
Supplementary Material: Parameterized Explainer for
Graph Neural Network

A. Explanation algorithms

The algorithms of PGExplainer for node and graph classification are shown in Algorithm 1 and 2,
respectively. We first discuss the node classification in Algorithm 1. In GNNs with message passing

Algorithm 1: Training algorithm for explaining node classification
1: Input: The input graph Go = (V, E), node features X, node labels Y , the set of instances to be explained
I, a trained GNN model: GNNEΦ0(·) and GNNCΦ1(·).

2: for each node i ∈ I do
3: G

(i)
o ← extract the computation graph for node i.

4: Z(i) ← GNNEΦ0(G
(i)
o ,X).

5: Y
(i)
o ← GNNCΦ1(Z(i)).

6: end for
7: for each epoch do
8: for each node i ∈ I do
9: Ω← latent variables calculated with Eq. (10)

10: for k ← 1 to K do
11: Ĝ

(i,k)
s ← sampled from Eq. (4).

12: Ŷ
(i,k)
s ← GNNCΦ1(GNNEΦ0(Ĝ

(i,k)
s ,X))

13: end for
14: end for
15: Compute loss with Eq. (9).
16: Update parameters Ψ with backpropagation.
17: end for

mechanisms, the prediction at a node v is fully determined by its local computation graph, which is
defined by its L-hop neighborhoods [53]. L is the number of GNN layers. Thus, for each node i in
the instance set I to be explained, we first extract a local computation graph G(i)

o (line 3). With G(i)
o

as the input graph, the trained GNN model generates the label of node i, denoted by Y (i)
o (line 4-5).

To train the explanation network, each time we select a node i and compute parameters Ω in edge
distributions with Eq. (10) (line 9). After that, we sample K graphs as input graphs for GNN to get
updated predictions for node i, with the k-th prediction denoted by Ŷ (i,k)

s (line 11-13). We compute
the loss and update parameters Ψ in the explanation network in line 15-16.

Algorithm 2: Training algorithm for explaining graph classification

1: Input: A set of input graphs with i-th graph represented by G(i)
o , node features X(i), and a label Y (i), a

trained GNN model: GNNEΦ0(·) and GNNCΦ1(·).
2: for each graph G(i)

o do
3: Z(i) ← GNNEΦ0(G

(i)
o ,X(i)).

4: Y
(i)
o ← GNNCΦ1(Z(i)).

5: end for
6: for each epoch do
7: for each graph G(i)

o do
8: Ω← latent variables calculated with Eq. (11)
9: for k ← 1 to K do

10: Ĝ
(i,k)
s ← sampled from Eq. (4).

11: Ŷ
(i,k)
s ← GNNCΦ1(GNNEΦ0(Ĝ

(i,k)
s ,X(i)))

12: end for
13: end for
14: Compute loss with Eq. (9).
15: Update parameters Ψ with backpropagation.
16: end for

13



The training algorithm for explaining graph classification is shown in Algorithm 2. The algorithm
is similar to the one explaining node classifications, except that computation graphs are not used,
because, for graph classification, each graph is treated as an instance. Given a set of graphs {G(i)

o }i∈I ,
we first compute the node embeddings Z(i) and graph labels Y (i)

o with the trained GNN model (line
2-4). In each epoch, for each i-th graph, we compute the parameters Ω in its edge distributions with
Eq. 11 (line 8). We then sample K subgraphs and get the updated predictions. We compute the loss
with Eq. (9) and update parameters Ψ with backpropagation.

B. Hardware and implementations in experiments

All experiments are conducted on a Linux machine with an Nvidia GeForce RTX 2070 SUPER
GPU with 8GB memory. CUDA version is 10.2 and Driver Version is 440.64.00. PGExplainer
is implemented with Tensorflow 2.0.0. For each dataset, we first train a GNN model, which is
then shared by all posthoc methods ATT, GNNExplainer, and PGExplainer. We use FC(a, b, f) to
denote a fully-connected layer. a and b are the numbers of input and output neurons respectively.
f is the activation function. Similarly, we denote a GNN layer with input dimension a, output
dimension b, and activation function f by GNN(a, b, f). With these notations, the network structure
of the GNN model for node classification is GNN(10, 20, ReLU)-GNN(20, 20, ReLU)-GNN(20, 20,
ReLU)-FC(20, #label, softmax). For graph classification, we add a maxpooling layer to get graph
representations before the final FC layer. Thus, the network structure is GNN(10, 20, ReLU)-GNN(20,
20, ReLU)-GNN(20, 20, ReLU)-Maxpooling-FC(20, #label, softmax). We adopt the Adam optimizer
with the initial learning rate of 1.0 × 10−3. All variables are initialized with Xavier. We follow
GNNExplainer to split train/validation/test with 80/10/10% for all datasets. Each model is trained for
1000 epochs. The accuracy performances of GNN models are shown in Table 3. The results show
that the designed GNN models are powerful enough for node/graph classifications on both synthetic
and real-life datasets.

Table 3: Accuracy performance of GNN models

Node Classification Graph Classification
Accuracy BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG
Training 0.98 0.99 0.99 0.92 1.00 0.87
Validation 1.00 0.88 1.00 0.94 1.00 0.89
Testing 0.97 0.93 0.99 0.94 1.00 0.87

The network structure of explanation networks in PGExplainer is FC(#input, 64, ReLU)-FC(20,
1, Linear), which is shared for all datasets. #input is 60 for node classification, and 40 for graph
classification.To train PGExplainer, we also adopt the Adam optimizer with the initial learning rate of
3.0× 10−3. The coefficient of size regularization is set to 0.05 and entropy regularization is 1.0. The
epoch T is set to 30 for all datasets. The temperature τ in Eq. (4) is set with annealing schedule [1]:
τ (t) = τ0(τT /τ0)t, where τ0 and τT are the initial and final temperatures. A small temperature tends
to generate more discrete graphs which may hinder the explanation network being optimized with
backpropagation. In this task, we find that relatively high temperatures work well in practice. τ0 is
set to 5.0 and τT is set to 2.0.

C. Additional experiments

In this part, we conduct extensive experiments to have deep insights into our PGExplainer.

C.1 Inductive performance

As we discussed in Section 4.3, the explanation network is shared across the population. Thus, with a
trained PGExplainer, we can directly infer the explanation without retraining the explanation network.
As a result, our PGExplainer has better generalization power than the leading baseline GNNExplainer.
Besides, our PGExplainer is more efficient in the inductive setting. In this section, we empirically
demonstrate the effectiveness of PGExplainer in the inductive setting. In the inductive setting, we
select α instances for training, (N − α)/2 for validation, and the rest for testing. α is ranged from
[1, 2, 3, 4, 5, 30]. Note that, with α = 1, our method degenerates to the single-instance explanation

14



method. Recall that to explain a set of instances, GNNExplainer first detects a reference node and
then computes the explanation for the reference node. The explanation is then generalized to other
nodes with graph alignment [53]. We claim that it may lead to sub-optimal explanations because
reference node selection and graph alignment are not jointly optimized with the explanation in an
end-to-end fashion. The AUC scores of PGExplainer are shown in Figure 3. We have the following
observations. 1) The testing AUC increase as more instances are trained, verifying the effectiveness
of PGExplainer. Some results are higher than the reported ones in Section 5 because here we adopt
validation datasets to fine-tune the hyper-parameters. 2) More training instances lead to smaller
standard deviation and PGExplainer tends to globally detect shared motifs with higher robustness.
3) PGExplainer can achieve relatively good performance with a small number of trained instances,
which makes PGExplainer more practical in large datasets. The results also explain why we dismiss
the training time of PGExplainer and only count the inference time in Section 5.

 0.96

 0.98

 1

1 2 3 4 5 30

A
U

C

#Training instances

STD
Mean

(a) BA-Shapes

 0.8

 0.9

 1

1 2 3 4 5 30

A
U

C

#Training instances

STD
mean

(b) BA-Community

 0.96

 0.98

 1

1 2 3 4 5 30

A
U

C

#Training instances

STD
Mean

(c) Tree-Cycles

 0.6

 0.8

 1

1 2 3 4 5 30

A
U

C

#Training instances

STD
Mean

(d) Tree-Grid

 0.6

 0.8

 1

1 2 3 4 5 30

A
U

C

#Training instances

STD
Mean

(e) BA-2motifs

Figure 3: Evaluation of PGExplainer in the inductive setting.

C.2 Effects of regularization terms

In this part, we analyze the effects of regularization terms. In addition to the size and entropy
regularizers introduced in GNNExplainer, we also have discussed regularization terms on budgets and
connectivity constraints. Since the first two regularizers are used in the quantitative evaluation, we
first conduct parameter studies. Visualization results on synthetic datasets show that the explanatory
graph extract by PGExplainer tends to be small and compact. To verify the effectiveness of the
proposed regularizer for connectivity constraint, we synthesize a noisy BA-Shapes dataset.

Effects of size and entropy constraint. We select synthetic datasets for parameter study. The
coefficients of size and entropy regularizers are denoted by λs and λe, respectively. AUC scores w.r.t
coefficients are shown in Figure 4. We observe that PGExplainer achieves competitive performances
even without any regularization terms in all datasets except the BA-Community, which verifies the
effectiveness of the model itself. For the BA-Community dataset, the entropy constraint plays an
important role.

Effects of connectivity constraint. To show the effect of the connectivity constraint on the explana-
tory graph, we build a noisy BA-Shapes dataset with 0.2N noisy edges. We vary the coefficient of the
connectivity regularization term λc from 0 to 10 and apply PGExplainer to explain a single instance.

15



5.0

1.0

0.5

0.1

0.05

0.01

05.0

1.0

0.5

0.1

0.05

0.01

0

 0.8

 0.9

 1

λ
s

λ
e

AUC

 0.96

 0.961

 0.962

 0.963

 0.964

 0.965

 0.966

 0.967

 0.968

 0.969

 0.97

(a) BA-Shapes

5.0

1.0

0.5

0.1

0.05

0.01

05.0

1.0

0.5

0.1

0.05

0.01

0

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

λ
s

λ
e

AUC

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b) BA-Community

5.0

1.0

0.5

0.1

0.05

0.01

05.0

1.0

0.5

0.1

0.05

0.01

0

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

λ
s

λ
e

AUC

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(c) Tree-Cycles

5.0

1.0

0.5

0.1

0.05

0.01

05.0

1.0

0.5

0.1

0.05

0.01

0

 0.6

 0.7

 0.8

 0.9

 1

λ
s

λ
e

AUC

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

(d) Tree-Grid

5.0

1.0

0.5

0.1

0.05

0.01

05.0

1.0

0.5

0.1

0.05

0.01

0

 0.6

 0.7

 0.8

 0.9

 1

λ
s

λ
e

AUC

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

(e) BA-2motifs

Figure 4: Effects of size and entropy constraint

The visualization results with regard to different choices of coefficients are shown in Figure 5. The
figure demonstrates that without explicit constraint, PGExplainer may detect several connected edges
in the noisy input graph, although these edges are also inside motifs. With the connectivity constraint,
we observe that PGExplainer tends to provide a connected subgraph as an explanation.

(a) λc=0 (b) λc=5 (c) λc=10

Figure 5: Effects of connectivity constraint

16



D. Selection of subset of features

In this paper, we focus on globally understanding predictions made by GNNs by providing topological
explanations. To explain node features, in GNNExplainer, the authors propose to use a feature mask
to select features that are important to preserve original predictions. Feature selection has been
extensively studied in non-graph neural networks and can be applied directly to explain GNNs, such
as the concrete autoencoder [1]. Besides, since the selected features are shared among instances
across the population, feature explanation is naturally global and applicable to new instances in the
inductive setting.

17


