
We thank the reviewers for their time and valuable feedback. Overall, we are glad that the reviewers found BetaE to be a1

novel contribution to advance reasoning on KG. Below, we clarify a number of important points raised by the reviewers.2

Multi-modality (R3, R4). Reviewers raise concern on multi-modal embeddings. We agree that the Beta embeddings3

along each dimension can be at most bi-modal. We alleviate this problem by introducing multiple independent Beta4

distributions and learn high-dimensional embeddings. We will highlight this limitation in Sec. 4.3 and plan to further5

improve the handling of multi-modality and use mixture models in the future work.6

Comparison with additional baselines (R3). R3 suggests that “the authors can adapt the FOL queries to other7

multi-hop reasoning models". We argue the differences in tasks and setups below. The goal of [1] is to use first-order8

logic (FOL) rules to improve knowledge graph completion (given an entity and a relation, find the target), while our9

setting is different as we aim to find all entities that satisfy a given FOL query. Another key difference is that [1] needs10

to model all the intermediate entities in a FOL rule, which is expensive in multi-hop query answering (exponential11

complexity). For [2], they use an LSTM to model path queries. One limitation is that an LSTM can only be applied12

to answering path queries (as R3 mentioned) and it is not obvious how to extend [2] to handle more complex query13

structures with intersection, union, and negation. Another difference is that our main contribution lies in the direction of14

a novel probabilistic embedding space with the ability to handle any FOL operations and [2]’s contribution is a more15

powerful neural network architecture. To be concrete, we further combined our model with the LSTM architecture16

and trained and evaluated the model only on path queries (1p/2p/3p) on NELL. We are able to further improve BetaE’s17

performance using the LSTM architecture (25.5 v.s. 23.8 average MRR). In conclusion, the contribution of [2] and ours18

are orthogonal and we plan to combine BetaE with more powerful architectures, e.g., GNNs or Tree-LSTMs, in our19

future work. We will clarify this point in the final version of the paper.20

Queries without answers and non-ranking tasks (R3, R4). R4 raises concern on whether BetaE can further handle21

queries without answers. In fact, it is an open problem for all the embedding-based methods (including those designed22

for link prediction) to model empty sets or to answer whether an existential query is true or false. Here we investigate23

one potential solution. Since BetaE can effectively model the uncertainty of a given query, we can use the differential24

entropy of the query embedding as a measure to represent whether the query is an empty set (has no answers). For25

evaluation, we randomly generated 4k queries without answers and 4k queries with more than 5 answers for each of the26

12 query structures on NELL. Then we calculate the differential entropy of the embeddings of each query with a trained27

BetaE and use this to classify whether a query has answers. As a result, we find an ROC-AUC score of 0.844 and list28

the ROC-AUC score of each query structure in the Table below. These results suggest that one promising idea is to use29

the differential entropy of the learned embedding as an indicator to whether a query contains answers. Note that BetaE30

naturally preserves this property since (1) we did not explicitly train BetaE to optimize for correlation between the31

differential entropy and the cardinality of the answer set; (2) we did not train BetaE on queries with empty answers. It32

means BetaE’s performance can be further improved with additional supervision. We will further add these points to33

the paper and we believe this is also an additional justification to support our uncertainty claim, a concern pointed out34

by R3. We also thank R3 for the insightful suggestion.35

1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni
0.825 0.766 0.793 0.909 0.933 0.868 0.798 0.865 0.93 0.801 0.809 0.848

Theoretical analysis on BetaE expressiveness (R3). R3 brings up an important question whether BetaE is fully36

expressive and can model any given query-answer pairs on a KG. This is a challenging problem and our ongoing37

research concern. Our aim is to construct entity embeddings as well as probabilistic logic operators, such that for any38

valid FOL query q, we have Dist(v; q) < τ if v ∈ JqKG and Dist(v; q) ≥ τ if v /∈ JqKG , where τ is a threshold.39

1p queries/link prediction (R4). R4 asks for experiments on 1p queries (link prediction). We ran the experiments on40

NELL and the MRR results of BetaE (trained on complex queries), BetaE (trained only on 1p queries) and TransE are41

0.404, 0.383, 0.376. Note that we follow the convention: averaging over query-answer pairs as in the link prediction42

literature. We do not expect a large gain since our target task is modeling more complex multi-hop logic queries and43

supporting all FOL operations. Moreover, we find BetaE benefits from additional training on complex queries.44

Other comments. We will put the MRR tables for all the datasets in the main body and defer the H@K tables to the45

Appendix for consistency of the evaluation metrics. Note that MRR shows a similar trends as H@ K (R1). We used the46

filtered setting for all experiments (R3). We will make explicit the input/output of the model in Sec. 1 as well as add47

more discussions in Sec. 5.3 on differential entropy and query uncertainty including its definition and the evaluation48

metrics Spearman’s coefficient (R3). In order to model containment, one direction is to have an explicit likelihood49

threshold and we view regions that have density greater than the threshold as the effective support of the query or the50

entity. Then we can tune the threshold and check whether the support of the answer entities are enclosed in the query51

(R4). We will further discuss the difference between our logical operators and their real counterparts in Sec. 4 (R4).52
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