
A Analysis of naive Mean Field VI for the LDpred Model when P = 1

When there is only one mutation, the naive mean field VI approach to the LDpred model simplifies to

Z ⇠ Bernoulli(1� p0)

�|Z ⇠ N (0,�2
Z)

�̂|� ⇠ N (�,�2
e).

In this simplified setting it is possible to obtain a closed form expression for the posterior. For
the purposes of contrasting with VI, I consider the posterior probability that � comes from each
component of the mixture distribution, p(Z = z|�̂) as well as the posterior mean of �, E[�|�̂]. In
particular, for the case �2

0 = 0,

p(Z = 0|�̂) = p0

p0 + (1� p0)
r
2⇡ 1

1
�2
e
+ 1

�2
1

exp
n

�̂2

2(�2
e+

�4
e

�2
1
)

o (2)

E[�|�̂] =
⇣
1� p(Z = 0|�̂)

⌘ �̂
�2
e

�2
1
+ 1

. (3)

In this case, the usual approach to mean field VI would be to find an approximate posterior that
factorizes q(�, Z) = q(�)q(Z) and assume that q(�) and q(Z) are conditionally conjugate, which in
this case would be that q(�) = N (µ, s2) and q(Z) = Bernoulli(1�  0). As stated in the main text,
the ELBo is undefined if �2

0 = 0, so instead consider �2
0 to be small but non-zero.

Under these assumptions, I show that for any �̂ there is a �2
0 small enough such that the probability

under q that Z = 1 is approximately either 0 or 1 and as a result the variational posterior mean of
beta is either approximately 0 or approximately equal to the non-sparse case where p0 = 0. That
is, mean field VI either over-shrinks effects to zero or provides no more shrinkage than just having
a single gaussian prior on the effect sizes. In contrast note that p(Z = 0|�̂) varies smoothly as a
function of �̂, and consequently by Equation 3, the posterior mean varies smoothly from shrinking
tiny effects to zero to providing less shrinkage for large effects.
Theorem 3. Let q�̂,�2

0
(�, Z) be the approximate posterior obtained from the LDpred model with

P = 1 for data �̂. For any �, there exists an ✏ such that for all �2
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with the case depending on the values of p0, �2
e , �2

1 , and �̂.

Proof. I begin by writing the ELBo:
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Taking partial derivatives I arrive at the equations for the critical points for µ and s2:
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Rearranging I obtain

µ =
�̂

1 +  0
�2
e

�2
0
+ (1�  0)

�2
e

�2
1

(9)

s2 =
1

1/�2
e +  0/�2

0 + (1�  0)/�2
1

. (10)

Now, I show that for  0 = 0 or  0 = 1 the ELBo is larger than for any other  0 so long as
lim�2

0#0  0/�2
0 > 0. This indicates that the optimal value of  0 must converge to either 0 or 1 in the

limit of small �2
0 and furthermore, if  0 converges to 0 it must do so faster than �2

0 . Taking limits in
Equations 9 and 10 under these conditions gives Equations 4, 5, 6, and 7.

If  0 = 0, then plugging  0 into Equations 9 and 10, it is clear that the values of both µ and s2 are
independent of �2

0 . Therefore, ELBo( 0 = 0) = O(1).

On the other hand, plugging  0 = 1 into Equations 9 and 10 gives µ = �2
0 �̂/(�

2
0 + �2

e) and
s2 = �2

0/(1+
�2
0
�2
e
). Therefore, log s2 = log �2

0�log(1+
�2
0
�2
e
) = log �2

0+O(�2
0), and µ2+s2 = O(�2

0).
Plugging these results into the ELBo of Equation 8 gives
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showing that in the limit of small �2
0 ,  0 must converge to either 0 or 1. Now, because  0/�2

0 appears
in Equations 9 and 10, some care must be taken in the case where  0 converges to 0. In particular,
I show that the ELBo is larger when  0 = 0 than it is when lim�2
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Now considering the ELBo as a function of  0, I consider the difference of the ELBo evaluated at
 0 = 0, and that evaluated at  0 < 1 which will be denoted as �ELBo.
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where the inequality follows from the fact that s2 is largest when  0 = 0. This quantity is obviously
positive for any �2

0 sufficiently small and therefore if  0 converges to 0, it must do so faster that �2
0

completing the proof.

The fact that under the VI approximate posterior q(Z = 1) is either close to 0 or close to 1, while
under the true posterior, p(Z = 1|�̂) varies smoothly as a function of �̂ suggests a thresholding
phenomenon where for �̂ slightly less than the threshold, the VI approximate posterior dramatically
over shrinks, while for �̂ slightly greater than the threshold the VI approximate posterior dramatically
under shrinks essentially performing hard thresholding. In Figure 3 I show numerically that this is
indeed the case, highlighting the failure of mean field VI to provide a reasonable approximation to
the posterior for even this toy model.

B Proof of Theorem 1

Proof. First, note that any measure fmix 2 Fmix may clearly be written as
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because each fi is a member of an exponential family. Since all of the events in the indicators are
mutually exclusive by hypothesis, the resulting measure may be re-written as
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completing the proof.

C Proof of Theorem 2

Proof. Begin by noting that by the conjugacy conditions (see e.g., [16]), for any measure fY |X 2
FY |X ,

dfY |X(y|x) = dH⇤(y) exp {h[T ⇤
Y (y),↵] , Tprior(x)i} ,
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Figure 3: Thresholding phenomenon for naive mean field VI for the LDpred model
The approximate posterior mean when using naive mean field VI undergoes a thresholding phe-
nomenon. For values of �̂ close to zero, the VI scheme over-shrinks the posterior mean essentially to
zero, while above the threshold, the VI scheme under-shrinks essentially matching the model without
sparsity. The results here were generated with p0 = 0.99,�2

1 = �2
e = 1 and the VI model was fit

using �2
0 ⇡ 10�22. The results are qualitatively similar for all �2

0  0.01, and for larger �2
0 the VI

model significantly under-shrinks for small �̂.

for some ↵ and H⇤(y), where Tprior is assumed without loss of generality to be ordered in a particular
way, and T ⇤

Y are the subset of sufficient statistics of fY |X that are coefficients of Tprior.
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Now, since I {x 2 Si} are mutually exclusive and exactly one such event occurs for each x,
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where I used the hypothesis on the sufficient statistics T1, . . . , TK for the second equality. Multiplying
by an arbitrary measure fmix 2 Fmix and collecting terms I obtain
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where ⌘⇤mix is the updated parameter obtained by collecting terms, showing that the posterior is in the
same exponential family as the prior.

D VI Schemes for the LDpred model

Recall that the naive VI scheme introduces auxiliary variables to approximately model sparsity as in
Equation 1. The natural mean field approach would then be to approximate the posterior over �j as a
Gaussian with mean µj and variance s2j , and approximate the posterior over Zj as a Bernoulli with
probability of being zero  j to maintain conditional conjugacy.

Routine calculations then show that the coordinate ascent updates are
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Using Theorems 1 and 2 it is possible to derive an alternative VI scheme that eschews the need for
auxiliary variables. In particular, the set of distributions containing only the point mass at 0 is trivially
an exponential family, and the support of distributions in that family do not overlap with the set of
Gaussians supported on R \ {0}. Therefore, the set of distributions that are mixtures of a Gaussian
and a point mass at 0 are also an exponential family by Theorem 1. Then, by Theorem 2, because a
Gaussian prior on the mean of a Gaussian is conjugate, and the sufficient statistics of a Gaussian are
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constant on the set {0}, this mixture distribution is also a conjugate prior for the mean of a Gaussian.
The natural approximation to make for the variational posterior over �j would then lie in the same
exponential family – a mixture of a Gaussian with mean µj and variance s2j and a point mass at 0,
with the probability of 0 being  j .

Because the model is conjugate and the distributions are in the exponential family, the optimal updates
for the natural parameters can be obtained from

q(�i) / exp
n
E�i logP (�̂|�) + logP (�i)

o
(11)

where E�i[·] is short hand for taking the expectation under the approximate posterior with respect to
all variables except �i. The posterior mean under the variational approximation is Eq[�i] = (1� i)µi,
and so the first term expands to
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2s2i

and µi

s2i
with log

normalizer µ2
i

2s2i
+ 1

2 log s
2
i , with corresponding sufficient statistics �2

i and �i. By Theorem 1, the
natural parameters for the mixture distribution are therefore � 1
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Matching the coefficients of the sufficient statistics in Equation 11 and performing some algebra
produces
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When fitting either VI scheme, I performed 100 iterations of coordinate ascent using the above update.
For the naive scheme, for coordinate i, I update µi and s2i first, then update  i before moving on to
coordinate i+ 1. For initialization, µi = 0 for all i, and s2i = �2

1 + �2
e . For the naive case,  i was

initialized to be 1, while for new scheme,  i was initialized to be p0.

In both VI schemes, the rate-limiting step is clearly computing terms that involve summations of
the type

P
j 6=i, which take O(P ) time, where P is the number of variables. Since there are O(P )

variational parameters to update at each iteration, the runtime of each iteration is thus O(P 2).
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E VI Schemes for sparse probabilistic PCA

First I derive the naive VI scheme. For the auxiliary model,

Ypk ⇠ Bernoulli(1� p0)

Wpk|Ypk ⇠ N (0,�2
Ypk

)

Zn ⇠ N (0, IK)

Xn|Zn,W ⇠ N (WZn,�
2
eIP )

The natural mean field VI scheme for this model would be to assume that all variables are independent
and assume that under the posterior Ypk is Bernoulli with parameter  pk, Wpk is Gaussian with
mean µWpk and variance s2Wpk

, and Zn is multivariate normal with mean µZn and covariance matrix
SZn . Below, I use the notation
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 | |
X1 · · · XN

| |

!
.

Routine calculations result in the following updates:
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E[W]pk = µWpk

and
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.

Now I derive a VI scheme using Theorems 1 and 2. The calculations are largely the same as in
Appendix D and so a number of details are omitted. Because I am again replacing a Gaussian by
a mixture of a Gaussian and point mass at zero, I assume the posterior for Wpk is a mixture of a
point mass at zero and a Gaussian with mean µWpk, variance s2Wpk

, and probability of being zero
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 pk. Working through the algebra as in the LDpred model results in:
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When fitting both VI schemes, I performed 250 iterations of coordinate ascent. For the naive scheme,
I first updated every coordinate of Z, then for each coordinate updated Ypk then Wpk. For the new
scheme, I first updated Z coordinate-wise then updated W coordinate-wise. Using singular value
decomposition to decompose X = U⌃VT , I initialized µZi = Un, SZn = I2 µWpk = Vpk⌃kk,
s2Wpk

= 1 and  pk = 1⇥ 10�10 for both schemes.

The updates for both models require the inversion of a K⇥K matrix which is O(K3) and computing
E[WTW] is O(PK2), but these can be precomputed before updating each µZn and SZn . Then,
updated each µZn requires O(K2 + PK) time. Therefore, updating all µZn and SZn requires
O(NPK) time assuming that K ⌧ N and K ⌧ P . For fixed µZn and SZn , updating µWpk ,
s2Wpk

, and  pk is limited by computing
P

n

P
` 6=k µWp`SZn,k` or

P
n

P
` 6=k µWp`(1� Wp`)SZn,k`

which requires O(NK) time. Therefore updating all µWpk , s2Wpk
, and  pk requires O(NPK2) time.

Therefore, each iteration of coordinate ascent requires O(NPK2) time.

F Additional PCA runs

To ensure that the results presented in the main text are not unusual, I generated five additional datasets
as described in the main text and compared the resulting PCA projections and sparsity of the loadings
for traditional PCA (based on singular value decomposition), my naive implementation of sparse
probabilistic PCA, and the implementation of sparse probabilistic PCA based on the non-overlapping
mixtures trick (Figures 4 and 5). In all five realizations, the new formulation of sparse probabilistic
PCA produces the sparsest loadings, and subjectively best separates the four clusters using the first
two principle components. As before, the naive implementation is indistinguishable from traditional
PCA for small values of �2

0 or values of �2
0 close to 1.

I also computed reconstruction error as a quantitative measure of performance. I defined recon-
struction error as the squared Frobenius norm between the reconstructed matrix (E[WZ] for the VI
methods) and the signal in the simulated matrix – that is, the matrix obtained by centering and scaling
a matrix where each entry is the µc for that entry as defined above. The mean reconstruction error
across five simulations was 4261 (min: 4072, max: 4517) for the non-overlapping mixtures trick;
3985 (min: 3923, max: 4240) for oracle PCA; and 29407 (min: 28761, max: 30429) for classical
PCA. Across the naive schemes, taking �2

0 = 0.05 performed best with a mean reconstruction error
of 7191 (min:7090, max: 7408). Overall, the non-overlapping mixtures trick performed only slightly
worse than PCA using knowledge of which variables were non-zero, whereas even the best naive
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Figure 4: Projections onto the first two PCs for five replicate simulations
Across all five replicate simulations the data cluster well in their projection onto the first two PCs
for the new VI scheme. While the naive scheme can cluster the data well if �2

0 is tuned properly,
the clusters are often not as well-defined as under the new scheme. Furthermore, the loadings are
substantially less sparse as shown in Figure 5. In the limit of �2

0 # 0, it empirically appears that the
naive scheme is indistinguishable from classical PCA.

scheme had almost double the reconstruction error, but all methods that attemted to account for
sparsity outperformed classical PCA.

G Application of sparse probabilistic PCA to single cell RNA-seq data

To provide an application of the non-overlapping mixtures trick to a real dataset, I applied the VI
scheme derived above for the sparse probabilistic PCA model with a spike-and-slab prior on the
loadings to a single cell RNA-seq dataset.

In a simplified view of the cell, genes encoded in a cell’s DNA are transcribed into RNA, which in turn
is translated into proteins. Proteins perform the functions necessary for maintaining the cell as well as
performing the specialized tasks that different cell types perform in complex multicellular organisms,
such as humans. The DNA sequence is–for the most part–identical across the cells of a single
organism, yet different cells perform highly differentiated and specialized roles. To understand this
process of differentiation, scientists isolate single cells and sequence their RNA, providing a snapshot
of the relative abundances of the RNA coding different genes. The result of these experiments are
summarized by a cell by gene matrix containing the abundance of the RNA from each gene in each
cell.

I analyzed a single cell RNA-seq dataset1 of peripheral blood mononuclear cells (PBMCs) – a subset
of the “white blood cells” circulating in blood. The RNA-seq data were processed and cleaned
using kallisto/bustools [40] and scanpy [59] as described in the kallisto tutorial2. I
performed standard PCA as well as sparse probabilistic PCA using the non-overlapping mixtures trick,
obtaining “gene loadings” and PC scores for the individual cells. The mean posterior probabilities
of the gene loadings being non-zero are plotted in Figure 6 – for all loadings, sparse PCA only has
appreciable posterior probabilities of being non-zero for less than a third of the genes. Yet, as seen in
Figure 7 the cells cluster similarly as classical PCA. Additionally, known markers of different PBMC
cell-type lineages, such as the GATA3, SPI1, and BCL2 [3, 13, 9] are highly differentiated across the

1https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.
0.0/pbmc_1k_v3

2https://colab.research.google.com/github/pachterlab/kallistobustools/
blob/master/notebooks/kb_analysis_0_python.ipynb
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Figure 5: Distribution of loadings for five replicate simulations
The new VI scheme produces significantly sparser loadings, with about 90% of variables having
an absolute loading below 1 ⇥ 10�5 for both PC1 and PC2. The naive scheme, while having a
more skewed distribution of loadings than classical PCA can hardly be considered sparse with most
variables having loadings greater than 1 ⇥ 10�3 regardless of the precise value of �2

0 used. Note
that in both plots, the right-most cluster of curves is over-plotted: for PC1 the naive scheme with
�2
0 = 0.005 is essentially indistinguishable from classical PCA for all five replicates. For PC2, the

naive scheme with �2
0 = 0.005 or �2

0 = 0.01 is indistinguishable from classical PCA in all but one
replicate.
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Figure 6: Average posterior probability of loadings being non-zero
For the single cell PBMC dataset, posterior inclusion probabilities (PIPs) – that is the probability of a
loading being non-zero – were computed for each loading for each PC, and the average across genes
for each PC is presented here. All components have average PIPs lower than 0.3 suggesting that less
than one third of genes are required to obtain a meaningful low-dimensional representation of the
cells.

clusters, all of which have essentially probability one of having non-zero loadings on the first PC
under the posterior. Finally, the posterior means under the sparse model are not merely a monotone
transformation of the classical PCA loadings, as seen in Figure 8, suggesting that sparse PCA may
prioritize different genes for followup than classical PCA.
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Figure 7: Projections and expression of marker genes
The left column shows each cell’s PC scores of the first two PCs from performing PCA on the PBMC
data using classical PCA. The right column shows the PC scores from running the VI scheme derived
using the non-overlapping mixtures trick for sparse probabilistic PCA. In each row, the expression
level of a different marker gene is shown – purple is lowly expressed, and yellow is highly expressed.
In both PCA and sparse PCA, different cell types are well-clustered, with marker gene expression
diverging across clusters.
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Figure 8: Posterior mean loadings compared to classical PCA loadings
The posterior mean from the sparse probabilistic PCA model of each loading for PC 1 (left) and PC 2
(right) are compared to the loadings from classical PCA for the PBMC dataset. A large number of
genes that have non-zero loadings under classical PCA are shrunk to nearly zero in the sparse PCA
posterior mean. Furthermore, the sparse PCA loadings are not merely a monotonic transformation of
the classical PCA loadings – the relative ordering of genes changes somewhat. This suggests that
different genes may be prioritized for followup using the two methods.
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