2 Sampling from the uniform distribution on a convex body

Next, we consider an application of NLD to the problem of sampling from the uniform distribution
π on a convex body C. A natural method of outputting an approximate sample from π is to take a
strictly convex function Ṽ : Rd → R ∪ {∞} such that dom Ṽ = C and Ṽ (x)→∞ as x→ ∂C, and
to run NLD with target distribution πβ ∝ e−βṼ , where the inverse temperature β is taken to be small
(so that πβ ≈ π). The function Ṽ is known as a barrier function.

Figure 3: Uniform
sampling from the
set [−0.01, 0.01] ×
[−1, 1]: PLA (blue)
vs. NLA (orange).
See Section E.3.

Although we can take any choice of barrier function Ṽ , we obtain a clean
theoretical result if we assume that Ṽ is ν−1-exp-concave, that is, the mapping
exp(−ν−1Ṽ ) is concave. Interestingly, this assumption further deepens the
rich analogy between sampling and optimization, since such barriers are widely
studied in the optimization literature. There, the property of exp-concavity is
typically paired with the property of self-concordance, and barrier functions
satisfying these two properties are a cornerstone of the theory of interior point
algorithms (see [Bub15, §5.3] and [Nes04, §4]).

We now formulate our sampling result. In our continuous framework, it does
not require self-concordance of the barrier function.

Corollary 3. Fix a target accuracy ε > 0. Let π be the uniform distribution
over a convex body C and let Ṽ be a ν−1-exp-concave barrier for C. Then, the
law (µt)t≥0 of NLD with target density πβ ∝ e−βṼ for β ≤ ε2/(2ν) satisfies
‖µt − π‖TV ≤ ε by time t = 1

2 ln[2χ2(µ0 ‖ πβ)] + ln(1/ε).
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Proof. Lemma 1 in Appendix D ensures that DKL(πβ ‖ π) ≤ ε2/2. We conclude as in the proof of
Corollary 2, by using Theorem 1, Pinsker’s inequality, and the triangle inequality for ‖ · ‖TV.

We demonstrate the efficacy of NLD in a simple simulation: sampling uniformly from the ill-
conditioned rectangle [−a, a] × [−1, 1] with a = 0.01 (Figure 3). We compare NLA with the
Projected Langevin Algorithm (PLA) [BEL18], both with 200 iterations and h = 10−4. For NLA,
we take Ṽ (x) = − log(1− x21)− log(a2 − x22) and β = 10−4.

4.3 Langevin diffusion under a Poincaré inequality

We conclude this section by giving some implications of Theorem 1 to the classical Langevin
diffusion (LD) when φ = ‖ · ‖2/2. In this case, the mirror Poincaré inequality (MP) reduces to the
classical Poincaré inequality (P) as in Section 3.2.
Corollary 4. Suppose that π satisfies a Poincaré inequality (P) with constant CP > 0. Then, the law
(µt)t≥0 of the Langevin diffusion (LD) satisfies

2‖µt − π‖2TV, H
2(µt, π), DKL(µt ‖ π), χ2(µt ‖ µ),

1

2CP
W 2

2 (µt, π) ≤ e−
2t
CP χ2(µ0 ‖ π).

The convergence in TV distance recovers results of [Dal17b; DM17]. Bounds for the stronger error
metric χ2(· ‖ π) have appeared explicitly in [CLL19; VW19] and is implicit in the work of [BCG08;
CG09] on which the TV bound of [DM17] is based.

Moreover, it is classical that if π satisfies a log-Sobolev inequality (LSI) with constant CLSI then it
has Poincaré constant CP ≤ CLSI. Thus, the choice of the chi-squared divergence as a surrogate for
the KL divergence when tracking progress indeed requires weaker assumptions on π.

5 Numerical experiments

In this section, we examine the numerical performance of the Newton-Langevin Algorithm (NLA),
which is given by the following Euler discretization of NLD:

∇V (Xk+1) = (1− h)∇V (Xk) +
√

2h [∇2V (Xk)]
1/2
ξk, (NLA)

where (ξk)k∈N is a sequence of i.i.d. N (0, Id) variables. In cases where ∇V does not have a closed-
form inverse, such as the logistic regression case of Section E.2, we invert it numerically by solving
the convex optimization problem∇V ?(y) = argmaxx∈Rd {〈x, y〉 − V (x)}.
We focus here on sampling from an ill-conditioned generalized Gaussian distribution on R100 with
V (x) = 〈x,Σ−1x〉γ/2 for γ = 3/4 to demonstrate the scale invariance of NLD established in
Corollary 1. Additional experiments, including the Gaussian case γ = 1, are given in Appendix E.
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Figure 4: V (x) = 〈x,Σ−1x〉3/4/2, Σ = diag(1, 2, . . . , 100). Left: absolute squared error of the
mean 0. Right: relative squared error for the scatter matrix Σ.

Figure 4 compares the performance of NLA to that of the Unadjusted Langevin Algorithm
(ULA) [DM+19] and of the Tamed Unadjusted Langevin Algorithm (TULA) [Bro+19]. We run the
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algorithms 50 times and compute running estimates for the mean and scatter matrix of the family
following [ZWG13]. Convergence is measured in terms of squared distance between means and
relative squared distance between scatter matrices, ‖Σ̂ − Σ‖2/‖Σ‖2. NLA generates samples that
rapidly approximate the true distribution and also displays stability to the choice of the step size h.

6 Open questions

We conclude this paper by discussing several intriguing directions for future research. In this paper,
we focused on giving clean convergence results for the continuous-time diffusions MLD and NLD,
and we leave open the problem of obtaining discretization error bounds. In discrete time, Newton’s
method can be unstable, and one uses methods such as damped Newton, Levenburg-Marquardt,
or cubic-regularized Newton [CGT00; NP06]; it is an interesting question to develop sampling
analogues of these optimization methods. In a different direction, we ask the following question: are
there appropriate variants of other popular sampling methods, such as accelerated Langevin [Ma+19]
or Hamiltonian Monte Carlo [Nea12], which also enjoy the scale invariance of NLD?

A Proof of Theorem 1

The law (µt)t≥0 of MLD satisfies the Fokker-Planck equation

∂tµt = div
(
µt (∇2φ)

−1∇ ln
µt
π

)
. (2)

A unique solution to this equation, with enough regularity to justify our computations below, exists
under fairly benign conditions on φ and V , see [LL08, Proposition 6].

As discussed in Section 3.2, it suffices to prove the convergence result in chi-squared divergence. The
convergence results for total variation distance, Hellinger distance, and KL divergence follow from
the inequalities [Tsy09, §2.4]

2‖µ− π‖2TV, H
2(µ, π), DKL(µ ‖ π) ≤ χ2(µ ‖ π), ∀µ� π,

while the convergence in Wasserstein distance follows from (1).

Proof of Theorem 1. Using the Fokker-Planck equation (2), we may compute

∂tχ
2(µt ‖ π) = ∂t

∫
µ2
t

π
= 2

∫
µt
π
∂tµt = 2

∫
µt
π

div
(
µt (∇2φ)

−1∇ ln
µt
π

)
= −2

∫ 〈
∇µt
π
, (∇2φ)

−1∇ ln
µt
π

〉
µt = −2

∫ 〈
∇µt
π
, (∇2φ)

−1∇µt
π

〉
π.

The mirror Poincaré inequality (MP) implies that this quantity is at most −2C−1MPχ
2(µt ‖ π), which

completes the proof via Grönwall’s inequality.

We may reinterpret this proof within Markov semigroup theory.

Proof of Theorem 1 from a Markov semigroup perspective. We denote by (Pt)t≥0 the semigroup
of MLD; we refer readers to [BGL14; Han16] for background on Markov semigroup theory. The
Dirichlet form E is given by

E(f, g) =

∫
〈∇f, (∇2φ)

−1∇g〉dπ.

Since it is a self-adjoint semigroup, we get for all f ∈ L2(π),∫
Pt
(dµ0

dπ

)
f dπ =

∫ (dµ0

dπ

)
Ptf dπ =

∫
Ptf dµ0 =

∫
f dµt =

∫
dµt
dπ

f dπ ,

so that
Pt
(µ0

π

)
=
µt
π
.

9



Therefore,

χ2(µt ‖ π) := varπ
(dµt

dπ

)
= varπ Pt

(dµ0

dπ

)
.

Using a classical result of Markov semigroup theory (see for instance [CG09, Theorem 2.1]
or [BGL14, Theorem 4.2.5])

χ2(µt ‖ π) = varπ Pt
(dµ0

dπ

)
≤ e− 2t

C varπ
(dµ0

dπ

)
= e−

2t
C χ2(µ0 ‖ π)

if and only if the semigroup (Pt)t≥0 satisfies

varπ(f) ≤ CE(g, g), for all g ∈ D(E), (3)

where E is the Dirichlet form of (Pt)t≥0 with domain D(E). To conclude the proof, it suffices to note
that (3) is precisely our assumption (MP) with C = CMP.

B Convergence in 2-Wasserstein distance

B.1 Background

As we have discussed, the proof of Theorem 1 in Appendix A implies that for any strictly log-concave
target measure, the Newton-Langevin diffusion converges exponentially fast in the following error
metrics: chi-squared divergence, KL divergence, Hellinger distance, and total variation distance. We
also remark that convergence in Rényi divergences can also be proved in this setting, as in [VW19].
On the other hand, we would also like to know if we can obtain convergence results for optimal
transport distances [Vil03]. As a first step, the transportation inequality of [Cor17],

DKL(µ ‖ π) ≥ TDV
(µ ‖ π) := inf{EDV (X ‖ Z) : (X,Z) is a coupling of (µ, π)},

which holds for all µ� π, implies exponentially fast convergence in the asymmetric transportation
cost TDV

, where DV (· ‖ ·) is the Bregman divergence associated with V .

We turn towards the question of convergence in the 2-Wasserstein distance (denoted W2). When
π is strongly log-concave, there is an elegant direct proof of exponential contraction in W2 via a
coupling of the Langevin process (see [Vil03, Exercise 9.10]). In general, however, convergence in
W2 is typically deduced from convergence in KL divergence, with the help of a transportation-cost
inequality

W 2
2 (µ, π) ≤ CDKL(µ ‖ π). (4)

It has been known since the work of [OV00] that a log-Sobolev inequality (LSI) with constant CLSI

implies the validity of (4) with constant C = CLSI. Since an LSI may not always hold or may hold
with a poor constant, [BV05] provides weaker conditions: namely, if there exists α > 0 such that∫

exp(α‖x− x0‖2) dπ(x) <∞, (5)

then we have the weaker inequality

W 2
2 (µ, π) . DKL(µ ‖ π) +

√
DKL(µ ‖ π).

Therefore, either the validity of an LSI or a square exponential moment suffice to transfer convergence
in KL divergence to convergence in W2. In fact, it turns out that the log-Sobolev inequality (LSI), the
transportation inequality (4), and the square exponential moment condition (5) are all equivalent for
log-concave measures,and they are in general strictly stronger than the Poincaré inequality (P) [Bob99;
OV00; BV05].

Since Theorem 1 provides a stronger control, namely in chi-squared divergence rather than in KL
divergence, the reader might wonder if a weaker transportation inequality in which the RHS of (4) is
replaced by Cχ2(µ ‖ π)

1/p might hold under weaker assumptions. Indeed, the recent works [Din15;
Led18; Liu20] answer this question positively by showing that the Poincaré inequality (P) implies
the transportation-cost inequality

W 2
2 (µ, ν) ≤ C inf

p≥1
{p2χ2(µ ‖ π)

1/p}, ∀µ� π (6)
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with constant C = 2CP. In fact, the converse also holds: the validity of (6) implies the Poincaré
inequality (P) with constant CP = C/

√
2.

If we specialize this result to the case p = 2, then the Poincaré inequality (P) implies

W 2
2 (µ, ν) ≤ 8CP

√
χ2(µ ‖ π), ∀µ� π. (7)

In the next section, we give a proof of the inequality (7) with a slightly worse constant, i.e., with 9
instead of 8.

We now briefly describe the method of [OV00], since it is relevant for our approach. Otto and Villani
work in the framework of Otto calculus, which interprets LD as the gradient flow of the KL divergence
in the space of probability measures equipped with the W2 metric. As discussed in Section 3.2,
an LSI is a PL inequality, which ensures rapid convergence of the gradient flow. This is then used to
deduce the transportation-cost inequality (4).

We follow the argument of Otto and Villani, but consider the gradient flow of the chi-squared
divergence instead of the KL divergence. We prove a Łojasiewicz inequality for the chi-squared
divergence, and use the gradient flow to deduce (7) (with a slightly worse constant).

B.2 Proof of the chi-squared transportation inequality

Following the proof outline above, we start by proving a PL-type inequality for the chi-squared
divergence. Using tools developed in [AGS08], it is a standard exercise to establish that the Wasser-
stein gradient of the functional µ 7→ χ2(µ ‖ π) is given by 2∇(dµ/dπ). Therefore, the right-hand
side of the following inequality involves the squared norm of the Wasserstein gradient of the chi-
squared divergence, where we use the norm corresponding to the Riemannian structure of Wasserstein
space (see [AGS08, §8]). Note that since the objective is raised to the power 3/2 on the left-hand
side it is not quite a PL inequality, and rather it is a form commonly referred to as a Łojasiewicz
inequality [Loj63] with parameter 3/4.

Proposition 1. Let CP ∈ (0,∞] denote the Poincaré constant of π. Then,

χ2(µ ‖ π)
3/2 ≤ 9CP

4

∫ ∥∥∇dµ

dπ

∥∥2 dµ, ∀µ� π.

Proof. Using the Poincaré inequality (P), we obtain∫ ∥∥∇dµ

dπ

∥∥2 dµ =

∫ ∥∥∇dµ

dπ

∥∥2 dµ

dπ
dπ =

4

9

∫ ∥∥∇(dµ

dπ

)3/2∥∥2 dπ ≥ 4

9CP
varπ

((dµ

dπ

)3/2)
.

In the following steps, we apply the following: (1) varX ≤ E[|X − c|2] for any c ∈ R; (2) x 7→ x2/3

is 2/3-Hölder continuous with unit constant; (3) Jensen’s inequality.

χ2(µ ‖ π) = varπ
(dµ

dπ

) (1)

≤ Eπ
[∣∣∣dµ

dπ
− Eπ

[(dµ

dπ

)3/2]2/3∣∣∣2]
(2)

≤ Eπ
[∣∣∣(dµ

dπ

)3/2 − Eπ
[(dµ

dπ

)3/2]∣∣∣4/3]
(3)

≤ Eπ
[∣∣∣(dµ

dπ

)3/2 − Eπ
[(dµ

dπ

)3/2]∣∣∣2]2/3 =
(

varπ
((dµ

dπ

)3/2))2/3
.

This proves the result.

Theorem 2. Suppose χ2(· ‖ π) satisfies the following Łojasiewicz inequality:

χ2(µ ‖ π)
2/q ≤ 4CPL Eµ

[∥∥∇dµ

dπ

∥∥2], ∀µ� π, (8)

for some q ∈ (1,∞). Then, π satisfies the chi-squared transportation inequality

W 2
2 (µ, π) ≤ p2CPL χ

2(µ ‖ π)
2/p
, ∀µ� π,

where 1/p+ 1/q = 1.
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Proof. The proof follows [OV00]. Take a path (µt)t≥0 starting at some µ0 = µ and following the
W2 gradient flow of the chi-squared divergence χ2(· ‖ π), that is,

∂tµt = 2 div
(
µt∇

µt
π

)
.

The existence of this gradient flow and the regularity required for the following computations can be
justified by [OT11; OT13] and [AGS08, Theorem 11.2.1]. Denote by Tt the optimal transport map
sending µt to µ0. Then, the time derivative of the squared Wasserstein distance can be computed as
in [AGS08, Corollary 10.2.7] to be

∂tW
2
2 (µ0, µt) = −4Eµt

〈
∇µt
π
, Tt − id

〉
≤ 4W2(µ0, µt)Eµt

∥∥∇µt
π

∥∥ ,
where we apply the Cauchy-Schwarz and Jensen inequalities. It yields

∂tW2(µ0, µt) ≤ 2Eµt

∥∥∇µt
π

∥∥.
Also, the chi-squared divergence satisfies

∂tχ
2(µt ‖ π) = −4Eµt

[∥∥∇µt
π

∥∥2].
Using the assumption (8),

∂t[χ
2(µt ‖ π)

1/p
] =

∂tχ
2(µt ‖ π)

pχ2(µt ‖ π)
1/q

= − 4

pχ2(µt ‖ π)
1/q

Eµt

[∥∥∇µt
π

∥∥2] ≤ − 2

p
√
CPL

Eµt

∥∥∇µt
π

∥∥.
If we define

g(t) := W2(µ0, µt) + p
√
CPL χ

2(µt ‖ π)
1/p
,

we have proved that
g′ ≤ 0.

Since g(0) = p
√
CPL χ

2(µ0 ‖ π)
1/p and limt→∞ g(t) = W2(µ, π), we have shown a transport

inequality

W 2
2 (µ, π) ≤ p2CPL χ

2(µ ‖ π)
2/p
.

Theorem 3. Let π be a distribution on Rd with finite Poincaré constant CP > 0. Then for any
measure µ ∈ P2(Rd), it holds

W 2
2 (µ, π) ≤ 9CP

√
χ2(µ ‖ π) .

Proof. The inequality follows immediately from the two preceding results.

Remark 1. Transportation-cost inequalities for Rényi divergences were also studied in [Din14; BD15].

C Additional choices for the mirror map

We extend our results to other choices of the mirror map φ that serve as proxies for V and that also
lead to exponential convergence of MLD.

The first result below is useful in situations when there exists a strictly convex mirror map φ such∇φ
is easier to invert than ∇V . It ensures exponential ergodicity of (MLD) when ∇2V dominates ∇2φ
in the sense of the Loewner order.
Corollary 5. Suppose that π is strictly log-concave and that∇2φ � C∇2V , where � denotes the
Loewner order. Then, the law (µt)t≥0 of MLD satisfies

2‖µt − π‖2TV, H
2(µt, π), DKL(µt ‖ π), χ2(µt ‖ µ),

1

2CP
W 2

2 (µt, π) ≤ e− 2t
C χ2(µ0 ‖ π).

Proof. The assumption implies

C Eπ〈∇f, (∇2φ)
−1∇f〉 ≥ Eπ〈∇f, (∇2V )

−1∇f〉 ≥ varπ f,

where again we apply the Brascamp-Lieb inequality. This verifies (MP) with constant CMP = C.
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Our second result does not require π to be log-concave but only that it is close to a strictly log-concave
distribution π̃ in the following sense: the density of π with respect to π̃ is uniformly bounded away
from 0 and∞.
Corollary 6. Suppose that π̃ = exp(−Ṽ ) is strictly log-concave and suppose that π has density
ρ w.r.t. π̃. Let M := (sup ρ)/(inf ρ). Then, the law (µt)t≥0 of MLD with mirror map φ = Ṽ and
target density π satisfies

2‖µt − π‖2TV, H
2(µt, π), DKL(µt ‖ π), χ2(µt ‖ µ),

1

2CPM
W 2

2 (µt, π) ≤ e− 2t
M χ2(µ0 ‖ π),

where CP is the Poincaré constant of π̃.

Proof. It is standard that the Poincaré inequality (P), and the mirror Poincaré inequality (MP), are
stable under bounded perturbations of the measure. It implies that π satisfies a Poincaré inequality
with constant CPM , and a mirror Poincaré inequality with constant M . We prove the latter statement
for completeness; for the former statement, see [Han16, Problem 3.20].

Observe that∫
〈∇f, (∇2Ṽ )

−1∇f〉dπ =

∫
〈∇f, (∇2Ṽ )

−1∇f〉 dπ

dπ̃
dπ̃ ≥ (inf ρ)

∫
〈∇f, (∇2Ṽ )

−1∇f〉dπ̃

and

varπ̃ f = inf
m∈Rd

∫
‖f −m‖2 dπ̃ = inf

m∈Rd

∫
‖f −m‖2 dπ̃

dπ
dπ

≥ 1

sup ρ
inf
m∈Rd

∫
‖f −m‖2 dπ =

1

sup ρ
varπ f.

Combining these inqualities with the Brascamp-Lieb inequality for π̃,∫
〈∇f, (∇2Ṽ )

−1∇f〉dπ̃ ≥ varπ̃ f,

yields (MP) with constant CMP = M .

D Stability in KL with respect to exp-concave perturbations

The following lemma quantifies the approximation error of replacing π by πβ in Section 4.2 and, more
generally provides a simple bound to control the KL divergence between a log-concave distribution
and its perturbation by a ν-exp-concave barrier function. Its proof uses crucially displacement
convexity of the KL divergence to a log-concave measure [Vil03, §5], and it can be viewed as the
sampling analogue of [Nes04, (4.2.17)].

Recall that b is ν-exp-concave if the mapping exp(−ν−1b) is concave.

Lemma 1. Let π be a log-concave distribution on a convex set K ⊂ Rd. Fix ν > 0, and let π̃ have
density exp(−b) with respect to π, where b : K→ R is ν-exp-concave. Then it holds that

DKL(π̃ ‖ π) ≤ ν .

Proof. On intK, we have

−∇ ln
dπ̃

dπ
= ∇b. (9)

The measure π is log-concave, so by displacement convexity of entropy [AGS08, Theorem 9.4.11]
and the “above-tangent” formulation of convexity [Vil03, Proposition 5.29], we have

0 = DKL(π ‖ π) ≥ DKL(π̃ ‖ π) + E
〈
∇ ln

dπ̃

dπ
(X̃), X − X̃

〉
,

where (X, X̃) are optimally coupled for π and π̃. If we rearrange this inequality and use the identities
in (9), we get

DKL(π̃ ‖ π) ≤ −E
〈
∇ ln

dπ̃

dπ
(X̃), X − X̃

〉
= E〈∇b(X̃), X − X̃〉 . (10)
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We now use the fact that b is ν-exp-concave. To that end, define the convex function

ϕ(t) = − exp
(
−1

ν
b(X̃ + t (X − X̃))

)
, t ∈ [0, 1] .

By convexity, we have

ϕ′(0) · (1− 0) ≤ ϕ(1)− ϕ(0) ≤ −ϕ(0) = exp
(
−1

ν
b(X̃)

)
.

Since

ϕ′(0) =
1

ν
exp
(
−1

ν
b(X̃)

)
〈∇b(X̃), X − X̃〉 ,

the above inequality reads 〈∇b(X̃), X − X̃〉 ≤ ν, which completes the proof together with (10).

Remark 2. It is known that given any convex body C ⊂ Rd, there exists a standard self-concordant
ν−1-exp-concave barrier with ν ≤ d [NN94; BE15; TY18].

E Numerical experiments

In this section, we gather additional details and figures to support our numerical experiments. First,
in Section E.1, we display the samples from our Gaussian experiment. Then, Section E.2 gives
details of the Bayesian logistic regression experiment displayed in Figure 1 and shows the effect of
varying step size. Section E.3 gives details of sampling from an ill-conditioned convex set. Finally,
Section E.4 shows an experiment where we use the NLA and a Mirror-Langevin Algorithm MLA to
approximately sample from a degenerate log-concave distribution.

E.1 Sampling from a Gaussian distribution

We display some supplementary experiments for the elliptically symmetric scatter family example of
Section 5. First, we repeat the example in Figure 4 for the simpler case of the Gaussian distribution
(γ = 1) on R100 with the same scatter matrix Σ = diag(1, 2, . . . , 100) in Figure 5. We again see
the superiority of NLA over the Unadjusted Langevin Algorithm (ULA) [DM+19] and the Tamed
Unadjusted Langevin Algorithm (TULA) [Bro+19]. Here and in Section 5 the additional parameter
of TULA (denoted γ in [Bro+19]) is chosen equal to .1.
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Figure 5: We display convergence of the various algorithms for an ill-conditioned Gaussian distribu-
tion, with d = 100 and Σ = diag(1, 2, . . . , 100). Left: error is the squared distance from 0. Right:
error is the relative distance between scatter matrices. As in the experiment displayed in Figure 4,
NLA rapidly converges both in terms of location and scale for large step sizes.

We also display some samples from the Gaussian experiment of Figure 5 in Figure 6. NLA maintains
good performance for a wide range of step-size choices, while ULA and TULA require a small step
size to accurately sample from the target distribution. In fact, even with a small step size, ULA and
TULA often jump to small probability regions, while NLA avoids these regions even for large step
sizes.
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Figure 6: Samples from NLA, ULA, and TULA for the ill-conditioned Gaussian example of Figure 5,
with Σ = diag(1, 2, . . . , 100). We display the projection onto the first (least spread) and last (most
spread) population principal components, along with the projection of a 95% confidence region. Top:
the step size for all algorithms is h = 0.7, Bottom: the step size for all algorithms is h = 0.05.

E.2 Bayesian logistic regression

We give details for the two-dimensional Bayesian logistic regression example in Figure 1. In the
Bayesian logistic regression model, covariates are drawn as Xi ∼ N (0,diag(10, 0.1)), the response
variables are Yi ∼ Ber(logit(θ>Xi)), and the parameters θ have a N (0, 10I2) prior. We consider
using NLA to sample from the posterior distribution of θ given the observations (Xi, Yi), i = 1, . . . , n,
which is

π(θ) ∝ exp
[
− 1

20
‖θ‖2 +

n∑
i=1

Yiθ
>Xi − ln(1 + eθ

>Xi)
]
,

which is strongly log-concave. While the gradient of the potential is invertible, it has no
closed-form, and so in our experiments we invert it numerically by solving ∇V ?(y) =
argmaxx∈Rd {〈x, y〉 − V (x)} with Newton’s method. We find that, with a warm start from the
current iterate Xt, it suffices to run Newton’s method for a small number of iterations to approxi-
mately invert the gradient.

For the purposes of this experiment, we generate 100 samples Xi ∼ N (0,diag(10, 0.1)) and
Yi ∼ Ber(logit(θ?>Xi)), where we set θ? = (1, 1).

We display the result for various sampling algorithms in Figure 1. All algorithms are implemented
with h = 0.1 and a burn-in time of 104 steps. This example shows the advantage of taking a large
step-size with NLA in this ill-conditioned model, while ULA and TULA create samples that are
overdispersed. In Figure 7, we also show the effect of decreasing step size in this example. In
this case, we see that ULA and TULA still step into low probability regions or fail to explore the
underlying density well. On the other hand, NLA remains constrained in the high probability region.

E.3 Uniform sampling on a convex body

This section contains details for the simulations in Figure 3. We sample from the uniform distribution
on the rectangle [−0.01, 0.01] × [−1, 1] using NLA, PLA, and the Metropolis-Adjusted Langevin
Algorithm (MALA) [Dwi+19]. PLA and MALA target the uniform distribution directly. NLA samples
from an approximate distribution, given in Section 4.2. The step sizes are chosen as h = 10−5 for
NLA and PLA and h = 0.01 for MALA. The step sizes for PLA and MALA are tuned to allow the
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Figure 7: Samples from the posterior distribution of a Bayesian logistic regression model using
one run of NLA, ULA, and TULA after a burn-in of 104. Left: large step size (all algorithms use
h = 0.05); NLA remains within the high-density contours, while the ULA and TULA take steps into
low-density areas. Right: small step size (all algorithms use h = 0.01); NLA explores the underlying
distribution faster than its competitors.
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Figure 8: W2 distance (on logarithmic scale) between the uniform distribution on the rectangle
[−0.01, 0.01]× [−1, 1], and samples produced by NLA, PLA, and MALA.

algorithm to reach approximate stationarity in the fewest number of iterations. MALA can use a
larger step size because it is unbiased (its stationary distribution coincides with the target distribution,
due to the Metropolis-Hastings adjustment). On the other hand, samples from PLA tend to cluster
around the boundary for larger step sizes, so we use a smaller step size for both PLA (and NLA for
fair comparison).

To evaluate the performance of the algorithms, we estimate the 2-Wasserstein distance between the
samples drawn by the algorithms and samples drawn from the uniform distribution on the rectangle;
see Figure 8. We use the Sinkhorn distance (ε = 0.01) as an approximation for the 2-Wasserstein
distance [Cut13; AWR17]. Specifically, we sample 1000 points in parallel, using the three algorithms
of interest. At each iteration, we also draw 1000 points from the uniform distribution on the rectangle,
and we compute the Sinkhorn distance between these points and the samples produced by the
algorithms. The convergence estimates are averaged over 30 runs.
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E.4 Approximate sampling from degenerate log-concave distributions

In this section, we explore further the problem of approximately sampling according to the
measure π(x) ∝ exp(−‖x‖) in R2 considered in Figure 2. To that end, we use the penaliza-
tion strategy outlined in Section 4.1 and sample instead from the strongly log-concave measure
πβ(x) ∝ exp(−‖x‖ − β‖x − 1‖2) as in Corollary 2, where β = 0.0005, using discretizations of
either NLD or MLD with a customized mirror map. Here, 1 is the vector of all ones, which simulates
the effect of not knowing the true mean.

We initialize all algorithms with a random point X0 with ‖X0‖ = 1000. The initialization is
intentionally chosen so that the gradients of the potential at initialization are extremely small. In
these circumstances, we expect ULA to mix slowly.

Through this experiment, we demonstrate two empirical observations:

1. Initially, the iterates of NLA converge extremely rapidly to the vicinity of the origin. This
suggests that NLA can be useful for initializing other sampling algorithms in highly ill-
conditioned settings.

2. However, once the iterates of NLA are near the origin, NLA becomes unstable. Specifically,
since the Hessian of the potential degenerates rapidly near 0, the iterates of NLA occasionally
make large jumps away from 0. This is due to the fact that the Hessian of V (x) =
‖x‖+ β‖x− 1‖2 is given by

∇2V (x) =
1

‖x‖
[
I2 −

( x

‖x‖
)( x

‖x‖
)>]

+ 2βI2 (11)

which blows up to infinity around x = 0. We remark that Newton’s method in optimization
can also exhibit unstable behavior [CGT00; NP06], so this phenomenon is not unexpected.
To rectify this behavior, we also consider the Euler discretization of MLD, which we call
MLA (see below). We demonstrate that with an appropriate choice of mirror map, the
iterates of MLA are stable, yet still enjoy faster convergence than ULA.

Now we proceed to the details of the experiment. We compare four different methods for sampling
from this distribution: NLA, ULA, TULA, and the mirror-Langevin Algorithm (MLA)

∇φ(Xk+1) = ∇φ(Xk)− h∇V (Xk) +
√

2h [∇2φ(Xk)]
1/2
ξk, (MLA)

with mirror map φ(x) = ‖x‖3/2 and potential V (x) = ‖x‖ + β‖x − 1‖2. Notice that this mirror
map corresponds to that used in the generalized Gaussian case of Section 5.

In Figure 9, we display the results of the first 1000 iterations of the four algorithms. In this stage of
the experiment, we observe rapid convergence of NLA towards the origin (around which the mass is
concentrated), and MLA also exhibits faster convergence than ULA and TULA. However, already in
Figure 9 (Right) we observe the instability of NLA witnessed through large jumps of the iterates.

Next, in Figure 10, we treat the samples from the first 1000 iterations as burn-in, and we look at
the performance of the next 1000 samples. Here we see that the flexible framework of the more
general MLD allows us to design algorithms which can outperform NLA with superior stability in
specific scenarios.

Recall that the Hessian of the potential V is given in (11) while the potential of the mirror map φ is
given by

∇2φ(x) =
3

2‖x‖1/2
[
I2 −

3

4

( x

‖x‖
)( x

‖x‖
)>]

.

From these expressions, it can be checked that Corollary 5 holds with C ≤ 3/(4
√

2β). On the other
hand, the measure πβ satisfies a Poincaré inequality (P) with constant CP ≤ 1/(2β). Heuristically,
we therefore expect the mixing time of ULA to scale asO(β−1), and the mixing time of MLA to scale
as O(β−1/2), which provides an explanation for the rates of convergence observed in Figure 9. In
comparison, the mixing time of NLA is scale-invariant, i.e. O(1), as we demonstrated in Corollary 1,
as witnessed by the initial rapid convergence in Figure 9.

As mentioned in our open questions, this points to the intriguing possibility of developing more
stable variants of NLA, which would mirror the development of such strategies for Newton’s
method [CGT00; NP06].
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Figure 9: First stage of the experiment. Left: We plot the norm of the running mean versus the
iteration number for the target measure πβ(x) ∝ exp(−‖x‖ − 0.0005‖x− 1‖2). Right: We display
the corresponding samples.
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Figure 10: Second stage of the experiment. In this stage, we treat the 1000 samples from the first
stage of the experiment as burn-in and look at the performance of the next 1000 samples. Left: We
plot the logarithm of the norm of the running mean versus iteration. Right: We again display the
corresponding samples.

F Broader impact

The sampling algorithms designed in this paper have the potential to improve a wide variety of
Bayesian methods and therefore have an indirect impact on various domains such as health and
medicine where such methods are pervasive. Sampling algorithms are also used for the generation of
automated spam messages, which have potentially negative effects on society. Since this paper is
primarily focused on theory, these questions are not addressed here.
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Planck equations”. In: J. Stat. Phys. 176.5 (2019), pp. 1172–1184.

[Cor17] D. Cordero-Erausquin. “Transport inequalities for log-concave measures, quantitative
forms, and applications”. In: Canad. J. Math. 69.3 (2017), pp. 481–501.

[Cut13] M. Cuturi. “Sinkhorn distances: lightspeed computation of optimal transport”. In:
Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges, L.
Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger. Curran Associates, Inc.,
2013, pp. 2292–2300.

[Dal17a] A. Dalalyan. “Further and stronger analogy between sampling and optimization:
Langevin Monte Carlo and gradient descent”. In: Proceedings of the 2017 Conference
on Learning Theory. Ed. by S. Kale and O. Shamir. Vol. 65. Proceedings of Machine
Learning Research. Amsterdam, Netherlands: PMLR, 2017, pp. 678–689.

[Dal17b] A. S. Dalalyan. “Theoretical guarantees for approximate sampling from smooth
and log-concave densities”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 79.3 (2017), pp. 651–676.

[Din14] Y. Ding. “Wasserstein-divergence transportation inequalities and polynomial concen-
tration inequalities”. In: Statist. Probab. Lett. 94 (2014), pp. 77–85.

[Din15] Y. Ding. “A note on quadratic transportation and divergence inequality”. In: Statist.
Probab. Lett. 100 (2015), pp. 115–123.

[DK19] A. S. Dalalyan and A. Karagulyan. “User-friendly guarantees for the Langevin Monte
Carlo with inaccurate gradient”. In: Stoch. Proc. Appl. 129.12 (2019), pp. 5278–5311.
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