Appendix

In our proofs, we use ¢, c1, ca, . . . to denote positive universal constants, the value of which may differ
across instances. For a matrix A, we write || Ao, and ||A||r as the operator norm and Frobenius

norm, respectively. For a set .S, we use S to denote the complement of the set.

A Proof of Theorem

Since we only analyze a single iteration, for simplicity we drop the superscript that indicates the
iteration counter. Suppose that at a particular iteration, we have model parameters 6, j € [k], for the
k clusters. We denote the estimation of the set of worker machines that belongs to the j-th cluster by
S, and recall that the true clusters are denoted by S7, j € [k].

Probability of erroneous cluster identity estimation We begin with the analysis of the probability
of incorrect cluster identity estimation. Suppose that a worker machine ¢ belongs to S7. We define

the event Eij " as the event when the i-th machine is classified to the j’-th cluster, i.e., 7 € S jr. Thus
the event that worker i is correctly classified is £/, and we use the shorthand notation &; := &£/,

We now provide the following lemma that bounds the probability of Eij 7" for i # 7.

. 2 . .
Lemma 1. Suppose that worker machine i € S;. Let p := %. Then there exist universal constants
c1 and co such that for any j' # 7,

P} < —eon! (2 2),
(& )_clexp( czn(p+1)
and by union bound
IPT < ek . / P 2 .
&) <a exp< czn(p+1)

We prove Lemma|I]in Appendix [A.T]

Now we proceed to analyze the gradient descent step. Without loss of generality, we only analyze the
first cluster. The update rule of € in this iteration can be written as

v
0F =0 — — Z VFi(61; Zs),
1€S1
where Z; is the set of the n’ data points that we use to compute gradient in this iteration on a particular
worker machine.

We use the shorthand notation F;(6) := F;(0; Z;), and note that F;(0) can be written in the matrix
form as

1
Fi(0) = SIIYi — X%,
where we have the feature matrix X; € R" %4 and response vector Y; = X;07 + ¢;. According to
our model, all the entries of X; are i.i.d. sampled according to A/(0, 1), and ¢; ~ N(0, 0%I).
We first notice that

* « gl
167 =071l = 1161 — 67 — — > VFE(61) - - > VE@) | < ITi] + 1T
i€S1NSY i€S1NST

T T

We control the two terms separately. Let us first focus on ||} ||

Bound ||71| To simplify notation, we concatenate all the feature matrices and response vectors
of all the worker machines in S; N S} and get the new feature matrix X € RN¥*4 Y ¢ RN with
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Y = X607 + ¢, where N := n’/|S7; N S7|. It is then easy to verify that

2y

-
mn’X €

2’7 T *

2y . 2y . 2y
= (I = —SEXTX])(00 - 07) + —S(BIX T X] = X TX)(01 - 07) + — X Te
2yN 0 2 T T A
=(1- W)(el —07) + — (EXTX] - XT"X)(6, —0}) + — X e
Therefore
2yN . 2y . 2y
173l < (=220 = 03] + XX ~EIX T Xllopllfn — 05+ X Tel. ()

Thus in order to bound |7} ||, we need to analyze two terms, || X ' X — E[X " X]||,, and || X "e||.
To bound || X T X — E[X T X]||,p, we first provide an analysis of N showing that it is large enough.
Using LemmalI]in conjunction with Assumption[2] we see that the probability of correctly classifying
any worker machine i, given by P(&;), satisfies P(&;) > % Hence, we obtain

* L o 1
E[|S1 N ST > E[§|S1 | = 5P,

where we use the fact that |.S}| = pym. Since |S; N S7| is a sum of Bernoulli random variables with
success probability at least 2, we obtain

1
P <|Sl ﬁST‘ S 4p1m> S P (‘Sl ﬂSﬂ —E“Sl ﬁST”

1
> 4p1m) < 2exp(—cpm),

where p = min{p1, p2,...,pr}, and the second step follows from Hoeffding’s inequality. Hence,
we obtain S} N S| > Lpym with high probability, which yields

1
P(N > Zplmn') >1—2exp(—cpm). )

By combining this fact with our assumption that pmn’ 2 d, we know that N 2> d. Then, according to
the concentration of the covariance of Gaussian random vectors [41], we know that with probability
atleast 1 — 2 exp(—1d),

XX —E[X"X]|,, <6VdN <N. 3)

We now proceed to bound || X "¢||. In particular, we use the following lemma.

Lemma 2. Consider a random matrix X € RN*4 with i.i.d. entries sampled according to N'(0, 1),
and € € RN be a random vector sampled according to N'(0,0%I), independently of X. Then we
have with probability at least 1 — 2 exp(—cy max{d, N }),

X [lop < cmax{Vd,VN},
and with probability at least 1 — cg exp(—c3 min{d, N}),

| X Te|| < csoVdN.

We prove Lemmal|2 in Appendix Now we can combine (I), (3), (2), and Lemma 2 and obtain
with probability at least 1 — ¢; exp(—copm) — ¢3 exp(—cqd),

. d
ITall < (1 = esyp)lifr = 01l + 70y [ . @

logm
m

Since we assume that p >
1 —1/poly(m).

and d 2 logm, the success probability can be simplified as
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Bound || T:|| We first condition on S;. We have the following:
VF;(61) = %XJ(Yi — X;61).
Fori € Sy N SY, with j # 1, we have Y; = X;07 + ¢;, and so we obtain
n'VEF(01) = 2X;" X;(07 — 01) + 2X, e,
which yields
n'|[VF(61)| < I1Xall2, + X" €, )

where we use the fact that [|07 — 61 < [|67]| + [|67]| + (|07 — 61]| < 1. Then, we combine (5) and
Lemma|2]and get with probability at least 1 — ¢; exp(—ce min{d, n'}),
1 d
[VE;(61)] < = (c3max{d,n'} + csoVidn') < csmax{1, —}, (6)
n n
where we use our assumption that o < 1. By union bound, we know that with probability at least
1—cymexp(—co min{d, n'}), (6) holds for all j € S;. In addition, since we assume that n’ > log m,

d Z log m, this probability can be lower bounded by 1 — 1/poly(m). This implies that conditioned
on Sy, with probability at least 1 — 1/poly(m),

— d
| T2 < CS%\SI N S| max{1, . 7

m

This shows that with probability at least 1 — 1/poly(m),

Since we choose v = £, we have L max{1, 7%} < 1, where we use our assumption that pmn’ = d.

T2 < 5151 N SE. )

We then analyze |S; N S|. By Lemma we have

E[|S; N ST|] < cﬁmexp(—07(pj_ 1)271’). 9)

According to Assumption E, we know that n’ > c(%f)2 log m, for some constant c that is large
enough. Therefore, m < exp(%(p—il)%’ ), and thus, as long as c¢ is large enough such that % <cr

where c¢7 is defined in (9, we have

E[|S; N S7]] < c6 eXp(—ng(pi o)), (10)

and then by Markov’s inequality, we have

P (|51 NSf| < oo exp(—c28<p_'j1>2n'>) >1- exp(—%#)?n’» >1—poly(m). (11)

Combining (8) with (11), we know that with probability at least 1 — 1/poly(m),

P )Qn/).

sl < —
2] < ey exp(—ea( 2

Using this fact and (@), we obtain that with probability at least 1 — 1/poly(m),

" X d P
107 = 0511 < (1 = e1yp) |01 — O[] + c2yoy/ —tes eXP(—C4(pJr 1)2”/)-

Then we can complete the proof for the first cluster by choosing v = ﬁ. To complete the proof for

all the k clusters, we can use union bound, and the success probability is 1 — k/poly(m). However,
since k < m by definition, we still have success probability 1 — 1/poly(m).
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A.1 Proof of Lemmal[l]
Without loss of generality, we analyze Eil’j for some j # 1. By definition, we have
&M = {Fy(0;; Z:) < Fy(01; Zy)},

where Z is the set of n’ data points that we use to estimate the cluster 1dent1ty in this iteration.
We write the data points in Z in matrix form with feature matrix X; € R” %% and response vector
Y; = X607 +¢€;. According to our model, all the entries of X; are i.i.d. sampled according to (0, 1),
and €; ~ N(O, o2I). Then, we have

P{E7} =P {IXi(67 — 1) +eil® > | Xi(67 — 0;) + e[} -

Consider the random vector X; (67 — 6;) + ¢;, and in particular consider the ¢-th coordinate of it.
Since X; and ¢; are independent and we resample (X;,Y;) at each iteration, the ¢-th coordinate
of X;(07 — 0;) + ¢; is a Gaussian random variable with mean 0 and variance [|6; — 07||* + o
Since X; and ¢; contain independent rows, the distribution of || X; (67 — 6;) + €|? is given by
(110; — 051|1> + o)u;, where u; is a standard Chi-squared random variable n’ degrees of freedom.
We now calculate the an upper bound on the following probability:

P{[X:(0F — 61) + eill® > || X3 (07 — 0;) + ]}

@
SP {HXZ(QT — HJ) + Ein S t} + P{”XZ(HT — 91) + 61‘”2 > t}

SP {(HGJ — @T”z + 0'2)Uj S t} + ]P’{(||01 — 0;”2 =+ 02)u1 > t} 5 (12)
where (i) holds for all ¢ > 0. For the first term, we use the concentration progerty of Chi-squared
random variables. Using the fact that [|0; — 07[| > |07 — 67| — [|0; — 05[] > 1A, we have

P{(|6; — 05[> + 0*)u; <t} <P {(196A2 +0?)u; < t} . (13)

Similarly, using the initialization condition, —07] < iA, the second term of equation (12)) can

be simplified as
1
P{([|61 — 05]* + o*)us >t} <P {(16A2 +02)uy > t} : (14)

Based on the above observation, we now choose ¢ = n/( A% + o2). Recall that p := ﬁ—;. Then the
inequlity can be rewritten as

|12 2 Uy 4p
P{(6; — 67]> + o*)u; <t} SP{J_IS_Q;)—&—M}'

According to the concentration results for standard Chi-squared distribution [41]], we know that there
exists universal constants ¢; and ¢ such that

{(H9 —91||2 +o )u < t} < c1 exp (—an (pi 1)2> (15)

Similarly, the inequality can be rewritten as

dp
P{(|6; — 6%||? + o2 N<pl® g
{(”1 F+o%)ur > }— {n' >p—|—167

and again according to the concentration of Chi-squared distribution, there exists universal constants
c3 and ¢4 such that

P{(|61 — 67]* + 0*)us >t} < czexp (—qn’(pil)z) . (16)

The proof can be completed by combining (12), and (16).
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A.2 Proof of Lemmal[2

According to Theorem 5.39 of [40], we have with probability at least 1 — 2 exp(—c; max{d, N}),
1X[lop < cmax{vd, VN},

where ¢ and ¢; are universal constants. As for || X " €|/, we first condition on X. According to the
Hanson-Wright inequality [33]], we obtain for every £ > 0

t2
a? || XI5,

Using Chi-squared concentration [41]], we obtain with probability at least 1 — 2 exp(—cdN),
|X|lr < VN,

Furthermore, using the fact that || X "|,, = || X o, and substituting t = ov/dN in (17), we obtain
with probability at least 1 — ¢ exp(—c3 min{d, N'}),

| X €| < csoVdN.

B Proof of Theorem [2)
The proof of this theorem is similar to that of the linear model. We begin with a single-step analysis.

B.1 Analysis for a single step

Suppose that at a certain step, we have model parameters 6;, j € [k] for the k clusters. Assume that
16, — 6311 < /2 forall j € [].

Probability of erroneous cluster identity estimation: We first calculate the probability of erro-

neous estimation of worker machines’ cluster identity. We define the events Sij 7" in the same way as
in Appendix [A] and have the following lemma.

Lemma 3. Suppose that worker machine i € S;. Then there exists a universal constants cy such

that for any j' # 7,
2

y ;
PIE) = erggamy

and by union bound

We prove Lemma [3 in Appendix [B.3] Now we proceed to analyze the gradient descent iteration.
Without loss of generality, we focus on 6;. We have

* * i
16 = 051 = 162 = 01 = — > VE(61)ll,
1€SL
where F;(0) := F;(0; Z;) with Z; being the set of data points on the i-th worker machine that we use

to compute the gradient, and .S is the set of indices returned by Algorithm [T corresponding to the
first cluster. Since

S1=(S1NST)U(S1NSY)
and the sets are disjoint, we have

* « Y
165 — 611 = 161 — 6 - Z VFi(gl)*E Z VE;(61) |-
i€S1NSY i€S1NST

T T
Using triangle inequality, we obtain
165 = 051 < 1Tl + I 72,

and we control both the terms separately. Let us first focus on ||7}]|.
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Bound ||Ty|| We first split 7} in the following way:

_ _ 1
Ty = 6, — 07 —VEF' () +5( VF(6;) — R > VE(6)), (18)
1

Th 1€S51NST

T2

where 7 := 7%. Let us condition on S;. According to standard analysis technique for gradient
descent on strongly convex functions, we know that when 7 < L,

. _ 5 AL *
ITasll = 161 = 07 =AVE (61)] < (1 — e -l (19)
2 . . . v
Further, we have E[||T2|?] = WFWSII’ which implies E[||T12||] < Wk and thus by
Markov’s inequality, for any dy > 0, with probability at least 1 — Jg,
| T12]| < (20)

v
So/n'|S1 N SE]
We then analyze |51 N S7|. Similar to the proof of Theorem|[I, we can show that |3 N S| is large
enough. From Lemma [3|and using our assumption, we see that the probability of correctly classifying
any worker machine 4, given by P(&;), satisfies P(&;) > % Recall p = min{py,p2,...,pr}, and
we obtain |S; N S§| > ipim with probability at least 1 — 2exp(—cpm). Let us condition on

|S1 N Sf| > +pim and choose v = 1/L. Theny < 1/L is satisfied, and on the other hand 5 > -
Plug this fact in (19), we obtain

PA ]
ITall < (= S7)l6r = 05l @21
We then combine and and have with probability at least 1 — §p — 2 exp(—cpm),

DA . 2v
T <(1-=)||61 — 0 _—.
|| 1”—( 8L)H 1 1||+50L\/W

Bound ||T3|| Let us define Ty; := > g g« VFi(01), j > 2. We have Ty = %2522 Th;. We
J

condition on Sy and first analyze T5;. We have

Ty = |S1NS;IVE (1) + Y (VE(6) - VF (). (23)

iESlﬁS}‘

(22)

Due to the smoothness of F7(6), we know that

IVF7(6,)]] < L[|6: — 65| <3L, (24)

where we use the fact that ||y — 07| < (|07 + [|67]] + [|61 — 67| < 1+ 1+ i\/%A <3. In
addition, we have

2
. « U

E|| Y. VE(@6)-VF(@)| | =% ns;l—,
1'65'105';.‘
which implies
v

V!’

and then according to Markov’s inequality, for any é; € (0, 1), with probability at least 1 — 41,

Y VE() - VF()| < ,/\Sms;|ﬁ. (25)

iESlﬁS;‘

E|ll > VFE(@6)-VF(6)|| </IS1nS]
ieSM‘WS}‘
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Then, by combining and (25)), we know that with probability at least 1 — 41,

1T, S3L|5105f|+\/|51053‘|5 Nk (26)

By union bound, we know that with probability at least 1 — kd1, (26) applies to all j # 1. Then, we
have with probability at least 1 — kdq,

3vL — yov'k —
Tl < — 4+ —— 5. 27
T2l < =~ |51051|+51m\/77\/|51051| @7

According to Lemma 3] we know that

o nm

E[‘Sl n Sl ” S Clm.

Then by Markov’s inequality, we know that with probability at least 1 — Js,
2

o n
|51051| S Clm (28)
Now we combine with and obtain with probability at least 1 — kd; — da,
2 ok
I22]l < o1 + oy . 29)

Ja A2 A4/ 81V 0 ALA2/mn/
Combining and (29), we know that with probability at least 1 — 69 — kd; — da — 2 exp(—cpm),

PA n? vk
0 — 67 < (1 —=5)6, — 0 . (30
H 1 1”_( SL)” 1 1||+(5L\/7 (52)\2A4 +6261\/£)\LA2\/ETL’ (30)
In the following, we let d5 := dp + kd1 + d2 + 2 exp(—cpm), and
20 n? k
o = + ey Un\f

So L/ 62)\2A4 R N YN T

Let us simplify this expression. We first choose 6 € (0, 1) as the failure probability of the entire
algorithm. Then, we choose

PAJ PAO PAO

0p= "+ =" s =
07 CkLlog(mn')” ' Ck2Llog(mn’)’ > CkLlog(mn')’
for some constant C' > 0 that is large enough. In addition, since we assume that p 2> %, we
have exp(—cpm) < 1/poly(mn’) < #{fﬂn,). Consider all these facts, we obtain
4ApAé
03 = —7— 31
8~ CkLlog(mn')’ D
< vk log(mn')  n2Lklog(mn’)  wvnk3v/Llog®?(mn’) (32)

P32 N6 mn/ PA3SALn/ + p3/2X\5/263/2 A2 /mn’”
In addition, by union bound, we know that with probability at least 1 — kd3, for all j € [k],

« pA «
167 — 05 < (1—87)||9j—9j||+€o- (33)

B.2 Convergence of the algorithm

We now analyze the convergence of the entire algorithm. First, we can verify that as long as

A (34)

we can guarantee that [|0) — 67| < %\/% A. We can also verify that as long as there is

A > O(max{(n/)~V/5, m=1/5(n")~1/3}), (35)
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using the definition of ¢¢ in (32), we know that holds. Here, in the O notation, we omit the
logarithmic factors and quantities that does not depend on m and n’. In this case, we can iteratively
apply for T iterations and obtain that with probability at least 1 — kT'd3,

(T) PA 7,0 ey, SL
”9]' - 9]' H <(1- 87) Hej - ej | + pf)\50~

Then, we know that when we choose

8L PAA
T=—1
pA 8 <3250L) ’ (36)

PALT)00) o pA_ 1 [\ 8 [L
1— 2270\ — 0% < e TV RSy
( 8L) 160 2l < exp( ST )4 oS5 3 €0

which implies [|6}" — 63]| < 8L <. Finally, we check the failure probability. The failure probability
is

we have

ET6x < %10 PAA ApAd _ 320 109?(3%2&) < log(2-)
5= A & 32e0L ) CkLlog(mn') — C log(mn/) ~ log((mn')C/32)

On the other hand, according to (32)), we know that
1 ~
— < O(max{Vmn’,n'}),
€0
then, as long as C is large enough, we can guarantee that (mn’)¢/3% > %, which implies that the
failure probability is upper bounded by 4. Our final error floor can be obtained by redefining

16L
g = ——¢€o0.

PA
B.3 Proof of Lemma[3
Without loss of generality, we bound the probability of 52»1 7 for some j # 1. We know that
&M = {Fi(01§ Z;) > Fy(9;; 2\1)}7

where Z is the set of n’ data points that we use to estimate the cluster identity in this iteration. In the
following, we use the shorthand notation F;(0) := F;(6; Z;). We have
B(EM) <B(Fi(0)) > t) + P(F(0;) < 1)

for all t > 0. We choose t = w. With this choice, we obtain

1 1(p.
P(Fi(01) >t) =P (Fi(el) > W) (37
g\ _ rl
=P (Fi(el) — FY(0,) > W) . (38)
Similarly, for the second term, we have
1ip\ _ pl
Py < 0 = (£ - 0y < - L)), (39)

Based on our assumption, we know that ||0; — 61| > A — %\/%A > 2 A. According to the strong
convexity of F1(-),

A 9\
FY(8;) = F1(07) + 5110 — 051 = F*(67) + o5 A%,

and according to the smoothness of F'*(-),
FY(0,) < FY(67) + £\|t9 — 07> < FY(07) + £LAQ =FY07) + iA2
V=2 i e =2 U T o6 V3T
Therefore, Fl(Gj) — FY6,) > %AQ. Then, according to Chebyshev’s inequality, we obtain that
P(F;(0,) > t) < % and that P(F;(6;) <t) < %, which complete the proof.
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