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Abstract

Autoencoders (AE) aim to reproduce the output from the input. They may hence
tend to overfit towards learning the identity-function between the input and output,
i.e., they may predict each feature in the output from izself in the input. This is
not useful, however, when AEs are used for prediction tasks in the presence of
noise in the data. It may seem intuitively evident that this kind of overfitting is
prevented by training a denoising AE [36], as the dropped-out features have to be
predicted from the other features. In this paper, we consider linear autoencoders,
as they facilitate analytic solutions, and first show that denoising / dropout actually
prevents the overfitting towards the identity-function only to the degree that it is
penalized by the induced L2-norm regularization. In the main theorem of this paper,
we show that the emphasized denoising AE [37]] is indeed capable of completely
eliminating the overfitting towards the identity-function. Our derivations reveal
several new insights, including the closed-form solution of the full-rank model, as
well as a new (near-)orthogonality constraint in the low-rank model. While this
constraint is conceptually very different from the regularizers recently proposed
in [[L1} 142} [14], their resulting effects on the learned embeddings are empirically
similar. Our experiments on three well-known data-sets corroborate the various
theoretical insights derived in this paper.

1 Introduction and Motivation

Autoencoders (AE) have been successful in various unsupervised problems, including machine
translation (e.g. [34]]), computer vision (e.g., [30]) and recommender systems (e.g., [41]]). In machine
learning applications, their prediction accuracy on noisy test-data is often more important than the
learned encodings/representations. The latter are often simply a means for achieving high prediction
accuracy. Given a data-point as input, an AE aims to reconstruct the feature-values of this data-point
in its output-layer. Obviously, the trivial yet futile solution is to learn literally the identity-function
between the input and output-layer (given sufficiently large model-capacity), i.e., to predict each
feature ¢ in the output-layer from the same feature ¢ in the input-layer. As to achieve high prediction
accuracy on noisy data, however, the AE should ideally learn all the relevant dependences/interactions
among the various features, i.e., feature ¢ in the output-layer should be predicted by taking into
account all other features j # i it depends on in the input-layer. Intuitively speaking, when the
learned AE makes predictions for a feature ¢ in the output-layer by relying ‘too much’ on the same
feature 7 in the input-layer (i.e., identity function), and ‘not enough’ on the other features j # i it
depends on, we call this overfitting towards the identity function in this paperﬂ Even if the model-
capacity is limited, the training may still tend to overfit towards the identity-function, as we will show
in this paper.

"Note that the objective in this paper is still to minimize the reconstruction error—by predicting feature
in the output-layer from the other features j # i in the input-layer, i.e., without learning literally the identity
function or overfitting towards it.
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Applying denoising during training was found to be a very effective regularizer [36]. While there are
different kinds of noise for corrupting the input (e.g., see [28]]), in this paper we focus on denoising
by random dropout [18]], the most common approach. In recent years, there has been extensive
work on understanding denoising and dropout based on different perspectives, like preventing co-
adaptation [18} [32], ensemble-averaging [4, 2], marginalized analysis and Ly-norm regularization
(10} 140} 28l 391161 122,120, 9]] and others [36} 35} 25, [24].

In denoising, when a feature is randomly dropped out from a data-point in the input-layer, then the
(uncorrupted) value of this feature in the output-layer has to be predicted based on the other features
of that data-point. It hence seems intuitively evident that this may prevent the AE from overfitting
towards the identity function. The fact that this intuition turns out to be only partially correct, as we
will show, motivated this work.

In this paper, we consider the simplified case of a linear autoencoder (LAE) trained with least squares,
as this facilitates analytic insights. Note that linear models have been used before to better understand
deep nonlinear models, e.g., [[31} 1} 29, 23]]. After introducing notation in Section we first outline
the limitations of denoising by dropout (Section [3): given that it is asymptotically equivalent to
Ly-norm regularization in LAE (see also [7} 10, 40, 128}, 39, [16l 20, 9]), we show that overfitting
towards the identity is only prevented to the degree that it is penalized by Ly-norm regularization.

In Sectiond] we show that the so-called emphasized denoising AE [37] is indeed able to completely
prevent overfitting towards the identity-function. The theoretical analysis of the emphasized denoising
LAE (EDLAE) is the central result of this paper, from which several new insights can easily be
derived: the closed-form solution for the full-rank model, as well as a novel (near-)orthogonality-
constraint in the low-rank EDLAE. This constraint encourages the learned latent embeddings to
become more ‘spread out’ in the latent space, a similar effect as recently obtained with conceptually
very different approaches: Parseval networks [[11] to improve robustness to adversarial examples,
as well as the spread-out [42]] and GLaS [14] regularizers for extreme classification problems. The
experiments on three well-known data-sets in Section [ empirically corroborate the various insights
derived in this paper.

2 Model Definition and Notation

In this section, we introduce notation and define the training objective of EDLAE. We assume that
the training data are given in terms of a matrix X € R"*™ with r data points (rows) and m features
(columns). As to facilitate an analytic solution, we focus on linear autoencoders (LAE) trained by
least squares. Also in [31L 1,29, 23]], linear models were studied with the goal to better understand
deep nonlinear models. Let the LAE be represented by a matrix B € R"**™. If B is of low rank, say
of rank k, it may be written as B = UV, where the rank-k matrices U,V e Rmxk correspond to
the encoder and decoder, respectively.

Denoising by randomly dropping out feature-values in the input-layer of the LAE, may be formalized
as follows: assuming that the training is comprised of n epochs of gradient descent, we vertically
stack n times the given (finite) training matrix X as to obtain the (uncorrupted) target-matrix
X = [XT..XT]T. Correspondingly, we generate the corrupted input-matrix Z(") by applying
dropout to each entry (independently of the other entries): ZEL"Z) =0y - Xinl) for all u, 7, where each
dui € {0,1} is the realization of a Bernoulli variable with success (i.e., 1) probability ¢ = 1 — p,
where p is the dropout probability. Given that X has r rows, note that X (™) and Z("™) each have n - r
rows. We can now write down the training objective, using the squared error, as it facilitates analytic
solutions. We consider the asymptotic limit where the number of training epochs n — oo, i.e., the
stochastic dropout-learning has converged:

) 1 2
B = argmin lim - HA(”)1/2 o (X" -z . B) HF (1)
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where || - || denotes the Frobenius norm. Following the definition of EDLAE [37], we introduce the

n)

weighting matrix A", where Afm = aif d,,; = 0 (where §,; is the same realization as above),

and Au"z) = b otherwise, with a > b. In other words, compared to the default weight b, the error
in predicting feature ¢ in data point u in the output-layer is up-weighted by a (where a > b) if
this feature was dropped out in the input-layer—and hence has to be predicted based on the other



input-features. For this reason, it is apparent that the overfitting towards the identity-function is
completely prevented for the choice a > b = 0 (called full emphasis in [37]), as it considers only the
errors on those features that were dropped out in the input and hence have to be predicted based on
the other features. In Eq. [I| A(™"/2 is the elementwise square-root of A (") as it is inside the squared
error, and © is the elementwise product. Given that dropout is applied only during the training of B,
the learned parameters have to be re-scaled when making predictions on new data points (without
dropout) [18]], resulting in the final solution:

B(EDLAE) _ . ?)

3 Denoising merely induces L,-Norm Regularization

In this section, we first review the (standard) dropout-denoising (i.e., @ = b) and outline that it is
asymptotically equivalent to Lo-norm regularization in LAE (see also [[10, 40, 28, 139/ [16] 20, 9]).
This prevents the overfitting towards the identity only to the degree that it is penalized by the Lo-norm
regularization induced by dropout, as is outlined in the following

Let the (standard) denoising linear autoencoder (DLAE) be denoted by BOLAE) .— B((IEZ]iLAE). The
training objective of DLAE, as given by Eqs. [I|and[2|for a = b, can be simplified as follows upon
convergence (i.e., in the asymptotic limit where the number of training epochs n — 00):

2 2
X_X. B(DLAE)HF i HAl/z . B(DLAE) HF 3)

[ (DLAE)

= argmin
B(DLAE)

where X is the (finite) training data (defined above). The second term is the Lo-norm regularization
induced by dropout-denoising, where A'"/? is the elementwise square root of the diagonal matrix

A= g - dMat(diag(X T X)), €y

where dMat(-) denotes a diagonal matrix, diag(X " X) is the vector on the diagonal of X " X, and p
is the dropout-probability (¢ = 1 — p). Eq. [B]can be derived easily (e.g., by expanding the squared
error into its four parts), as done in several papers (e.g., [10} 140} 2839, [16] 20} 9])). Eq. E] shows that
dropout-denoising has no other effect than inducing L2-norm regularization in DLAE.

3.1 Overfitting towards the Identity

It may seem intuitively evident that denoising by dropping out a feature in the input-layer forces the

autoencoder to rely on the other input-features as to predict this feature in the output-layer. In this

section, we outline that dropout-denoising actually does not prevent the autoencoder from learning

the identity matrix beyond the effect provided blithe L2-norm regularization. This can be seen most
i

easily in the case where BEB{“AE) is of full rank?|in Eq. |3} this ridge-regression problem is solved by
BOUAR — (XTX 4+ A) 7 'XTX = (X X +A) H(X X +A—A)
= I-(X"X+A)A (5)

While the identity-matrix I is the solution when no Lo-regularization is used (A = 0), as expected,
we can see that Lo-regularization (A # 0) gives rise to the off-diagonal entries being different from
zero in general (due to the term (X "X + A)~1A). The off-diagonal entries are responsible for
predicting feature 4 based on the other features j # i. However, note that the diagonal of EgﬁAE) in
Eq. Bis still non-zero in general, and hence the value of each feature ¢ in the output-layer is o some
part predicted by its own value in the input-layer. Hence, the overfitting towards the identity is not
completely prevented by dropout-denoising (except for the futile case p — 1).

Even though the full-rank model does not provide an encoding (like a usual AE does), it is still a useful
model for making predictions. It may also be viewed as the limit of low-rank models whose rank approaches
full rank. A key advantage of the full-rank model is that it allows for a closed-form solution, from which new
insights can be obtained.



3.2 Difference to Weight-Decay

Even though dropout-denoising does not prevent the overfitting to the identity, as just discussed,
as an aside we outline in this section as to why the induced Ly-norm regularization nevertheless is
considerably more effective in preventing overfitting than is weight decay / parameter shrinkage,
which are commonly used for training deep models. In this section, we review the crucial differences
and provide new insights. It can most easily be seen by considering the low-rank model B(PTAE) —
UV T with one hidden layer, where U, V € R™* are rank-k matrices. There are two key differences
to weight decay:

1. In weight decay, each weight (model parameter) is penalized individually. This may be
written as ||UJ|% + ||V T||%. In contrast, dropout induces the Ly-regularization ||B||% =
||[U- VT||%Z. The latter regularization of the linear autoencoder B hence is invariant
under different parametrizations of the same rank k (e.g., whether B = U - VT, or
B =W; -...- W is comprised of L weight-matrices in a deep model). This difference in

Ls-regularization leads to a huge improvement in prediction accuracy in our experiments, cf.
rows (1) and (2) in Table[T}

2. Instead of using a constant regularization parameter \ across all features (like A-|[|[U-V || ),
dropout results in a feature-specific regularization parameter (i.e., A in Eq. @)): note that it is
proportional to (XTX)M for input-feature ¢, which is the (uncentered) second moment of
the feature’s distribution. If all features were standardized (zero mean and unit variance),
then this regularization became a constant A; ; = p/q across all features ¢ = 1, ..., m.
Hence, in dropout the regularization-parameter A; ; automatically adapts to the distribution
(i.e., second moment) of each feature 7 (see also [40,|39])). In our experiments, this makes
yet another large difference, as shown in rows (2) and (3) in Table[T}

Apart from that, note that the dropout-regularization A is also proportional to the ratio p/(1 — p) and
hence increases monotonically with the dropout-probability p, and diverges to infinity as p — 1. This
section is generalized to deep networks in the Supplement.

4 Emphasized Denoising can prevent the Overfitting towards the Identity

EDLAE overcomes the limitations of DLAE by using two different regularizers: preventing the
overfitting towards the identity is now decoupled from the Lo-norm regularization of the off-diagonal
elements of B(EPLAE)  The former is controlled by the weighting matrix A (see also Eq. , and
the latter by the dropout-probability p. These facts, together with further insights outlined in the
remainder of this paper, are based on the following simplification of the training-objective of Egs. []
and 2l for EDLAE:

Theorem: In the general case a > b, the solution B(EDLAE) dotermined by Egs. and is identical
to the solution of the following quadratic minimization problem:

2

BEPLAE) _ qromin || X — X - {B(EDLAE) — dMat(diag(BEPLAE)Y) (1 _ b > }
B(EDLAE) ap + bq F
2
1 Vab
+||AY2 . { BEDLAE) _ g\ at(diag(BEPLAR)Y . [ 1 - Y2 6)
ap + bg »

where A is given by Eq. [ p is the dropout-probability, g = 1 — p, and weights a,b in A in Eq.

Proof: The idea is to split the squared error in Eq. [T]into a sum over the different features, and for
each feature into a sum over the different weights a and b in matrix A. The five-page derivation is
provided in the Supplement. []

The theorem shows that the diagonal of the matrix B(EPYAE) is partially subtracted during training,
with the fractions b/(ap + bq) and v ab/(ap + bq) remaining in the squared-error and in the Ly-norm
regularization, respectively. If ¢ > b, we have that vab/(ap + bq) > b/(ap + bq), i.e., more of the

diagonal of B(FPLAE) remains in the Ly-regularization term than in the squared-error. Based on
the choices for a and b, one can remove the diagonal to any degree. In one extreme (a = b), where



nothing is subtracted from the diagonal, Eq. [flimmediately simplifies to Eq. [3|for DLAE, as expected.
The other extreme is b = 0 (while a, p > 0), which was named full emphasis in [37]: Eq. @ above
shows that the diagonal is completely subtracted from B(®PLAE) during training in this case.

When the diagonal is removed to a larger degree during the training, it reduces the degree to which a
feature ¢ can be reconstructed from its own value in the input-layer. Hence, this increasingly forces
the model to reconstruct each feature ¢ based on all other features j # i during training, and hence
increasingly reduces the overfitting towards the diagonal. In the extreme case where the diagonal is
completely eliminated during training (b = 0), there is hence no overfitting to the diagonal. For this
reason, we focus on this case in the next section.

Another remarkable insight from the Theorem is that the diagonal plays different roles during training
vs. testing/prediction: the diagonal is (partially) removed when the model is fitted to the data during

training, while the learned model BEPLAE) (i e | with the diagonal present) is later used for making
predictions (on new data points)

4.1 Full Emphasis
When training with full emphasis (b = 0), there is no overfitting towards the identity, as just shown.

In this section, we derive further insights for this case, for the full-rank model in Section m and
for the low-rank model in Section[4.1.2]

4.1.1 Full-rank EDLAE

For full-rank? EDLAE, all the entries in matrix BEEI?LAE) are independent of each other. Conse-
quently, the diagonal values in Bgﬁ?LAE) are undetermined in Eq. @if we set b = 0. However, if we

consider the limit b — 0 for b > 0 and for fixed @ > 0, p > 0, the fraction of the diagonal remaining
in the squared error in Eq. E] is proportional to b, while it is proportional to v/b in the Ly-norm

regularization: on the diagonal, the regularization hence dominates over the squared error in the limit
- (EDLAE)

b — 0 for b > O-hence, we obtain for the optimal diagonal: diag(By,;, ) — 0. Continuing with
diag(Bg?LAE)) =0, Eq. @now simplifies for full-rank Bgﬁ?LAE) with full emphasis:
. 2 2
BgﬁjLAE) = argmin ‘X — XB%EI?LAE) H + HAI/QBEEI?LAE) H
Bg::]]]aLAE) F F
st. diag(BEPHAP)) = 0 (7

This optimization problem with the equality constraint diag(B(FP*AF)) = () can be easily solved

with the method of Lagrangian multipliers, which yields the closed-form solution
BEPLAR - — 1 C. dMat(1 @ diag(C)) (8)
where C=(XTX+A)", 9)

where I is the identity matrix, and @ denotes the elementwise division by the diagonal of the matrix
C.In C - dMat(1 @ diag(C)), each column i in C is divided by its corresponding diagonal element

C,,;. Note that the multiplication with dMat(1 @ diag(C)) not only enforces the zero diagonal, but

also affects the learned off-diagonal entries of ﬁg?LAE), so that feature ¢ is best predicted by the

other features j # 1.

Comparison of DLAE and EDLAE for full-rank models: Even though DLAE merely applies
Lo-norm regularization, while EDLAE with b = 0 completely prevents the overfitting towards the
identity, the closed-form solutions of the full-rank DLAE (see Eq. [3) and the full-rank EDLAE
(see Eq. [B)), look surprisingly similar: the only difference is in the diagonal matrix that multiplies
matrix C. In DLAE, the diagonal of A is %diag(XTX), while in EDLAE the corresponding diagonal

is 1 © diag(C) = 1 © diag((XTX + %dMat(diag(XTX)))*l), which exactly enforces a zero

diagonal. As the latter is an elementwise inverse of the matrix inverse, the diagonals of both models
become equal in the futile limit p — 1.

3Note that the diagonal of a low-rank B(EPLAE) (oes generally not vanish due to its coupling with the
off-diagonal elements, see Section[d.1.2}



4.1.2 Low-rank EDLAE

Even though a low-rank model obviously is unable to learn the identity exactly, it may still overfit
towards it, especially in the case when the model-rank is large, for instance, about rank & > 100
in Figure|l|(left), where the prediction accuracy of the (unconstrained) low-rank model starts to be
below par, even when trained with denoising.

In this section, we derive the underlying mechanism induced by low-rank EDLAE with full emphasis
(b = 0). We consider the factorization B\*°YAE) — UVT with rank-k matrices U, V € R™*¥_ In

low.
the low-rank model, the diagonal diag(UV ") cannot be assumed to be zero in general, unlike in the
full-rank model above: even though the diagonal is not explicitly determined in Eq. [6]for b = 0 (as it
is completely eliminated), it is still indirectly determined in Eq. [6] due to the learned off-diagonal

elements in BI(EV]VD LA due to the factorization B(EDLAE) UV, which induces a coupling of the

various entries in B{"PMAE) Eq. @wnh b = 0 becomes for B(EDLAE) LOAVAE

low

|X —X-{UVT — dMat (diag(UV ")) }||7 + A2 - {UVT — dMat (diag(UV ")) }||% (10)
This optimization problem for U, V can be solved efficiently with the Alternating Directions Method
of Multipliers (ADMM) [13} 112} 18], see Supplement for details.

Let us now consider the interesting case where the rank k of the low-rank model is ‘sufficiently’ large,
in the sense that it can accurately approximate the full-rank solution. This is illustrated in Figure|T]
(left), where the accuracy does not drop significantly for matrix-ranks as low as about k£ ~ 1, 000,
which is considerably smaller than the full rank of 17,769 in this experiment. In this case, one can
hence expect that the diagonal of the low-rank model is approximately equal to the diagonal of the
full-rank model, which is zero (see Eq.[7). For ‘sufficiently’ large matrix-rank k, the optimization
problem in{10]may hence be approximated by

U,V = argmin||X - XUV ||Z + |[A/*UVT|% st. diag(UVT)=0  (11)
u,v

It can be solved with Alternating Least Squares, using closed-form updates for the optimal U given
V, and for the optimal V given U, where the optimum can be determined analytically using the
method of Lagrangian multipliers, see Supplement for details.

Corollary: (Near-)Orthogonality Constraint: Eq. reveals that training with full emphasis
causes the latent embedding U, . in the encoder to be (approximately) orthogonal to the latent
embedding V; . in the decoder for each feature ¢ = 1, ...,m, when using a model of ‘sufficienly’
large rank k.

Interestingly, this (near-)orthogonality constraint is in stark contrast to the intuition that ‘similar’
features should have ‘similar’ latent embeddings. This can be seen as follows: if two features ¢ and
j are similar, either one should be predictable from the other one. This means that the dot-product

le\A/']T should be large. The (near-)orthogonality constraint requires, however, that U j,‘v;lj, =0
holds approximately. Hence, the latent embeddings IAJZ and ﬂj cannot be similar for similar
features ¢ and j. The analogous argument holds for the embeddings V- .and V- . being dissimilar.

In summary, even though the (near-)orthogonahty constraint requires (approximate) orthogonahty
of the two embeddings Ul and Vl regarding (the same) feature ¢ in two different matrices U and
V, this in turn causes the embeddings of (different) features ¢ and j in the same matrix U to be
less similar (and analogously for the matrix V). This theoretical insight is also corroborated by our
experiments, as illustrated in Figure[l} it shows that the cosine-similarities among ‘similar’ features
are considerably smaller when learned with the (near-)orthogonality constraint (like in EDLAE,
center graph) than without it (like in DLAE, right graph). This holds for the embeddings in the
encoder U (in blue) and in the decoder V (in red) in Figure[l] In fact, the embeddings of ‘similar’
items are close-to-orthogonal in the encoder in the blue histogram in the center graph in Figure
See Section [6]for more details (like the definition of ‘similar’).

5 Related Work

The regularizer in Parseval networks [11]], as well as the spread-out [42] and GLaS [14] regularizers
have a similar empirical effect as the (near-)orthogonality constraint in as far as they also encourage



the learned latent vectors to become more orthogonal to each other, i.e., they also favour a small
cosine-similarity, similar to the (near-)orthogonality constraint discussed in the previous paragraph.
Their motivations as well as their underlying mechanisms, however, are very different from the derived
(near-)orthogonality constraint, as outlined in the following. The regularizer in Parseval networks
[L1] is motivated by the goal of constraining the Lipschitz constant of each learned weight-layer of
the model to be less than 1, as a means of improving the robustness against adversarial examples
(e.g., modifications of images that are so slight that they are barely noticeable by humans, but cause
the learned model to make misclassification errors with high confidence). The motivation of the
spread-out [42]] and GLaS [14] regularizers is to reduce the overfitting of deep networks in extreme
classification problems. The regularizer in the Parseval network [[L1], as well as the spread-out
[42] and GLaS [[14]] regularizers directly penalize the cosine-similarities in the same weight-layer
of the network, i.e., they encourage all pairs of vectors within a layer of the network to become
more orthogonal to each other. This is conceptually different from the derived (near-)orthogonality
constraint, where the latent vectors across two layers are constrained to be orthogonal, i.e., between
the two matrices U, V (and not the vectors within V, or within U), see the last paragraph in
the previous section for details. A second conceptual difference is that the number of constraints
scales linearly with the number of features ¢ in the (near-)orthogonality constraint, while it scales
quadratically in Parseval networks [[L1]], as well as in the spread-out [42] and GLaS [14] regularizers.
Third, while the derived (near-)orthogonality constraint is specific to the AE, the regularizer in the
Parseval network [[L1] as well as the spread-out [42] and GLaS [14] regularizers can be applied to
various kinds of deep networks.

Apart from that, and related to denoising / dropout, there have been several papers that viewed
denoising / dropout as a form of Ly-norm regularization, e.g., [[10} 3} 40, 28, 39} 138} [16 20, |29} 9]
while some papers addressed aspects like speeding up computations [[10,40] or its effect on gradient
descent [39, 29], a large body of work focused on a single layer [3| 39, 38} [16], or on shallow
architectures [9)]. Very few papers addressed denoising / dropout in deep models [20, [17]]. In this
paper, we considered the entire model, i.e., B instead of the individual layers / matrices U, V in the
model, and showed that this provides a simple yet effective explanation of the benefits (compared
to weight decay) and limitations (the overfitting towards the identity is not completely prevented)
of dropout-denoising. To the best of our knowledge, this paper provides the first analytic study of
emphasized denoising.

6 Experiments

This section empirically illustrates the theoretical results derived in this paper, regarding the different
ways of regularization. In this section, we apply autoencoders to collaborative-filtering / recommen-
dation problems, as it focuses on the AE’s ability to not overfit to the identity (see experimental set-up
below). The features (columns in X)) hence correspond to the items that can be recommended, and
each user corresponds to a data-point (row in X).

Experimental Set-Up: For reproducibility, we follow the experimental set-up in [21]], using their
publicly available code as well as the same three well-known data-sets MovieLens 20 Million
(ML-20M) [115]], Netflix Prize (Netflix) [5], and the Million Song Data (MSD) [6]. Using the same pre-
processing of the data as in [21]], the user-item data-matrix X is binary, with 1 indicating an observed
user-item interaction (e.g., user played the song). The key properties of the data-sets are summarized
in Table|[I| We determined the optimal training-hyper-parameters (i.e., dropout-probability p and
Ly-regularization parameter \) using grid-search. In Table the training in rows (1) and (4) was
implemented in Tensorflow [33]], while the models in the remaining rows were trained according to the
analytic equations outlined in this paper (using Python and Numpy). The code accompanying these
experiments is publicly available at https://github.com/hasteck/EDLAE_NeurIPS2020. As to
evaluate the prediction/ranking accuracy of the learned autoencoders on the test-set, we also followed
the evaluation protocol of [21]] and used Normalized Discounted Cumulative Gain (nDCG@ 100)
and Recall (@20 and @50) as in [21]]. Note that the set of items j in a test-user’s interaction-history
(which serves as input to the AE) is disjoint from the test-user’s set of test-items ¢ to be predicted (see
[21]]). Consequently, each item ¢ has to be predicted based on the other items j # 4, so that prediction
accuracy immediately suffers in these experiments if the AE overfits to the identity function (i.e.,
predicts item ¢ in the output from the same item ¢ in the input).


https://github.com/hasteck/EDLAE_NeurIPS2020

Table 1: Prediction accuracies (Recall @20 and @50, nDCG @100, as in [21]) of a linear autoencoder
of model-rank 1,000, trained with different regularizers, on three well-known data-sets: ML-20M,
Netflix, and MSD (with standard errors 0.002, 0.001, and 0.001, respectively). Note that A=A+
has two hyper-parameters: dropout probability p (see A in Eq. f) and the (scalar) Lo-regularization
parameter .

ML-20M Netflix MSD
Recall Recall nDCG Recall Recall nDCG Recall Recall nDCG
model training @20 @50 @100 @20 @50 @100 @20 @50 @100
L ||X=XUVT|[Z+X-(JJUJZ+|V][Z) 0345 0467 0376 0326 0406 0357 0200 0.278 0.249
2. |IX-XUVT|2 + A [U- VT2 0.377 0.511 0407 0337 0418 0369 0217 0296 0.266
3. [[X-XUVT|]2 + AU - VT 0.382 0516 0417 0351 0435 0384 0259 0350 0.314
4. DLAE: sampled dropout-denoising 0380 0511 0413 0350 0434 0383 0256 0344 0.309
5. EDLAE (see Section 0.389 0518 0420 0362 0446 0394 0263 0354 0.320

— SLIM 0.370 0495 0401 0347 0428 0.379  —did not finish in [21]-

E WMF 0.360 0.498 0.386 0.316 0404 0351 0211 0312 0.257
£ CDAE 0.391 0523 0418 0.343 0428 0376 0.188 0.283  0.237
é MULT-VAE ** 0.395 0.537 0426 0351 0444 0386 0266 0364 0.316
MULT-DAE 0.387 0.524 0419 0344 0438 0380 0266 0363 0.313

data-set properties # items 20,108 17,769 41,140

# users 136,677 463,435 571,355

# interactions 10 mil. 57 mil. 34 mil.

Empirical Results: Table [I|shows the prediction-accuracies obtained for the low-rank model B =
UV " with matrix-rank &£ = 1,000 when trained with the various regularizations discussed in this
paper. First, let us consider Ly-norm regularization: we can see that weight-decay (see line 1 in
Table [T), which is commonly applied in training deep models, obtains by far the lowest accuracy
on all three data-sets. This is greatly improved when weight-decay is replaced by the dropout-style
Ly-regularization |[UV "||2, see line 2 in Table Moreover, when ) is replaced by A (see Eq. 4)),
which provides item-specific scaling of the L2-norm regularization, an additional large improvement
is obtained, see line 3 in Table|l} Second, the results in lines 3 and 4 in Table|l|agree quite well
with each other, which empirically corroborates that training with stochastic dropout is indeed
asymptotically equivalent to using Lo-regularization in LAE, as outlined in Section [3] Third, line 5 in
Table[T|shows the benefits of not overfitting towards the identity, resulting in further gains in accuracy
by EDLAE over DLAE. Fourth, given that we used the same experimental protocol as in [21]], our
results can be compared to the various models evaluated there, including two linear models (SLIM
[26], wMF [19, 27]]), and three deep non-linear AEs (CDAE [41]], MULT-VAE ™ [21]], MULT-DAE
[21])). Table [T shows not only that linear AEs with proper regularization can obtain competitive
empirical results, even when compared to the deep non-linear baselines in Table[I] but also that the
differences among the various types of regularizations can actually be substantial (i.e., possibly larger
than the differences between different model-classes).

Figure [1| (Ieft) shows that EDLAE obtains the highest prediction accuracy at all matrix-ranks k,
as expected, as it completely prevents the overfitting towards the identity, while also accounting
for the coupling of the diagonal and off-diagonal entries in B = UV ' in the low-rank model
(see Section [d.1.2). We can also see that a matrix-rank of about k£ ~ 1,000 is sufficiently large
(yet much smaller than the full rank m = 17, 769) in this experiment such that training with the
(near-)orthogonality constraint yields the same prediction accuracy (within standard error) as EDLAE
does. This empirically corroborates our analytic derivation that the (near-)orthogonality constraint
provides an accurate approximation to EDLAE for ‘sufficiently’ large model-ranks k£ — which may be
considerably smaller than the full rank m as shown in Figure[T] (left).

In the other extreme, when the model-rank k is very small, we can see that EDLAE is well approxi-
mated by applying only L-regularization (like in DLAE) in Figure [T] (left). This is not surprising
given that a matrix of extremely low rank k& cannot approximate the identity matrix well, and hence
such a low-rank model cannot overfit towards the identity. At the same time, however, prediction
accuracy is quite low, due to the small small model capacity, see Figure [1| (left). As the model-rank &
increases and exceeds a relatively small value of about k& ~ 100 on the Netflix data in Figure|1|(left),
we can see that training a low-rank model with an unconstrained diagonal (like in DLAE) yields less
accurate predictions than training with the (near-)orthogonality constraint. This illustrates empirically
that a low-rank model may start to overfit towards the identity at already quite small model-ranks
(about k£ =~ 100 in Figure[I] left), even when trained with denoising.
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Figure 1: (Near-)orthogonality constraint (see Section [4.1.2)): the left graph shows nDCG@ 100
for models of different matrix-ranks k, ranging from 10 to full rank. EDLAE (cf. Eq. black,
) obtains the highest accuracy by completely avoiding the overfitting towards the identity at all
matrix-ranks k, as expected (see Section |4.1.2). Minimizing || X — XUV |2 + \||[UV T ||2, with
the (near-)orthogonality constraint (cf. Eq. green, x), and without it (like in DLAE; blue, +)
approximates EDLAE in the extreme cases of large or small matrix-ranks k, respectively. The graphs
in the center and on the right show for the rank-1,000 model that the cosine-similarities of similar
items in the encoder U (solid blue) and decoder V (dashed red) are considerably reduced when
training with the (near-)orthogonality constraint (like in EDLAE, center graph) rather than without it
(like in DLAE, right graph). All three graphs were obtained on the Netflix data—the results on the
other two data sets were similar.

Figure [I] (center and right) shows the effect of the (near-)orthogonality constraint on the learned
embeddings in the encoder U (in blue) and in the decoder V (in red): for eachitem i = 1,...,m,

we considered the 10 most similar items in the sense that they had the largest values in column ¢ of

the learned full-rank (and most accurate) model ]:)'gl]l)LAE) (see Eq. .For a given set of 10 similar

items, we computed the cosine-similarities (i.e., dot product of normalized embedding-vectors) of U;
and Uj (in blue) and of V; and 'V (in red) across all pairs ¢ # j in this set. Concerning each set of
10 similar items, we then took the median, and Figure[I] (center and right graph) shows the resulting
distributions of these medians. As we can see, when trained with the (near-)orthogonality constraint
(like in EDLAE, center graph) vs. without it (like in DLAE, right graph), the cosine-similarity of the
latent embeddings of ‘similar’ items is vastly reduced in both the encoder and decoder. Remarkably,
the embeddings of many similar items are close to orthogonal to each other in the encoder U (in blue
in center graph), defying the intuition that similar items should have similar embeddings.

7 Conclusions

Considering linear autoencoders, as they facilitate analytic solutions, we first showed in this paper
theoretically and empirically that denoising / dropout does not completely prevent the overfitting
towards the identity-function between the input and output-layer. Instead, it merely induces Lo-
norm regularization—which interestingly is invariant under different model-parameterizations, a key
difference to weight decay that is commonly used for training deep models. To the best of our
knowledge, this paper provides the first analytic study of emphasized denosing, which was introduced
in [37]]. In the main theorem derived in this paper, we show that emphasized denoising is essential
for preventing the overfitting to the identity: interestingly, this is done by (partially) subtracting
the diagonal when learning the model-matrix, even though the diagonal is included when making
predictions on new data points. When subtracting the diagonal during training, the off-diagonal
entries are learned such that a feature is optimally predicted from the other features, hence avoiding
the overfitting towards the identity. When trained with full emphasis (b = 0), this theorem yields the
closed-form solution for the full-rank EDLAE, and also reveals a new (near-)orthogonality constraint
regarding the learned embeddings in the low-rank EDLAE. While conceptually different from the
regularizer in Parseval networks [11]] as well as the spread-out [42] and GLaS [14] regularizers,
their resulting effects are empirically similar. While we limited this paper to linear models as to
facilitate the derivation of analytic insights into the underlying mechanisms, the stochastic version of
emphasized denoising is readily applicable to training deep non-linear models in practice, as done in
[37], where it was empirically shown that emphasized denoising improves on (standard) denoising in
deep non-linear models.



Broader Impact

This paper provides a theoretical analysis of the overfitting problem of (linear) autoencoders to the
identity-function when learned from data, and how it can be mitigated. These novel scientific insights
hopefully help improve autoencoders in various practical application areas, with positive societal
effects. Given that autoencoders may also be applied to collaborative filtering / recommender systems,
as done in this paper for empirical illustration of the derived theoretical results, the various ethical
or societal concerns that apply to collaborative filtering systems in general, like the danger of filter
bubbles or various aspects of fairness, also apply here. They may be mitigated by the fact that the
collaborative filtering approach (e.g., autoencoder) is typically only one component in a larger system,
where several of the other components are tasked to guard against negative ethical and societal effects.

Acknowledgements

I am very grateful to Chaitanya Ekanadham, Ashish Rastogi, and Mahdi M. Kalayeh for their valuable
suggestions and comments, as well as to the anonymous reviewers for their useful feedback. I am
also indebted to Dawen Liang for providing the code for the experimental setup of all three data-
sets. Regarding the required Financial Disclosure, I did not receive financial support beyond my
employment at Netflix.

References

[1] M.S. Advani and A.M. Saxe. High-dimensional dynamics of generalization error in neural networks, 2017.
arXiv:1710.03667.

[2] P. Bachman, O. Alsharif, and D. Precup. Learning with pseudo-ensembles. In Advances in Neural
Information Processing Systems (NeurlPS), 2014.

[3] P.Baldi and P. Sadowski. Understanding dropout. In Advances in Neural Information Processing Systems
(NeurIPS), 2013.

[4] P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial Intelligence, 2014.

[5] J. Bennet and S. Lanning. The Netflix Prize. In Workshop at SIGKDD-07, ACM Conference on Knowledge
Discovery and Data Mining, 2007.

[6] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere. The million song dataset. In International
Society for Music Information Retrieval Conference (ISMIR), 2011.

[7] C.M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7, 1995.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1-122,
2011.

[9] J. Cavazza, P. Morerio, B. Haeffele, C. Lane, V. Murino, and R. Vidal. Dropout as a low-rank regularizer
for matrix factorization. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2018.

[10] M. Chen, Z. Xu, K. Q. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain adaptation.
In International Conference on Machine Learning (ICML), 2012.

[11] M. Cissé, P. Bojanowski, E. Grave, Y.N. Dauphin, and N. Usunier. Parseval networks: improving robustness
to adversarial examples. In International Conference on Machine Learning (ICML), 2017.

[12] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite
element approximations. Computers and Mathematics with Applications, 2:17-40, 1976.

[13] R. Glowinski and A. Marrocco. Sur I’approximation, par elements finis d’ordre un, et la resolution, par
penalisation—dualite, d’une classe de problems de dirichlet non lineares. Revue Francaise d’Automatique,
Informatique, et Recherche Operationelle, 9:41-76, 1975.

[14] C. Guo, A. Mousavi, X. Wu, D.N. Holtmann-Rice, S. Kale, S. Reddi, and S. Kumar. Breaking the
glass ceiling for embedding-based classifiers for large output spaces. In Advances in Neural Information
Processing Systems (NeurlIPS), 2019.

[15] F. M. Harper and J. A. Konstan. The MovieLens datasets: History and context. ACM Transactions on
Interactive Intelligent Systems (TiiS), 5, 2015.

[16] D.P. Helmbold and P. M. Long. On the inductive bias of dropout. JMLR, 2015.

10



[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

D.P. Helmbold and P.M. Long. Fundamental differences between dropout and weight decay in deep
networks, 2016. arXiv:1602.04484.

G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors, 2012. arXiv:1207.0580.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In IEEE
International Conference on Data Mining (ICDM), 2008.

D. Kunin, J. M. Bloom, A. Goeva, and C. Seed. Loss landscapes of regularized linear autoencoders. In
International Conference on Machine Learning (ICML), 2019.

D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational autoencoders for collaborative filtering.
In International World Wide Web Conference (WebConf), 2018. https://github.com/dawenl/vae_cf.

X.Ma, Y. Gao, Z. Hu, Y. Yu, Y. Deng, and E. Hovy. Dropout with expectation-linear regularization. In Int.
Conference on Learning Representations (ICLR), 2017.

D. Mehta, T. Chen, T. Tang, and J. D. Hauenstein. The loss surface of deep linear networks viewed through
the algebraic geometry lens, 2018. arXiv:1810.07716.

P. Mianjy, R. Arora, and R. Vidal. On the implicit bias of dropout. In International Conference on Machine
Learning (ICML), 2018.

B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks. In Conference
on Learning Theory (COLT), 2015.

X. Ning and G. Karypis. SLIM: Sparse linear methods for top-N recommender systems. In /EEE
International Conference on Data Mining (ICDM), pages 497-506, 2011.

R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collaborative filtering. In
IEEE International Conference on Data Mining (ICDM), 2008.

B. Poole, J. Sohl-Dickstein, and S. Ganguli. Analyzing noise in autoencoders and deep networks, 2014.
arXiv:1406.1831.

A. Pretorius, S. Kroon, and H. Kamper. Learning dynamics of linear denoising autoencoders. In Interna-
tional Conference on Machine Learning (ICML), 2018.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance
during feature extraction. In International Conference on Machine Learning (ICML), 2011.

A.M. Saxe, J.L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks, 2013. arXiv:1312.6120.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-58, 2014.

Tensorflow. http://tensorflow.org/.

Z.Tu, Y. Liu, L. Shang, X. Liu, and H.Li. Neural machine translation with reconstruction. AAAI Conference
on Artificial Intelligence, 2017.

P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23,
2011.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with
denoising autoencoders. In International Conference on Machine Learning (ICML), 2008.

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. JMLR, 2010.

S. Wager, W. Fithian, S. Wang, and P. Liang. Altitude training: Strong bounds for single-layer dropout,
2014.

S. Wager, S. Wang, and P. Liang. Dropout training as adaptive regularization. In Advances in Neural
Information Processing Systems (NeurlPS), 2013.

S.I. Wang and C.D. Manning. Fast dropout training. In International Conference on Machine Learning
(ICML), 2013.

Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-N recom-
mender systems. In ACM Conference on Web Search and Data Mining (WSDM), 2016.

X. Zhang, EX. Yu, S. Kumar, and S. Chang. Learning spread-out local feature descriptors. In IEEE
International Conference on computer Vision (ICCV), 2017.

11



	Introduction and Motivation
	Model Definition and Notation
	Denoising merely induces L2-Norm Regularization
	Overfitting towards the Identity
	Difference to Weight-Decay

	Emphasized Denoising can prevent the Overfitting towards the Identity
	Full Emphasis
	Full-rank EDLAE
	Low-rank EDLAE


	Related Work
	Experiments
	Conclusions

