
A Experimental details

A.1 Upstream and downstream datasets

We use two datasets: CIFAR10 [31] and ImageNet ILSVRC-2012 [14].

For each run of a transfer experiment we

1. randomly sample num_examples_upstream examples uniformly from the training split of
the dataset to form the (upstream) training set for pre-training;

2. randomly sample num_examples_downstream examples from the remainder of the training
split of the dataset. They form the (downstream) training set for fine-tuning. This guarantees
that the upstream and downstream examples do not intersect;

3. upstream training examples are labelled with num_classes_upstream classes randomly
and uniformly;

4. when fine-tuning on random labels, we randomly and uniformly label the downstream
examples with num_classes_downstream classes.

A.2 Neural network architectures

Throughout the main text we use three different architectures: a simple convolutional architecture
“Simple CNN”, VGG16, and ResNet18. The Simple CNN can be further configured by specifying
the number of convolutional layers and units in the dense layer. We use the same architectures for
both CIFAR10 and ImageNet datasets, by only adjusting the number of outputs (logits).

Simple CNN is a convolutional architecture consisting of:

1. num_conv_layers convolutional layers with 3 ⇥ 3 filters, each followed by the ReLU
activation. Each convolutional layer contains num_filters filters (with biases) that are
applied with stride 1.

2. The outputs of the final convolutional layer are flattened and passed to a dense layer (with
biases) of num_units units, followed by the ReLU activation.

3. The classifier head, i.e. a dense layer with num_output units (logits).

The VGG16 architecture that we use is “Configuration D” from Table 1 of [46] with two dense layers
(“FC-4096”) removed:

conv0: 64 filters
conv1: 64 filters
maxpool
conv2: 128 filters
conv3: 128 filters
maxpool
conv4: 256 filters
conv5: 256 filters
conv6: 256 filters
maxpool
conv7: 512 filters
conv8: 512 filters
conv9: 512 filters
maxpool
conv10: 512 filters
conv11: 512 filters
conv12: 512 filters
maxpool
dense layer with num_outputs units (classifier head)

All convolutional filters (with biases) are of size 3⇥ 3 and applied with SAME padding and stride 1.
ReLU activation is applied after every convolutional layer. Max-pooling is performed over a 2⇥ 2
pixel window, with SAME padding and stride 2.
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ResNet18 We use vanilla ResNet-v2 architecture [22] with batch normalization [26] replaced by the
group normalization [51].

A.3 Training

All biases in the models are initialized with zeros, while all the other parameters (convolutional
filters and weight matrices of the dense layers) are initialized using He normal algorithm [21] with
init_scale scaling.

Model outputs (logits) are passed through the softmax function and we minimize the cross-entropy
(i.e. the negative log-likelihood) during training. We use SGD with momentum 0.9 and batch size
256 to train our models. We start training with the specified learning_rate and divide it by 3 two
times during the training: after 1/3⇥total_steps and 2/3⇥total_steps steps.

When training the models we report the accuracy on the entire training set, not on the mini-batch.

We do not use data augmentation in our experiments. We do not use weight decay, dropout, or any
other regularization. For CIFAR10 we scale the inputs to the [�1, 1] range. For ImageNet we resize
the examples, take a 224⇥ 224 central crop, and scale inputs to the [�1, 1] range.

A.4 Transferring the model from the upstream to the downstream task

After the upstream pre-training finishes, we replace the classifier head with a freshly initialized one.

Unless otherwise stated, for Simple CNN and VGG16 architectures we also re-scale the model
parameters after the pre-training. We store the per-layer parameter `2 norms at the initialization and
re-scale each layer of the trained model to match the stored `2 norms. Re-scaling does not affect the
classifier accuracy and predictions, since it reduces to multiplying all parameters of a given layer by a
strictly positive constant. However, re-scaling changes the logits and, therefore, the cross-entropy
loss. It is not immediately obvious how to re-scale the residual architecture without changing its
predictions so we decided not to re-scale ResNet18.

When fine-tuning downstream we use the same initial learning rate and schedule as in upstream
pre-training.

A.5 Figure 1: Positive and negative transfer with VGG16 on CIFAR10

Experiments 1 and 2 use:

init_scale = 0.526
learning_rate = 0.01
num_classes_upstream = 5
num_examples_upstream = 20000
epochs_upstream = 120

Experiments 3 and 4 use:

init_scale = 0.612
learning_rate = 0.009
num_classes_upstream = 50
num_examples_upstream = 20000
epochs_upstream = 80

Error bars correspond to ±1 std. over 12 independent runs.

A.6 Figure 2: Misalignment plots

To measure misalignment, we use the misalignment score in Definition 1 using the closed-from
expression provided in Section 2.2. First, the eigenvectors of the 3⇥3 patches of images are computed,
which reside in a space of dimension 27 due to the three input channels. Let vi be the eigenvectors of
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data, which have distinct eigenvalues almost surely, the alignment score is then:

dX

i=1

q
(vTi ⌃wvi) · (vTi ⌃

�1
w vi)� 1,

where the summation is taken over all 27 eigenvectors. To gain an intuition behind this formula, note
that if vi is itself an eigenvector of ⌃w, then (vTi ⌃wvi) · (vTi ⌃�1

w vi) = 1. The covariance of weights
⌃w is estimated in a single run by computing the covariance of the filters in the first layer.

To ensure that alignment depends indeed on the eigenvectors of data, we also compute alignment in
which the set of data eigenvectors {vi} is replaced by some random orthonormal basis of the plane.
The network architecture is a 2-layer CNN: convolutional followed by a fully-connected layer. The
experiment setup used to produce Figure 2 is:

num_conv_layers = 1
num_filters = 256
num_units = 64
learning_rate = 0.01
num_classes = 10
num_examples = 50000
epochs_upstream = 40

A.7 Figure 3: ResNet convolutional filter alignment

Figure 3 was produced from 70 runs of a wide ResNet [54] on CIFAR10 with random labels. We
used 4 blocks per group and a width factor of 4. As mentioned in the main text, we replaced the
initial 3 ⇥ 3 convolution with a 5 ⇥ 5 convolution for better visualization. Training was run with
batch normalization [26] and the following parameters:

init_scale = 0.01
learning_rate = 0.005
num_examples = 50000
epochs = 1800

A.8 Figure 4: Plots of the function f(�)

These figures were generated using the procedure described in Section 2.3. For every eigenvalue �
2
i

of the data with eigenvector vi, the corresponding ⌧
2
i is computed using Eq. (2). The pairs (�2

i , ⌧
2
i )

define a mapping from R+ to R+, which is plotted in Figure 4.

The network architecture is a 2-layer CNN: convolutional followed by a fully-connected layer. The
experiment setup used to produce Figure 2 is:

num_conv_layers = 1
num_filters = 256
num_units = 64
learning_rate = 0.01
num_classes = 10
num_examples = 50000
epochs_upstream = 40

A.9 Figure 5: Explaining the positive transfer

Network: SimpleCNN

num_conv_layers = 1
num_filters = 64
num_units = 256
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Simple CNN VGG16 ResNet18

Figure 9: Transferring more layers improves the downstream performance. Simple CNN architecture
with 3 conv. layers (LEFT), VGG16 (CENTER), and ResNet18 (RIGHT) pre-trained on CIFAR10
examples with random labels and subsequently fined-tuned on 25k fresh CIFAR10 examples with
real labels (TOP) and 10 random labels (BOTTOM). Lines with circular markers correspond to training
from scratch. Error bars correspond to min/max over 3 independent runs.

Training:

num_examples_upstream = 10000
num_classes_upstream = 10
num_examples_downstream = 10000
num_classes_downstream = 10
init_scaling = 1.0
learning_rate = 0.0005
total_steps = 10000

For all curves with the exception of the “no rescaling” curve, each layer is scaled down by a factor
between pre-training and training to match the `2 norm of the weights at initialization.

For all runs, the head layer is re-initialized after pre-training. For “pretrained conv” and “pretrained
conv, no bias” also the fully connected layer is re-initialized. For “pretrained conv, no bias” also the
bias of the convolutional layer is reset to zero. This is the fairest comparison to “covariance”: For
“covariance” the filters in the convolutional layer are random samples from a Gaussian distribution
with mean 0 and the covariance obtained from training on random labels. The bias is set to zero and
the dense and head layers are initialized randomly.

Each line is the average of 12 runs that differ in the random initializations. In the left and center
image, the “covariance”, “pretrained”, and “from scratch” curves are surrounded by a colored area
indicating ±1 standard deviations. The “no rescaling” curve is without this area, it would touch the
“pretrained” curve below it. In the right image no error bounds are plotted since the curves are too
close together.

A.10 Figure 6: Transferring more layers improves the downstream performance

Figure 9 is the extended version of Figure 6 that includes the models fine-tuned on real labels (apart
from the models fine-tuned on the random labels).

The left column (Simple CNN architecture) uses:

init_scale = 0.518
learning_rate = 0.01
num_classes_upstream = 25
num_examples_upstream = 15000
epochs_upstream = 40
num_conv_layers = 3
num_filters = 16
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num_units = 1024

The center column (VGG16) corresponds to the same setup as in Experiments 1 and 2 in Figure 1.
It uses:

init_scale = 0.526
learning_rate = 0.01
num_classes_upstream = 5
num_examples_upstream = 20000
epochs_upstream = 120

The right column (ResNet18) uses:

init_scale = 0.671
learning_rate = 0.01
num_classes_upstream = 50
num_examples_upstream = 25000
epochs_upstream = 80

A.11 Figure 7: Neuron activation plots

Figures 10 and 11 are the extended versions of Figure 7. They include activation plots for all
intermediate layers of VGG16 models (i) at initialization, (ii) in the end of the pre-training, (iii) in
the end of fine-tuning on real labels, (iv) in the end of fine-tuning on 10 random labels. Figures 10
and 11 illustrate the negative and positive transfer examples respectively.

The VGG16 model from Figure 10 (top row in Figure 8) uses the same setup as in Experiments 3 and
4 in Figure 1:

init_scale = 0.612
learning_rate = 0.01
num_classes_upstream = 50
num_examples_upstream = 20000
epochs_upstream = 80

The VGG16 model from Figure 11 (bottom row in Figure 8) uses the same setup as in Experiments 1
and 2 in Figure 1:

init_scale = 0.526
learning_rate = 0.01
num_classes_upstream = 5
num_examples_upstream = 20000
epochs_upstream = 120

A.12 Figure 8: Increasing the width mitigates the negative transfer

The models from all three subplots use Simple CNN architecture and share the same parameters:

init_scale = 1.218
learning_rate = 0.012
num_classes_upstream = 2
num_examples_upstream = 10000
epochs_upstream = 100
num_conv_layers = 2
num_filters = 16

The models from LEFT, CENTER, and RIGHT subplots use num_units of 64, 128, and 1 024,
respectively. Error bars correspond to max/min over 3 independent runs.
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Figure 10: Neuron activations in case of the negative transfer. The VGG16 model pre-trained for
1 (TOP-LEFT) and 6240 (TOP-RIGHT) training iterations on 20k examples from CIFAR10 with 50
random classes and subsequently fine-tuned for 200 epochs on fresh 25k examples from CIFAR10
with real labels (BOTTOM-LEFT) and 10 random labels (BOTTOM-RIGHT). In each subplot, the left
column depicts distributions of neurons over the fraction of input examples that activate them. The
right column depicts distribution of the input examples over the fraction of neurons that are activated
by them. The 5k input examples were taken from the holdout test split of CIFAR10.
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Figure 11: Neuron activations in case of the positive transfer. The VGG16 model pre-trained for
1 (TOP-LEFT) and 9360 (TOP-RIGHT) training iterations on 20k examples from CIFAR10 with 5
random classes and subsequently fine-tuned for 200 epochs on fresh 25k examples from CIFAR10
with real labels (BOTTOM-LEFT) and 10 random labels (BOTTOM-RIGHT). In each subplot, the left
column depicts distributions of neurons over the fraction of input examples that activate them. The
right column depicts distribution of the input examples over the fraction of neurons that are activated
by them. The 5k input examples were taken from the holdout test split of CIFAR10.
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B Empirical evidence with diverse real-world settings

We argued theoretically that the alignment effect holds under certain idealized conditions (Proposi-
tion 1) and demonstrated that it entirely explains the positive transfer in a real-world setting (Figure 5).
In this appendix, we confirm that the positive transfer is reproducible and can be frequently observed
in common real-world settings with various popular network architectures, datasets, and different
hyperparameters.

Experimental setup We run multiple transfer experiments, repeating each run with several different
seeds. We consider three network architectures: (a) a simple convolutional architecture with a
configurable number of conv. layers, filters, and units in one dense layer, (b) VGG16 [46] with two
final dense layers of width 4096 removed, and (c) ResNet-v2 architecture [22]. The disjoint upstream
and downstream training sets are sampled randomly from one of the two datasets: CIFAR10 [31]
or ImageNet ILSVRC-2012 [14]. We never transfer between different datasets. The models are
pre-trained with random labels and fine-tuned for a fixed number of epochs with either real or
random labels using SGD with momentum 0.9. We randomly explore various initial learning rates,
initialization types and scales, numbers of random classes and examples upstream, duration of the
pre-training, and configurations of the Simple CNN architecture.

We collect two sets of experiments for CIFAR10 (Experiments A and B) and two sets for ImageNet
(Experiments A and B) reported below. Each set consists of multiple groups of experiments. Experi-
ments are gathered in a group if they share same (1) architecture, (2) learning rate, (3) initialization
type and scale, (4) number of examples upstream, (5) number of classes upstream, and (6) number of
epochs upstream. For each configuration of these 6 parameters we explore all possible combinations
of the following choices: (a) the random seed, (b) pre-train / train from scratch on downstream,
(c) transfer one layer / all layers [optional], (d) train downstream with real / random labels. Gathering
experiments in groups like this allows to compare the downstream performance of the pre-trained
models to that of models trained from scratch with same hyperparameters.

Visualizing the experiments In order to visualize the experiments we summarize each group with
two numbers: one characterizing the downstream performance of the pre-trained models, and one
for the models trained from scratch. In order to capture the speed of training we use the area
under the curve (AUC) to sketch the training with a single number. For instance, the pre-trained
model in Experiment 2 of Figure 1 (blue line) trains faster than the one trained from scratch (orange
line). Accordingly, the area under the blue curve is larger than the area under the orange curve.
We can now visualize all the groups of experiments on a single scatter plot. Depending on what
exact curves we summarize with AUC, we get three scatter plots: (1) training accuracy when using
real labels downstream (areas under the solid lines in Experiments 1 and 3 in Figure 1), (2) test
accuracy when using real labels downstream (areas under the dotted lines in Experiments 1 and 3 in
Figure 1), (3) training accuracy when using random labels downstream (areas under the solid lines in
Experiments 2 and 4 in Figure 1).

B.1 CIFAR10, Experiments A

This set of experiments counts 20 groups per architecture. We use 2 different random seeds, resulting
in 16 experiments per group, or 3⇥ 20⇥ 16 = 960 trained models in total.

The following parameters are shared between all runs:

num_examples_downstream = 25000
num_epochs_downstream = 200
init_algorithm = "he"

For each group of experiments we sample the following parameters randomly:

init_scale = random log_uniform(0.5, 1.35)
learning_rate = random log_uniform(0.008, 0.0125)
num_examples_upstream = random uniform([5000, 10000, 15000, 20000, 25000])
num_classes_upstream = random uniform([2, 5, 10, 25, 50, 100])
num_epochs_upstream = random uniform([20, 40, 80, 100, 120, 150, 200])

For the Simple CNN architecture we also randomly sample
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num_conv_layers = random uniform([1, 2, 3, 4, 5])
num_units = random uniform([64, 128, 256, 512, 1024])
num_filters = random uniform([16, 32])

Exmeriments A are depicted on Figure 12. Two clusters of points in the CENTER row correspond to
models with VGG16 architecture (y > 0.7) and models with SimpleCNN or ResNet18 architecture
(y  0.7). Surprisingly, several experiments with transferring one (first) layer of VGG16 when
fine-tuning with real labels lead to improved test accuracy compared to the same models trained from
scratch (blue squares, CENTER row).

B.2 CIFAR10, Experiments B

This set of experiments contains 20 groups per architecture. We use 2 different random seeds,
resulting in 16 experiments per group, or 3⇥ 20⇥ 16 = 960 trained models in total.

We use slightly wider hyperparameter ranges compared to the CIFAR10 Experiments A. Also, we
include the orthogonal initialization algorithm [45]. The following parameters are shared between all
runs:

num_examples_downstream = 25000
num_epochs_downstream = 200

For each group of experiments we sample the following parameters randomly:

init_algorithm = random uniform(["he", "orthogonal"])
init_scale = random log_uniform(0.5, 2.)
learning_rate = random log_uniform(0.005, 0.02)
num_examples_upstream = random uniform([5000, 10000, 15000, 20000, 25000])
num_classes_upstream = random uniform([2, 5, 10, 25, 50, 100])
num_epochs_upstream = random uniform([20, 40, 80, 100, 120, 150, 200])

For the Simple CNN architecture we also randomly sample

num_conv_layers = random uniform([1, 2, 3, 4, 5])
num_units = random uniform([512, 1024, 2048])
num_filters = random uniform([16, 32])

Exmeriments B are depicted on Figure 13. The models with y > 0.7 on CENTER row again correspond
to the VGG16 architecture. This time we do not observe improvements in the test performance when
pre-training.

B.3 ImageNet, Experiments A

This set of experiments counts 10 groups per architecture. We use 5 different random seeds. We
always transfer all layers. This results in 20 experiments per group, or 3⇥ 10⇥ 20 = 600 trained
models in total.

The following parameters are shared between all runs:

num_examples_downstream = 200000
num_epochs_downstream = 100
num_epochs_upstream = 100
num_classes_upstream = 1000
init_algorithm = "he"

For each group of experiments we sample the following parameters randomly:

init_scale = random log_uniform(0.5, 1.5)
learning_rate = random log_uniform(0.008, 0.0125)
num_examples_upstream = random uniform([50000, 100000])

For the Simple CNN architecture we also randomly sample
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num_conv_layers = random uniform([1, 2, 3])
num_units = random uniform([32, 64, 128, 256, 512, 1024])
num_filters = random uniform([16, 32, 64])

ImageNet Exmeriments A are depicted on Figure 14. All the ResNet18 runs result in positive transfer
in terms of the downstream training performance, i.e. all the green points on TOP and BOTTOM plots
are below the diagonal. This may be caused by the fact that we do not re-scale ResNet18 models
after pre-training, which means the effective downstream learning rate of the pre-trained ResNets18
may be affected.

B.4 ImageNet, Experiments B

This set of experiments counts 10 groups per architecture. We use 5 different random seeds. We
always transfer all layers. This results in 20 experiments per group, or 3⇥ 10⇥ 20 = 600 trained
models in total.

We use smaller upstream and downstream training sizes compared to ImageNet Experiments A.

The following parameters are shared between all runs:

num_examples_downstream = 50000
num_epochs_downstream = 100
num_epochs_upstream = 100
num_classes_upstream = 1000
init_algorithm = "he"

For each group of experiments we sample the following parameters randomly:

init_scale = random log_uniform(0.5, 1.5)
learning_rate = random log_uniform(0.008, 0.0125)
num_examples_upstream = random uniform([25000, 50000])

For the Simple CNN architecture we also randomly sample

num_conv_layers = random uniform([1, 2, 3])
num_units = random uniform([32, 64, 128, 256, 512, 1024])
num_filters = random uniform([16, 32, 64])

ImageNet Exmeriments B are depicted on Figure 15. We see again that all the ResNet18 runs result
in positive transfer in terms of the downstream training performance. However, this time we do not
observe the positive transfer with architectures other than ResNet18.

22



Real Labels Downstream (Training Accuracy)

Real Labels Downstream (Test Accuracy)

Random Labels Downstream (Training Accuracy)

Figure 12: Scatter plots for CIFAR10 Experiments A. Models fine-tuned on real labels (TOP and
CENTER) and on random labels (BOTTOM). Each dot corresponds to one group of experiments. Points
below the orange x = y line on TOP correspond to experiments where models pre-trained with
random labels train faster downstream (with real labels) compared to models trained from scratch
with same hyperparameters. CENTER AND RIGHT columns contain zoomed in versions of the plots
from LEFT column.
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Real Labels Downstream (Training Accuracy)

Real Labels Downstream (Test Accuracy)

Random Labels Downstream (Training Accuracy)

Figure 13: Scatter plots for CIFAR10 Experiments B. Models fine-tuned on real labels (TOP and
CENTER) and on random labels (BOTTOM). Each dot corresponds to one group of experiments. Points
below the orange x = y line on TOP correspond to experiments where models pre-trained with
random labels train faster downstream (with real labels) compared to models trained from scratch
with same hyperparameters. CENTER AND RIGHT columns contain zoomed in versions of the plots
from LEFT column.
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Real Labels Downstream (Training Accuracy)

Real Labels Downstream (Test Accuracy)

Random Labels Downstream (Training Accuracy)

Figure 14: Scatter plots for ImageNet Experiments A. Models fine-tuned on real labels (TOP and
CENTER) and on random labels (BOTTOM). Each dot corresponds to one group of experiments. Points
below the orange x = y line on TOP correspond to experiments where models pre-trained with
random labels train faster downstream (with real labels) compared to models trained from scratch
with same hyperparameters. RIGHT column contains zoomed in versions of the plots from LEFT
column.
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Real Labels Downstream (Training Accuracy)

Real Labels Downstream (Test Accuracy)

Random Labels Downstream (Training Accuracy)

Figure 15: Scatter plots for ImageNet Experiments B. Models fine-tuned on real labels (TOP and
CENTER) and on random labels (BOTTOM). Each dot corresponds to one group of experiments. Points
below the orange x = y line on TOP correspond to experiments where models pre-trained with
random labels train faster downstream (with real labels) compared to models trained from scratch
with same hyperparameters. RIGHT column contains zoomed in versions of the plots from LEFT
column.
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B.5 Summary of the experiments

Analysis of experiments presented in the previous four sections reveals a large number of positive
transfers where the pre-trained model trains faster on the downstream task compared to the model
trained from scratch using the same hyperparameters. Generally it looks like transferring more layers
leads to stronger positive effects. All ResNet18 runs performed on ImageNet (and most of the ones
on CIFAR10) result in positive transfer (in terms of the downstream training accuracy), which may
be caused by the fact that we do not re-scale them after pre-training.

Most likely there are other important factors, yet to be discovered, playing a role in all these
experiments. However, the evidence presented earlier (Figures 2 and 3, Table 1) suggests that
alignment is responsible for the observed positive transfer in at least some of these cases.

B.6 Detailed results for some of the experiments

Figure 16 reports experiments with ResNet18 on ImageNet where pre-training helps. These experi-
ments differ only in the in initialization scale and otherwise use:

learning_rate = 0.01
num_classes_upstream = 1000
num_examples_upstream = 500000
num_epochs_upstream = 100
num_examples_downstream = 500000
num_epochs_downstream = 100

Figure 17 reports experiments with VGG16 on ImageNet where pre-training both helps and hurts. It
may speed up the training, or make it slower. Surprisingly, in some cases it may slightly improve the
holdout test accuracy. These experiments use:

init_scale = 1.0
learning_rate = 0.01
num_classes_upstream = 1000
num_examples_upstream = 500000
num_epochs_upstream = 100
num_examples_downstream = 500000
num_epochs_downstream = 100

Figure 18 reports experiments with VGG16 on ImageNet where pre-training hurts both real and
random label downstream tasks. These experiment are taken from the ImageNet Experiments A
reported in Section B.3. These experiments use:

init_scale = 0.747
learning_rate = 0.008
num_classes_upstream = 1000
num_examples_upstream = 50000
num_epochs_upstream = 100
num_examples_downstream = 200000
num_epochs_downstream = 100
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Pre-training helps
Init scale 1.3
(real labels)

Pre-training helps
Init scale 1.3

(random labels)

Pre-training helps
Init scale 1.6
(real labels)

Pre-training helps
Init scale 1.6

(random labels)

Pre-training helps
Init scale 1.9
(real labels)

Pre-training helps
Init scale 1.9

(random labels)

Figure 16: Pre-training on random labels often accelerates the downstream training compared to
training from scratch with same hyperparameters. ResNet18 models are pre-trained on 500k ImageNet
examples with 1000 random labels and subsequently fine-tuned on the fresh 500k ImageNet examples
with either real labels or 1000 random labels using learning rate 0.01 and different initialization
scales. Error bars correspond to ±1 std. over 2 independent runs.
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Pre-training slows down training
(real labels)

Pre-training helps
(random labels)

Figure 17: Pre-training on random labels may both accelerate or slow down the downstream training
compared to training from scratch with same hyperparameters. VGG16 models are pre-trained on
500k ImageNet examples with 1000 random labels and subsequently fine-tuned on the fresh 500k
ImageNet examples with either real labels or 1000 random labels. LEFT: Surprisingly, pre-training
improves the holdout test accuracy. Error bars correspond to ±1 std. based on 2 independent runs.

Pre-training hurts
(real labels)

Pre-training hurts
(random labels)

Figure 18: VGG16 models are pre-trained on 50k ImageNet examples with 1000 random labels and
subsequently fine-tuned on 200k fresh ImageNet examples with real labels or 1000 random labels.
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C Proof of Proposition 1

Proposition 1 makes the following assumptions:

1. The first layer is either
• fully connected, and the input from Rd is normally distributed with mean µx = 0 and

covariance ⌃x, or
• convolutional, with patches that are not overlapping and the data in each position is

independent normally distributed with mean µx = 0 and covariance ⌃x.
2. The first layer weights w 2 Rd are initialized i.i.d. at random from some distribution on Rd

that is invariant under the orthogonal group O(d).
3. The sampled inputs are labelled randomly according to some distribution over the target set

Y = {1, 2, . . . , c}, independently of the input sample.

Let G := {G 2 O(d) |GT⌃xG = ⌃x} be the group of orthogonal matrices that leave the distribution
of the data xi invariant. Proposition 1 follows from these two claims:
Claim 1. A probability distribution Dw on Rd with mean µw and covariance matrix ⌃w that is
invariant under G has µw = 0 and ⌃w aligned with ⌃x.
Claim 2. The probability distribution of the weights w in the first layer after t iterations of training
is invariant under G (for any t = 0, 1, ...).

Proof of Claim 1. Since �I 2 G, we have E[w] = E[�w], so we must have E[w] = 0. For the
second part, assume

Rd = V1 � V2 � ...� Vr

is the orthogonal decomposition of Rd into eigenspaces of ⌃x and di := dim(Vi) are the dimensions
of its parts. Then

G = O(d1)⇥O(d2)⇥ ...⇥O(dr)

where each O(di) operates in the canonical way on Vi and leaves the other parts invariant.

By definition of G we have G
T⌃wG = ⌃w for all G 2 G. Then each G 2 G must also leave

eigenspaces of ⌃w invariant since for an eigenvector u with ⌃wu = �u, we have

⌃w(Gu) = (⌃wG)u = (G⌃w)u = � ·Gu.

We have to show that each Vi is contained in an eigenspace of ⌃w. Assume to the contrary that
a particular Vi is not contained in any eigenspace of ⌃w. Since the eigenvectors of ⌃w span Rd,
there must be an eigenvector u in an eigenspace U of ⌃w that is not orthogonal to Vi. We will
show that Vi ✓ U : Let Mi 2 G be the matrix that is I on Vi and �I on all other Vj , j 6= i, and
let pri : Rd ! Vi be the orthogonal projection onto Vi. Then by assumption pri(u) 6= 0, but since
pri(u) = (u+Miu)/2, we must also have pri(u) 2 U . Since O(di) operates transitively on the set
of all vectors v 2 Vi of a given length, and {I}⇥ ...⇥O(di)⇥ ...⇥ {I} ✓ G, all vectors of length
|pri(u)| in Vi must as well be in U . Since U is closed under scalar multiplication and pri(u) 6= 0,
this means that indeed Vi ✓ U .

Proof of Claim 2. Each run of the given network is determined by sampled initial data:

• The initial weights w1, ..., wM 2 W = Rd in the first layer,

• the inputs x1, ..., xN 2 V = Rd,

• the initial weights in the later layers, and biases in all layers,
we will write them as one large vector w0 2 W

0 = Rd0
,

• the targets y1, ..., yN 2 Y .

We will consider the targets as fixed and write the other initial data as

(wi, xj , w
0) 2 V := W

M ⇥ V
N ⇥W

0
.
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The group G ✓ O(d) operates on V = Rd and W = Rd, we also define its operation on V by

G : V ! V, (wi, xj , w
0) 7! (Gwi, Gxj , w

0) (4)

By our assumptions and the definition of G, this operation leaves the distribution of initial data
invariant for any G 2 G. This proves the “t = 0” case in Claim 2, it remains to show that this
invariance is kept when we do one step of Gradient Descent, this will follow if we can show that the
update commutes with the operation of G.

At each step of the training the current state is given by a point in the vector space V , the loss is a
function L : V ! R and one step of Gradient Descent is given by

wi 7! wi � ✏ ·rwiL(wi, xj , w
0), w

0 7! w
00

for some w
00 2 W

0. We have to show that this update commutes with the operation of G, i.e. for all
G 2 G

Gwi 7! Gwi � ✏ ·GrwiL(wi, xj , w
0), w

0 7! w
00 (5)

for the same w
00.

Since the first layer only gets information about the wi and xj via their scalar products hwi, xji, and
for any G 2 O(d) we have hGwi, Gxji = hwi, xji, the operation (4) of G 2 G on V leaves the loss
function L : V ! R invariant. For the same reason also the updates of the biases and later weights
w

0 are unaffected by the operation of G. So we only have to prove the update equations for Gwi, i.e.
show that

rwiL(Gwi, Gxj , w
0) = GrwiL(wi, xj , w

0)

The gradients rwiL in the wi–directions are part of the full gradient rL (which is a vector in V , so
it also contains the derivatives with respect to the points xj and the weights w0 of the later layers).
Hence it is sufficient (or even stronger) if we can show

rL(Gp) = GrL(p) for each point p 2 V and G 2 G. (6)

Since L is invariant under G, also the differential form dL is invariant: G⇤
dL = dL.

The standard Euclidean metric on V = Rd⇥M+d⇥N+d00
provides a translation between differential

forms and vector fields that determines rL from dL and vice versa by the condition

hrL(p), vi = dL|p(v) for all v 2 V.

Since the Euclidean metric on V is invariant under G 2 G, we have for each vector v 2 V

hrL(Gp), Gvi = dL|Gp(Gv) = dL|p(v) = hrL(p), vi = hGrL(p), Gvi

Since G 2 G is invertible, Gv can be any vector in V , so (6) follows.

Note that the same proof argument holds for many other optimization techniques, not only for gradient
descent. For example, it does not matter whether we use Momentum, AdaGrad, Adam, Nesterov,
weight decay, etc. in the gradient descent. However, the optimization needs to respect symmetries
from O(d), i.e. it cannot make use of the special coordinate system for the input. This excludes for
example Exponentiated Gradient [29].

Similarly, the proof is also independent of the loss function used, if that loss only involves the output
of the network: Since the proof only makes use of symmetries hGx,Gwi = hx,wi in the first layer,
it is not affected by what we do in the later layers or at the output level. However, if the loss function
includes regularization terms that involve the weights in the first layer, these terms also need to be
invariant under the orthogonal group. This means the proof still applies if we use L2 regularization,
but L1 regularization does make use of the special coordinate system and is not invariant under
rotations, so the proof arguments would not hold anymore if we used it in the first layer.
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D Measuring Alignment

D.1 How well can we measure eigenvectors?

We do not observe the covariance matrices directly, but estimate them from samples of the correspond-
ing distributions. This estimate has a variance that results in a variance of the computed eigenvectors.
As a first intuitive experiment we compare the eigenvectors obtained from two disjoint samples:

Data We compare the covariance matrices ⌃x and ⌃0
x obtained from 5⇥ 5 patches of the first and

second 30 000 images in CIFAR10. The first eigenvectors are extremely well aligned:
i �2

i |hei, e0ii|
1 12.3 0.9999996
2 1.45 0.99995
3 1.18 0.99992
4 1.06 0.99994
5 0.37 0.99969
6 0.32 0.99970

i �2
i |hei, e0ii|

7 0.28 0.99985
8 0.23 0.99988
9 0.128 0.99010

10 0.126 0.99030
11 0.115 0.99969
12 0.096 0.99999

Also the other eigenvectors are very well aligned, all scalar products obtained were above 0.975. So
30,000 images are sufficient to estimate the eigenvectors of ⌃x to a high accuracy.

Weights We use the same ResNet experiment as for Figure 3, described in Section A.7. We use
two disjoint groups of 30 randomly initialized networks, trained in the same way on CIFAR10 with
random labels.

i �2
i |hei, e0ii|

1 0.281 0.974
2 0.202 0.958
3 0.154 0.916
4 0.141 0.934
5 0.107 0.861
6 0.104 0.861

i �2
i |hei, e0ii|

7 0.085 0.906
8 0.078 0.946
9 0.077 0.924

10 0.072 0.811
11 0.063 0.598
12 0.059 0.645

So we can only measure the most important eigenvectors with reasonable accuracy. Of course it is not
unexpected that we can determine the covariance of image patches much better than the covariance
of weights: In the above example, we used 30000⇥ 30⇥ 30 = 27 million image patches, but only
30 ⇥ 64 = 1920 weight vectors (filters). However, apart from the number of examples, also the
type of information we want to extract from the covariance matrix determines the accuracy of our
measurement.

In particular, when two eigenvalues are close together (like �5,�6 above), it may be difficult to
determine the exact eigenvector. However, the 2-dim space spanned by both eigenvectors is relatively
stable – in the above example the expansion of e5, e6 in terms of the basis e0i is

e5 = 0.86e05 � 0.36e06 + ...(smaller terms)...

e6 = 0.36e05 + 0.86e06 + ...(smaller terms)...

A similar observation can be made in figure 3: The first eigenvalues of ⌃w are 0.019, 0.017, 0.011,
0.010, 0.009,..., with the first two close together; the corresponding two eigenvectors of ⌃w given on
the right of figure 3 were:

⇡ = 0.65 ⇥ � 0.71 ⇥
and

⇡ = 0.71⇥ + 0.67⇥

So the vector space of these two eigenvectors of ⌃w is well aligned to the vector space of two
eigenvectors of ⌃x, but its given basis is rotated compared to the eigenvectors of ⌃x.

This is a general problem - if two eigenvalues are close to each other, the direction of eigenvectors is
not measurable in practice, or if they are even the same, also theoretically individual eigenvectors are
not defined, only the higher dimensional eigenspace is. We will investigate this problem of statistical
sampling uncertainty closer in D.3.
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Apart from the statistical sampling uncertainty we may also consider noise in the images themselves.
However, given that the two computations of the eigenvectors agreed so well for the data covariance,
we can expect that this error is small compared to the sampling error for the weight covariance.

D.2 Motivational definition of misalignment

Any attempt of defining “misalignment measures” naively by using the direction of eigenvectors
(e.g. “misalignment = sum of angles between corresponding eigenvectors”) runs into the problem
mentioned above: It would be undefined when we have eigenspaces of dimension > 1 or at least
discontinuous / not measurable / not informative in practice when two of the eigenvalues are close. So
instead we will construct a “distance to an aligned matrix” that takes into account what can actually
be measured.

In [23] a Riemannian metric is defined on the space of color perceptions. In this metric, the length of
a path in color space is given by the minimal number of colors on this path connecting start and end
such that each color is indistinguishable (by a human) from the next one.

We can use a similar construction for covariance matrices: Fix a (large) n, then we call two matrices
indistinguishable, if after sampling n samples from N (0,⌃k) we most of the time cannot reject the
hypothesis that the correct covariance matrix was ⌃k+1. The minimal number of “indistinguishable”
matrices connecting start to end of a curve is (in good approximation) proportional to

p
n, to get

a path length independent of n, we divide the number by
p
n and take the limit n ! 1. The

misalignment could now be defined as the minimal path length of a path between B and a matrix ⌃
that is aligned to A. (The exact definition would need to specify “indistinguishable”, i.e. the fraction
of times we can reject the hypothesis and the confidence level used in this rejection. The path lengths
corresponding to different definitions would differ by a multiplicative constant.)

The Riemannian metric defined in this way is given locally by the Fisher Information, which can be
easily computed in this case. However, it seems there is not a simple known formula for the resulting
(global) distance between two points. To simplify computations and proofs, we will use instead the
upper bound to the square length given by the symmetrized Kullback–Leibler divergence. Like the
square length of the shortest path between A and B it can be expressed as an integral over the Fisher
Information, but the path is not the usual shortest path (geodesic) that is traversed with constant speed,
but the straight line (1� t) ·A+ t ·B. For small distances this is a good approximation, but it will
give a larger value in general.

D.3 Fisher information and Riemannian manifold of symmetric positive definite matrices

As a concrete toy example for the problem of close eigenvalues observed above, we take the 2-
dimensional normal distribution with µ = 0 and ⌃ the diagonal matrix with entries (1,�). We
generate n = 100 i.i.d. samples ~w1, ..., ~wn of this distribution, measure their empirical covariance
⌃̂w, and plot the direction of their eigenspaces. Repeating this 50 times, we can visualize the
distribution of these directions (Figure 19, first row).

While we get a reasonable approximation to the direction of the eigenspaces of ⌃ (i.e. the coordinate
axes) for large �, the eigenvector directions of ⌃̂ become less well-aligned as � = �

2
2 gets close to

1 = �
2
1 . So if we were to measure “whether the diagonal matrix diag(1,�) is aligned with itself”

by computing two empirical covariance matrices (from 2 independent sets of sampled data), their
eigenvectors, and angles between the two empirical results, we would think that these two empirical
covariances are not aligned for � ⇡ 1, although they actually come from the same distribution.

Mathematically, the problem is that any “angles between eigenvectors” measure would be undefined
for matrices with an eigenspace of dimension > 1. We could fix that e.g. by using the choice of
eigenvectors that gives the smallest possible result, but then the resulting function would not be
continuous around such matrices, i.e. we may need estimates with unlimited precision to get the
alignment measure with a fixed precision.

On the other hand, for any fixed �
2
1 6= �

2
2 we can in theory make n large enough to get the sampling

error as small as we want, e.g. in the above example we can go from n = 100 to n = 100 000
(Figure 19).
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Figure 19: Visualization of the variation of estimating the directions of the eigenspaces for 2-
dimensional normal distribution with µ = 0 and ⌃ the diagonal matrix with entries (1,�) for three
different values of � and varying number of samples n.

We can say that for �1 ⇡ �2 we have less information per sample from the normal distribution
N (0,⌃) about the rotation angle ↵ than for �1 � �2. This is formalized by the Fisher information,
we now summarize some of its properties for the case we are interested in.

We denote by M the manifold of symmetric positive definite d⇥ d matrices, it is an open cone in the
D := d(d+1)

2 dimensional vector space of symmetric matrices. We identify the points ⌃ 2 M also
with their corresponding normal probability distributions N (0,⌃). Given n samples x1, ..., xn 2 Rd,
the empirical covariance matrix 1

n

Pn
i=1 x · xT 2 M is the maximum likelihood estimator. Given

some local coordinates ✓1, ..., ✓D around a matrix ⌃, the Fisher information of ✓k at ⌃ is defined as

I(✓k) := Ex⇠N (0,⌃)

"✓
@ log p(x|✓k)

@✓k

◆2
#

(7)

We are interested in the variance of the maximum likelihood estimate ✓̂k when we estimate the
parameter ✓k from n samples x1, .., xn, it can be approximated as

V ar(✓̂k) ⇡
1

n · I(✓k)
,

and this approximation becomes exact as n ! 1 (see e.g. [50], chapter 9.7. for a precise statement).
In our toy example we are interested in the rotation angle ↵, and local coordinates would be ↵,�1,�2

(we assume for the moment that �1 6= �2 at ⌃). In this case one can compute the Fisher information
about ↵ (see e.g. [12]) as

I(↵) =
(�1 � �2)2

�1 · �2
.
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In the Figure 19, the images on the diagonal look similar, and indeed we have chosen � such that the
Fisher Information about ↵ of n samples is approximately the same: In each case n · (�� 1)2/(� · 1)
is between 904.1 and 909.1, which gives a standard deviation of about 1/30 (corresponding to about 2
degrees) for the rotation angle ↵, and indeed generating 100 directions from a normal distribution of
↵ with a standard deviation of 1/30 matches the above plots on the diagonal.

This suggests that
� = ↵ ·

p
I(↵)

is an appropriate distance measure between matrices that differ by a rotation of angle ↵: When
two matrices A,B have “distance” �, this means that for large n we can put about k = b� ·

p
nc

points ⌃1,⌃2, ...,⌃k between A = ⌃0 and B = ⌃k+1 such that each pair ⌃i and ⌃i+1 are within
measurement error of each other when our measurement consists of estimating the covariance from a
sample of n points.

So far, we have defined the Fisher information in a particular coordinate system on the manifold M .
However, the definition (7) depends only on the tangent vector @/@✓k. So the Fisher information
is actually assigned to tangent vectors of the manifold, is independent of the coordinate system,
and it turns out to satisfy the properties of a Riemannian metric, so it gives for any tangent vector
v 2 T⌃(M) a “length”

p
I(v). This is a special case of the general theory of Information Geometry,

see e.g. [2, 5].

D.4 Defining misalignment measures

While the Fisher information gives a local distance measure (i.e. a length of tangent vectors), we
rather need a global distance measure D(⌃1,⌃2) between points. For that we integrate the Fisher
Information along the straight line

� : t 7! (1� t) · ⌃1 + t · ⌃2 for t 2 [0, 1]. (8)

If instead of (8) we had used the real shortest path (geodesic) of the Riemannian metric, which goes
in constant speed from t = 0 to t = 1, this would give the square length of the shortest path. Since in
general (8) is not the shortest path, and the parameterization does not have constant derivative with
respect to the standard connection, this can give slightly larger results. Of course, for small distances
it still gives the same result in first order.

In terms of information geometry, the straight line is the e–geodesic, and the integration of the
Fisher information against the e–geodesic gives the same result as integrating along the m–geodesic:
The symmetrized Kullback–Leibler divergence between p and q (see e.g. Theorem 3.2. of [2],
also compare section 4.4.2. in [5]). The symmetrized Kullback–Leibler divergence exists in two
normalizations: With or without the factor 1/2. We are using the version with 1/2

D(⌃1,⌃2) :=
DKL

⇣
N (0,⌃1) || N (0,⌃2)

⌘
+ DKL

⇣
N (0,⌃2) || N (0,⌃1)

⌘

2

which is equal to half of the integral of the Fisher information:

D(⌃1,⌃2) =
1

2

Z 1

0
I

✓
@�

@t
(t)

◆
dt

So we will use this distance measure as a basis for our (mis)alignment measure. It can be expressed
analytically as

D(⌃1,⌃2) =
tr(⌃�1

1 ⌃2 + ⌃�1
2 ⌃1)

2
� d

While it would be possible to use different distance measures that also have the Fisher information as
the infinitesimal version (e.g. the usual, asymmetric Kullback–Leibler divergence), this definition
has the additional benefit that it is invariant under scaling: D(�⌃x,�⌃w) = D(⌃x,⌃w), and
this allows the simple definition of the alignment measure given in Section 2 (for more general
distance measures one would need to restrict the ⌃ to a subset e.g. by requiring tr(⌃) = 1 and write
inf⌃,�>0 D(⌃,� · ⌃w) to get a result > 0 when the matrices are not aligned).

So we define the “misalignment” score for two positive definite symmetric matrices A,B as
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M(A,B) := inf
⌃�0 aligned with A

D(⌃, B) = inf
⌃�0 aligned with A

⇢
tr(⌃�1

B +B
�1⌃)

2
� d

�
,

which was our definition in Section 2.2.
Proposition 2. This misalignment measure has the following properties:
For all positive definite symmetric matrices A,B

1. M(A,B) � 0

2. M(A,B) = 0 if and only if B is aligned with A.

3. M(A,B) is continuous in B.

4. Equivariance under orthogonal group: M(UAU
T
, UBU

T ) = M(A,B) for U 2 O(d)

5. Invariance under scalar multiples of B: M(A,�B) = M(A,B) for � > 0

6. M(A,B) only depends on the eigenspaces of A.

7. M(A,B) + d =
Pr

i=1

p
tr(B|Vi) · tr(B�1|Vi), where V1 � ... � Vr is the orthogonal

decomposition of Rd into eigenspaces of A, and B|Vi is the linear map Vi ! Vi, v 7!
pri(B(v)) with pri the orthogonal projection Rd ! Vi.

The function M(A,B) is not continuous in A, and there cannot be a function M(A,B) that is
continuous in both arguments and still satisfies condition 2.

Proof. 1, 4, 5, 6, and the “if” part of 2 follow directly from the definitions.
3 follows from 7. We will see in the proof of 7 that the infimum is obtained for a particular matrix ⌃,
and from that also the “only if” part of 2 follows.
Formula 7: We use the orthogonal decomposition V1 � ... � Vr of Rd into eigenspaces of A. A
positive definite symmetric matrix ⌃ aligned with A is given by its eigenvalues �i on the subspaces
Vi. For a linear map f : Rd ! Rd we have

tr(f) =
rX

i=1

tr(f |Vi)

So the definition of M(A,B) can be rewritten

M(A,B) + d =
1

2
· inf
�1,...,�r>0

rX

i=1

tr
�
�
�1
i B + �iB

�1
�
|Vi

=
1

2
·

rX

i=1

inf
�>0

�
�1tr(B|Vi) + �tr(B�1|Vi)

Since B is positive definite, B�1 is positive definite as well. When B is positive definite, then also
B|V is positive definite, so we have tr(B|Vi) > 0 and tr(B�1|Vi) > 0. Thus for b := tr(B|Vi) and
c := tr(B�1|Vi) the function �

�1
b+ �c has a minimum for a finite positive �, and it is

argmin
�>0

�
�1

b+ �c =
p
b/c

as is seen e.g. by comparing the derivative with zero, and hence

inf
�>0

�
�1

b+ �c = min
�>0

�
�1

b+ �c = 2 ·
p
b · c,

which gives the above formula 7.

M(A,B) cannot be continuous in A if condition 2 should hold: Take B the diagonal matrix with
entries 1 and 2, and for A consider the diagonal matrices with entries 1 and �. Then for � = 1 the
matrix B is not aligned with A, but it is for all � 6= 1. Therefore we must have M(diag(1, 1), B) > 0,
but M(diag(1,�), B) = 0 for all � 6= 0, so A would not be continuous with respect to A.
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E The shape of the transfer function f(�)

E.1 Gaussian centered input

In the “ideal” case of Gaussian centered input, we experimentally observe curves that “look continu-
ous”, see Figure 20. For this figure, we used different settings to obtain curves that go only down
(left), rise and then fall (middle) or only go up (right).

We always used Gaussian input N (0,⌃x) with mean 0 and a diagonal matrix for the covariance ⌃x

(which is no restriction of generality, since applying an orthogonal matrix to the input does not change
the dynamic of the neural networks, and any symmetric positive definite matrix can be written as
O

T
LO with diagonal matrix L and orthogonal matrix O). The labels are always uniformly randomly

sampled from {0, 1, ..., 9}. The networks are fully connected networks with 2 hidden layers and
ReLU activation, we use cross entropy loss. We use standard He initialization and train with Gradient
Descent until convergence. In each of the three plots of Figure 20 we show the results from 5 runs
with different random initializations.

Settings for the three plots in Figure 20:
Left Middle Right

Input dim 10 30 30
Layer 1 2048 2048 256
Layer 2 256 256 256

Output dim 10 10 10
Input size 10 000 10 000 2 000

Input ⌃x = diag(1, 1.1, 1.2, ...1.9) diag(0.1, 0.2, ..., 3.0) diag(0.1, 0.2, ..., 3.0)

We can give a heuristic argument for why the curves should “look continuous”: If two eigenvalues
of the data covariance ⌃x are close, exchanging them gives an input distribution that is close to the
original distribution. Because this exchange is an orthogonal transformation, we will get trained
networks in which the weights also only differ by the same orthogonal transformation. This means
that the effect of exchanging the sigmas will also exchange the taus, and if exchanging the sigmas had
a small effect on the input distribution, we may expect also a small effect on the weights distribution,
which means we expect the corresponding taus also to be close.

For the other experimental observation, that the curves first rise and then fall again (where one of
these two parts can also be missing), we already sketched the two conjectured mechanisms in 2.3:

1. Larger eigenvalues �i lead to larger effective learning rate in gradient descent, which leads
in turn to larger corresponding ⌧i, hence the increasing part of f .

2. We find experimentally that the first eigenvector(s) dominate the input (see e.g. the first table
in Appendix D.1). Using an orthonormal basis ei of eigenvectors of ⌃x and ⌃w, we can
decompose the variance of the output to a neuron Ex[hw, xi2] as

P
ihw, eii2Ex[hei, xi2] =P

ihw, eii2 · �2
i . Averaging over w gives

P
i ⌧

2
i · �2

i . So if f(�) would be increasing,
direction e1 would dominate the output even more. We speculate that backprop finds a near
optimal solution, and it seems plausible that one component dominating is not optimal when
there is also important information in the other components.

Figure 20: f(�)–curves for fully connected networks with two hidden layers and Gaussian centered
inputs. See text for details.
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Figure 21: f(�) curve for training on random labels with different approximations of CIFAR10
images, cropped to 27⇥ 27 pixels. Two 3⇥ 3-convolutional layers with stride 3, one fully connected
layer. RIGHT: Zoomed in to the upper right corner to show the small differences.

Figure 22: f(�) curve for training on random la-
bels with different approximations of CIFAR10
images. Two 3⇥3-convolutional layers, one fully
connected layer. Correlations between neighbor-
ing patches create deviation from the curve seen
for the “ideal” case of independent Gaussian ap-
proximations. Smaller strides lead to stronger
correlations and stronger deviation.

E.2 Convolutional networks on natural images

While the f(�) curves in the ideal centered Gaussian case look smooth, the real-world f(�) curves
seem to contain perturbations, although they still roughly have a rising/falling shape as well. To
investigate what the largest contributor to this perturbations is, we will go from the ideal case to the
real case in a series of steps.

As a first step, we crop the images of CIFAR10 to 27⇥ 27 pixels and approximate their distribution
by the normal distribution with mean 0 and the covariance of all 3⇥ 3 patches. When we apply a
convolutional network with 3 ⇥ 3 convolutions and stride 3, we are in the “ideal” situation of E.1
and expect a f(�) curve that goes up and then down. This is indeed the case, as shown by the green
curve in Figure 21. Using the same distribution / covariance for all patch positions is of course a
simplification: For example, for the patches at the upper boundary it is more likely to see light blue
(from the sky) than at the lower boundary. To get closer to reality, we can replace the one global
covariance by the covariances corresponding to the possible patch positions, yielding the red curve in
Figure 21.

The next step is to abandon Gaussian approximation, and take the real patches. In the 27⇥ 27 pixel
images we have 9⇥ 9 patches of 3⇥ 3 pixels each. To destroy the correlations between neighboring
patches, we permute for each of the 9⇥ 9 positions the patches in that position of all images. So for
each position we still have the same set of 3⇥ 3 patches that can appear in an image, but the patches
appearing in one new image no longer fit together since they (almost always) came from different
original images. This leads to images that are stitched together from random patches and also means
that previously (potentially similar) patches from the same original image can now occur with two
different random labels. This setting yields the black curve in Figure 21. So far it seems we are still
very close to the ideal situation.

The next step is to take the original images; now the correlations between neighboring patches do
create a more significant change in the f(�) curve, see the blue curve in Figure 22. In particular, we
see the first significant deviation from “up and then down”. This effect becomes stronger when we go
from stride 3 to overlapping inputs of the convolution (stride 2 and stride 1, green and red curves in
Figure 22).
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Figure 23: Sequence of ⌧1, ..., ⌧16 used to weight
the 16 most significant eigenvectors in our experi-
ments. The sequence f1 was used for Table 1 in
section 2.5, f2 and f3 were used for Table 2 and
Table 3.

E.3 Deeper Layers

We use the following simple CNN on the CIFAR10 data set here (as in Section 2.5, Table 1):

conv 3x3, 16 filters
conv 3x3, 16 filters
conv 3x3, 16 filters
maxpool 3x3, stride 2
dense layer, 512 units
dense layer, num_outputs units (classifier head)

Training is done using 30k images for pre-training on random labels (for comparison run), 20k
images for training on real labels, 10k images for determining the test error, and using a learning rate
of 0.002.

Sampling from covariance vs. picking eigenvectors In Figure 5 we compared a pre-trained convo-
lutional layer with a layer consisting of filters randomly sampled from the same covariance matrix and
found that this preserved the performance benefit exactly. In the experiment for Table 1 we instead
used the most significant eigenvectors e1, ..., e16 with factors ⌧1, ..., ⌧16 directly as filters. This is a
(more stable) approximation to sampling from the covariance matrix that has ⌧2i as eigenvalue for
e1, ..., e16 and ⌧ = 0 for the other eigenvectors. Experimentally, we can see that this does not seem
to make a significant difference: Compare Table 2 with Table 4 for the case that ⌧1 = ... = ⌧16 = 1.

Choice of eigenvectors e1, ..., e16 and ⌧1, ..., ⌧16 In our previous experiments we observed curves
for f(�) that were “rising and then falling”, favoring the most significant eigenvalues, but somewhat
downweighting the most significant one(s) (e.g. the center and right plot in Figure 4 – this was a
different network on the same data). So we picked the 16 largest � to be the ones with f(�) > 0
(i.e. used the most significant eigenvectors), and used a made-up curve (f1 in Figure 23) for the
⌧1, ..., ⌧16 which downweights the largest eigenvalue. We can see that the choice of this curve does
not make a big difference: We can also just set ⌧1 = ... = ⌧16 = 1 (f2, resulting in Table 2), or
choose another curve which downweights the largest eigenvalue less (f3, resulting in Table 3). The
stronger downweighting of the most significant eigenvalue seems to give a slight advantage when
only initializing the first layer, but when initializing two or three layers, all curves seem to lead to
essentially the same performance. However, compared to adjusting some values f(�) between 1
and 4, the much more important choice is which f(�) we set to 0, i.e. which eigenvectors we use.
Tables 5 and 6 show the effect of choosing other eigenvectors, which leads to a significant drop in
performance (for the choices in these tables even below the standard initialization).
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Table 2: Using f2 = 1: The 16 eigenvec-
tors with largest eigenvalues are equally
weighted. This corresponds to a f(�) which
is 1 for the 16 largest �s and 0 for the other
(11 or 128) �s. We achieve significant gains
compared to the standard initialization.

Convolutional layers sampled
Iterations Data {} {1} {1, 2} {1, 2, 3}

100 Train 0.31 0.29 0.37 0.44
Test 0.31 0.29 0.37 0.43

1000 Train 0.58 0.59 0.65 0.68
Test 0.53 0.55 0.56 0.59

Table 3: Using f3: Changing the f(�) be-
tween 1 and 4 does not affect the perfor-
mance significantly, as long as we keep the
same set of � with f(�) > 0.

Convolutional layers sampled
Iterations Data {} {1} {1, 2} {1, 2, 3}

100 Train 0.31 0.30 0.37 0.44
Test 0.31 0.29 0.37 0.42

1000 Train 0.58 0.61 0.64 0.72
Test 0.53 0.55 0.58 0.56

Table 4: Sampling from a covariance matrix
using f(�) = 1 for the highest 16 eigenval-
ues and f(�) = 0 else. This gives essen-
tially the same performance as using the
16 most significant eigenvectors directly as
filters.

Convolutional layers sampled
Iterations Data {} {1} {1, 2} {1, 2, 3}

100 Train 0.31 0.29 0.37 0.41
Test 0.31 0.29 0.36 0.40

1000 Train 0.58 0.57 0.62 0.69
Test 0.53 0.54 0.54 0.56

Table 5: Using the 16 eigenvectors with
the smallest eigenvalues gives significantly
worse performance than random initializa-
tion. The 16 chosen eigenvectors were
given the same weight.

Convolutional layers sampled
Iterations Data {} {1} {1, 2} {1, 2, 3}

100 Train 0.31 0.15 0.14 0.15
Test 0.31 0.15 0.14 0.15

1000 Train 0.58 0.50 0.48 0.47
Test 0.53 0.46 0.47 0.44

Table 6: Using eigenvectors e4, ...e19 (out
of 27) in the first layer, e10, ..., e25 (out of
144) in the second and third layer. The 16
chosen eigenvectors were given the same
weight.

Convolutional layers sampled
Iterations Data {} {1} {1, 2} {1, 2, 3}

100 Train 0.31 0.17 0.20 0.27
Test 0.31 0.18 0.20 0.26

1000 Train 0.58 0.56 0.60 0.62
Test 0.53 0.53 0.56 0.59

Table 7: Base line: These are the accuracies
we obtain by pre-training on random labels.
In particular when we use two or three con-
volutional layers, the results are very similar
to what we get with our method that only
uses the data, no training. (Compare e.g.
with Table 2)

Convolutional layers sampled
Iterations Data {} {1} {1, 2} {1, 2, 3}

100 Train 0.31 0.37 0.39 0.41
Test 0.31 0.34 0.37 0.39

1000 Train 0.58 0.70 0.75 0.78
Test 0.53 0.51 0.53 0.57
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F Specialization at the later layers

Earlier, we claimed that neural activations at the outer layer can drop abruptly and permanently after
switching to the downstream task. Figure 24 illustrates this. In this figure, the x-axis corresponds to
the number of training iterations, where the transfer to the downstream tasks happens at the middle.
Note that in both network architectures shown in the figure, neural activation in the upper layers drops
abruptly and permanently after switching to the downstream tasks. We interpret this to effectively
reduce the available capacity for the downstream task, which masks the positive transfer happening
from the alignment effect at the lower layers. This effect can be mitigated by increasing the width, as
discussed in the context of Figure 8 in the main text.

Regarding specialization, Figures 10 and 11 are the extended versions of Figure 8. They include
activation plots for all intermediate layers of VGG16 models (i) at initialization, (ii) in the end of the
pre-training, (iii) in the end of fine-tuning on real labels, (iv) in the end of fine-tuning on 10 random
labels. Figures 10 and 11 illustrate the negative and positive transfer examples respectively. See
Section A.11 for details about the parameters used when generating those figures. As shown in those
figures, neurons at the upper layers tend to specialize, i.e. become activated by fewer images. This
is evident if we compare the fraction of examples activating neurons when pretrained for 1 training
iteration (TOP-LEFT) vs. pre-trained for 6240 training iterations (TOP-RIGHT).

Because neural activations drop permanently after switching to the downstream task, the capacity
of the neural network in the downstream task is effectively diminished. This is reminiscent of the
“critical stages" that have been observed for deep neural networks, in which neural networks seem to
possess less capacity to fit a new distribution of data (e.g. after image blur is removed) later during
training than when trained from scratch. Here, the upstream task is analogous to the critical early
stage and the switch to the downstream task is analogous to the change of distribution (e.g. removing
blur in images).

Figure 24: TOP: Neural activation is plotted against the number of training iterations in a two-layer
CNN (256 3⇥ 3 filters followed by a dense layer of width 64). The y-axis is the frequency of the
output of a hidden activation function being non-zero measured over a hold-out dataset. The abrupt
drop in neural activation coincides with the switch to the downstream task. BOTTOM: A similar plot
for a deeper neural network with three convolutional layers (256 3⇥ 3 filters) followed by a single
dense layer of width 64.
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