
Appendices

A Theory

A.1 Preliminaries: Additional Definitions, Remarks, and Proofs

A.1.1 Additional Definitions and Remarks

We add the following definitions:
Definition 9. A subgraph S of a graph G, denoted S ⊂ G, is another graph formed from a subset of
the vertices and edges of G. The vertex subset must include all endpoints of the edge subset, but may
also include additional vertices.
Definition 10. We denote the disjoint union between two sets A,B as A �B.
Definition 11. We denote the set-builder notation for multisets as [x � Predicate(x)], i.e. with
brackets to emphasize it constructs a multi-set.
Definition 12. If we write f(A) where A is a subset of the domain of f , we mean the multiset
f(A) ∶= [f(x) � x ∈ A].
Definition 13. Let f ∶X → Y be a function from a set X to a set Y . If a set A is a subset of X , then
the restriction of f to A is the function

f �A ∶ A→ Y

given by f �A(x) = f(x) for x in A. Informally, the restriction of f to A is the same function as f ,
but is only defined on A ∩ dom(f).
Definition 14. For an iso-injective function f ∶ G → Y we define the iso-inverse as the function
f−1 ∶ im(f)→ G, where im(f) = {y � y ∈ Y,∃G ∈ G, f(G) = y}, as

f−1(y) = [G],∃G ∈ G, f(G) = y
Definition 15. The subgraph isomorphism problem consists in, given two graphs G and H , deter-
mining whether G contains a subgraph that is isomorphic to H .
Definition 16. With a function f ∶X → Y being injective across domains X1 and X2 with X1,X2 ⊂
X , we mean that for all x1 ∈X1, x2 ∈X2 with f(x1) = f(x2) we have x1 = x2.
Definition 17. In some proofs we say subgraph S encoded at step j of Algorithm 2 (NPA), with
which we mean that if j = 0 then S is a single node that is encoded in the first for loop of NPA, and if
j > 0 then S contains an edge and is encoded in the second for loop of NPA with j = i.
We also add the following remarks:
Remark 2. Functions on nodes f ∶ V (G) → Y , such as node labels, are functions of graphs too,
because it makes no sense to compare indices or nodes between different graphs that are not subgraphs
of the same graph. That is, each such function is different for each graph G, so if we abuse notation
when having also a graph H and f ∶ V (H) → Y in a shared context with G, then v1 = v2 implies
f(v1) = f(v2) only if v1, v2 ∈ V (G) or v1, v2 ∈ V (H). Similarly, intersection between edges or
nodes of two graphs S1 and S2 is only interesting to us if S1, S2 are subgraphs of some graph G.
Remark 3. We can bound any iso-injective function Alg ∶ G → Rd by composing (this simply forces
the convergent subsequence to be the values in Rd with increasing norm) with the injective and
continuous Sigmoid function �(x) = 1

1+ex .

A.1.2 Proof of Lemma 1

Proof. For each n ∈ N+ there is a finite number of graphs G with �V (G)� + �E(G)� +
supv∈V (G)(l(v)) = n, and a countable union of countable sets is countable. Similarly, bounded
graphs means that such a n is bounded by b, and a finite union of finite sets is finite. Furthermore,�G� ≤ �G� and �Gb� ≤ �Gb�.
A.1.3 Proof of Theorem 1

Proof. Consider, h = (f ○ g−1) ∶ G → Y which is well defined since g−1 is a function on im(g), and
f = h ○ g.

12

A.1.4 Proof of Theorem 2

Proof. See [20] for proof.

A.2 Bounded Graphs

A.2.1 Proof of Theorem 3

Proof. In [2] it is proven that any continuous piecewise linear function is representable by a ReLU NN,
and any finite function can be perfectly approximated by a continuous piecewise linear function.

A.2.2 Proof of Theorem 4

Proof. Consider the function g ∶ im(Alg)→ Rd:

g(x) = (f ○Alg−1)(x)
Which is well-defined because both f and Alg−1 are functions on their respective domains. Since
im(Alg) is a finite subset of Rd we know there is a NN ' that perfectly approximates g, and thus we
have

f = ' ○Alg

A.3 Unbounded Graphs

A.4 On Remark 1

Suppose Alg ∶ G → Rd is an iso-injective function and ' ∶ Rd → R is a NN. We analyze the functions
f ∶ G → R that ' ○ Alg can approximate. By Theorem 5, if im(Alg) ⊂ Rd is bounded, then '
can approximate all continuous functions on the closure im(Alg). Since G is countably infinite,
we may consider the sequence im(Alg) = (Alg([G]i)ki

j=0)∞i=0 = ((ai)ki
j=0)∞i=0 ⊂ Rd. From the

Bolzano-Weierstrass Theorem we know every bounded sequence of real numbers has a convergent

subsequence. If im(Alg) is bounded then so is ((ai)ki
j=0)∞i=0, and thus it has a convergent subsequence.

Similarly, the subsequence Alg([G]∞i=0) with Alg([G]i) = Alg(H),H ∈ [G]i, corresponding to a
sequence over the graph isomorphism classes [G]i ∈ G, has a convergent subsequence. Meaning that
for every � > 0 there is a countably infinite set A ⊂ G such that [G]i, [G]j ∈ A implies ��Alg([G]i)−
Alg([G]j)�� < �. Let L denote the limit point of one such convergent subsequence. By Theorem 5,
we assume that ' can approximate only continuous functions, this means for every ✏ > 0 there exists
a � > 0 such that that ��L −Alg([G])�� < � with [G] ∈ G implies ��'(L) − '(Alg([G]))�� < ✏. Note
that the same holds for an injective function h ∶ G → Rd, because the sequences im(h) = h([G]∞i=0)
and ((ai)ki

j=0)∞i=0 have the same cardinality.

A.5 Theorems and Proofs

Theorem 11. There is no finite width and depth NN with bounded or piecewise-linear activation

function that can pointwise approximate an unbounded continuous function on an open bounded

domain.

Proof. Such NNs must be bounded on bounded domains.

Theorem 12. There is no finite width and depth NN with an activation function � and k ≥ 0 such

that
dk�
dxk = 0 that can pointwise approximate all continuous functions on unbounded domains.

Proof. Consider f(x) = xk+1 such that dkf
xk ≠ 0. The NN cannot asymptotically approximate f .

Theorem 13 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent

subsequence.

Proof. Well-known result, see Wikipedia or your favorite analysis book.

13

https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierstrass_theorem

A.5.1 Proof of Theorem 5

Proof. Proof can be found in [21] and [8] for a large family of activation functions.

A.5.2 Proof of Theorem 6

Proof. If X is closed, it follows immediately from Theorem 5. Suppose X is open, then we know by
Theorem 5 that ' can pointwise approximate f on a compact set, but since f is bounded we know
that each limit point is finite. Thus, we may just add them and define g as f extended with the limit
points. Then g is continuous on a compact X , so ' pointwise approximates g, but this means it also
pointwise approximates f .

A.6 Algorithmic Idea

A.6.1 Proof of Theorem 7

Proof. Suppose Algorithm 1 is run on graphs G and G∗. Suppose also that the assumptions of
the theorem holds for both runs and that c(S1,2) = c(S∗1,2) with S1,2 ⊂ G,S∗1,2 ⊂ G∗. This means,
since p > 1 that we can split up in the following way, S1,2 = S1 ∪ S2 with S1, S2 ∈ A ⊂ G and
S∗1,2 = S∗1 ∪ S∗2 with S∗1 , S∗2 ∈ A∗ ⊂ G∗. We want to show that S1,2 � S∗1,2.

We know since r is injective that

c(S1) = c(S∗1), c(S2) = c(S∗2), (1)
{l(v) � v ∈ V (S1) ∩ V (S2)} = {l(v) � v ∈ V (S∗1) ∩ V (S∗2)} (2)

(If instead c(S1) = c(S∗2), c(S2) = c(S∗1) we can just relabel) This means that there exists isomor-
phisms �1 ∶ S1 → S∗1 and �2 ∶ S2 → S∗2 .

Consider the following map:

�(v) = ��1(v) if v ∈ V (S1)
�2(v) otherwise

(3)

We set I = V (S1) ∩ V (S2). Now, since both �1 and �2 are isomorphisms we know that � respects
l-values, and the only part of the domain where � might not respect edges is in I . Now let I∗ =
V (S∗1) ∩ V (S∗2).
All values in l(I) are unique among l(V (S1) ∪ V (S2)), all values in l(I∗) are unique among
l(V (S∗1)∪V (S∗2)). From Equation 2 we know that l(I) = l(I∗). Suppose v ∈ I then �1(v) = �2(v)
because else l(�1(v)) ≠ l(�2(v)) → l(v) ≠ l(v) by the stated uniqueness of the l-values of I and
I∗. Since, �1 and �2 agree on the intersection I we know that all edges must be respected by � by
construction.

Now we want to show that � is a bijection. From construction we know that � is a bijection
on V (S1) → V (S∗1). Now V (S1) ∪ V (S2) = V (S1) � (V (S2) − I) and V (S∗1) ∪ V (S∗2) =
V (S∗1)�(V (S∗2)−I∗). From before we know that �(I) = I∗. Thus, we know that � is injective map
on V (S2) − I → B ⊂ V (S∗2) − I∗ because � is equivalent to �2 on that domain. To see this, suppose
v ∈ V (S2) − I and �(v) ∈ V (S∗1), then we must have �(v) ∈ I∗ (since �(v) = �2(v) ∈ V (S∗2)),
but this would mean that v ∈ I (else l-value cannot be respected by uniqueness) and we would
get a contradiction. Lastly, since �V (S2) − I � = �V (S2)� − �I �, �V (S2)� = �V (S∗2)�, �I � = �I∗�, and�V (S∗2) − I∗� = �V (S∗2)� − �I∗� we have

�V (S2) − I � = �V (S∗2) − I∗�
and � must be bijective on V (S2) − I → V (S∗2) − I . Thus, � is a bijection on V (S1) ∪ V (S2) →
V (S∗1) ∪ V (S∗2).
We are done.

14

B Method

B.1 Algorithm

Proof of Lemma 2. Since the algorithm processes subgraphs by adding one edge at a time, the
theorem follows from proving that at any step in the algorithm, each subgraph in Ai is disjoint and
connected, then an edge can only be between two disjoint connected subgraphs or within the same
connected subgraph. We prove this by induction on the number of processed edges.

Base case: i = 1. Clearly, all subgraphs consisting of a single vertex are disjoint and each such
subgraph is trivially connected.

Inductive case: Assume true for i ≥ 1, we want to show it is true for i + 1. Now at step i + 1,
by our inductive hypothesis, all subgraphs in Ai are disjoint. The next set of subgraphs Ai+1 =(Ai − {S1, S2})∪S1,2 where S1,2 = S1 ∪S2 ∪ (va, vb), va ∈ V (S1), and vb ∈ V (S2), is constructed
by processing an edge (va, vb). Regardless of whether this edge connects two disjoint subgraphs
or is within the same subgraph, in the next step, all subgraphs in Ai+1 will still be disjoint. This is
because we add the new subgraph S1,2 to form Ai+1 but remove the single subgraph (if S1 = S2) or
the two subgraphs (if S1¬S2), to form Ai+1, that S1,2 was connected to by the processed edge. I.e.
we remove all subgraphs from Ai (to form Ai+1) that the new subgraph in Ai+1 connects to. Also,
since each graph S1 and S2 is connected, so must S1,2 be by virtue of edge (va, vb).
The lemma follows.

Remark 4. NPA produces a sequence of encodings for a graph G but when finished, set Am+1
contains each of the largest (by inclusion) disjoint connected subgraphs of G. Since NPA builds
encodings recursively from disjoint subgraphs, NPA constructs encodings for each such largest
subgraph independently as if it is run once for each of them. Thus, proving that NPA produces
iso-injective encodings for connected graphs, implies each multiset W (G) and C(G) is iso-injective
also for disconnected graphs.
Lemma 4. For any graph S encoded at step i on run G on NPA, the function hj

restricted to V (S)
does not change from j = i+ 1 up to and including step k (i.e. j = k) where S is still a member of Ak.

Proof. From the description of NPA we can tell that when a graph S is encoded at step i on run G, all
hi-values of V (S) are updated to hi+1-values, while all hi+1-values of V (G) − V (S) are inherited
from hi, and S is added to Ai+1. Since all graphs in Ak are disjoint (Lemma 2), the next time
h-values of V (S) will change is at step k′ when NPA picks S from Ak′ to encode some subgraph
Sk′ = S ∪ S2 ∪ (va, vb), updates hk′+1-values of V (Sk′) with V (S) ⊂ V (Sk′), and does not include
S in set Ak′+1 (and never will again). On the other hand, if S is not picked from Ak′ to encode
Sk′ we know that V (Sk′) ∩ V (S) = � by Lemma 2 so that h-values of V (S) do not change, i.e.
hk′+1�V (S) = hk′ �V (S), and that S ∈ Ak′+1.

B.1.1 Proof of Theorem 8

Proof of Theorem 8. So we want to show that any two graphs S1,2 run G and S∗1,2 run G∗ with
c(S1,2) = c(S∗1,2) are ismorphic. We prove this by double induction on the number of steps of the
algorithm. This is because we need to be able to compare c-values that are produced at different runs
of the algorithm. I.e. we want to prove a property P (i, j) for all i, j ∈ N, where i and j reflects step i
on first run (G) and step j on second run (G∗) respectively. By the symmetry of the property, we
only need to prove P (1,1) and P (i, j)→ P (i + 1, j).
To be exact, the property P (i, j) that we will prove consists of the following: that for any subgraph
S encoded at step i′ ≤ i on run G and any sugraph S∗ encoded at step j′ ≤ j on run G∗ with
c(S) = c(S∗) there exists an isomorphism that

1. respects edges,

2. respects the initial h1-values,

3. maps identical values between hi′+1(V (S)) and hj′+1(V (S∗)) to each other, and

15

4. is a bijection V (S)→ V (S∗).
Since h1-values are simply injective encodings of node labels, by proving this, we know the isomor-
phism will respect both edges and labels, and thus be a graph isomorphism.

Base Case: P (0,0). In this case S1,2, S
∗
1,2 are simply vertices, and c(S1,2) = c(S∗1,2) if they have

the same h1-values, which means they are isomorphic in terms of h1-values and edges as well as
bijective. Furthermore, the isomorphism maps same values between h1(V (S1,2)) and h1(V (S∗1,2))
to each other.

Inductive Case: P (i, j)→ P (i + 1, j).
So assume we at step i + 1 > 0 on G have S1,2 = S1 ∪ S2 ∪ (va, vb), where S1,2 is being encoded at
step i + 1.

We need to prove that for any graph S∗1,2 encoded at step j′ ≤ j on run G∗ with c(S1,2) = c(S∗1,2) we
have a bijective graph isomorphism between S1,2 and S∗1,2 that respects the edges, initial h1-values,
and that maps identical values between hi+2(V (S1,2)) and hj′+1(V (S∗1,2)) to each other. The reason
why we only need to focus on S1,2 is because for all other graphs encoded at step i′ < i+1 on G, their
c-values and hi′+1-values have not changed so they are covered by our inductive hypothesis P (i, j).
Now we know that �E(S∗1,2)� > 0 and j′ > 0 because c(S1,2) does not include the special zero-
symbol, and therefore, neither does c(S∗1,2). Therefore, we can also write S∗1,2 = S∗1 ∪ S∗2 ∪ (v∗a, v∗b)
(specifically, (v∗a, v∗b) is the edge used to encode S∗1,2 from the encodings of S∗1 and S∗2). From
Lemma 2 we know S1, S2, S

∗
1 , S

∗
2 are connected graphs.

c(S1,2) = r({(c(S1), hi+1(va)),
(c(S2), hi+1(vb))},
S1=S2)

c(S∗1,2) = r({(c(S∗1), hj′(v∗a)),
(c(S∗2), hj′(v∗b))},
S∗1=S∗2)

By injectivity:

�{(c(S1), hi+1(va)), (c(S2), hi+1(vb))}, S1=S2�
=�{(c(S∗1), hj′(v∗a)), (c(S∗2), hj′(v∗b))}, S∗1=S∗2 �

and we may assume without loss of generality that

(c(S1), hi+1(va)) = (c(S∗1), hj′(v∗a))
(c(S2), hi+1(vb)) = (c(S∗2), hj′(v∗b))

else we can just relabel the graphs.

S1, S2 are encoded before step i + 1 on G (say steps i1 and i2 respectively) and S∗1 , S∗2 are encoded
before step j′ on G∗ (say steps j′1 and j′2 respectively). In addition, since S1, S2 ∈ Ai+1 their hi1+1
and hi2+1 values cannot have changed before step i + 1 (because then they would have been removed
already, see Lemma 4), so hi+1�V (S1) = hi1+1�V (S1) and hi+1�V (S2) = hi2+1�V (S2) (The same holds
for S∗1 , S∗2). Then, we have by our inductive hypothesis two bijective isomorphisms

�1 ∶ S1 → S∗1 , �2 ∶ S2 → S∗2
with respect to edges and h1-values, that maps identical values between hi+1(V (S1)) and
hj′(V (S∗1)) (and between hi+1(V (S2)) and hj′(V (S∗2))) to each other, we must have

∀v ∈ S1,∀v∗ ∈ S∗1 , hi+1(v) = hj′(v∗)→ �1(v) = v∗
(and similarly for �2).

16

Specifically, since hi+1(va) = hj′(v∗a), hi+1(vb) = hj′(v∗b), we have

�1(va) = v∗a, �2(vb) = v∗b
Also we know that for all edges (v1, v2) ∈ E(S1), (w1,w2) ∈ E(S2) we have

(�1(v1),�1(v2)) ∈ E(S∗1), (�2(w1),�2(w2)) ∈ E(S∗2)
and the only new edge in S1,2 is (va, vb), va ∈ V (S1), vb ∈ V (S2), and the only new edge in S∗1,2 is(v∗a, v∗b), v∗a ∈ V (s∗1), v∗b ∈ V (S∗2).
Consider:

�(v) = ��1(v) if v ∈ V (S1)
�2(v) otherwise

(4)

We split into two cases:

Case 1: (S1=S2 = False). This implies that S1 ≠ S2 and S∗1 ≠ S∗2 (where = is stronger than
isormorphic). By Lemma 2 we have V (S1)∩V (S2) = V (S∗1)∩V (S∗2) = �. Since � corresponds to
a graph isomorphism on the disjoint S1 → S∗1 , S2 → S∗2 and the new edge is respected, � is a graph
isomorphism between S1,2 and S∗1,2.

In addition, since hi+2 and hj′+1 are injective across domains hi+1(V (S1,2)) and hj′(V (S∗1,2)) it
also means that hi+2 and hj′+1 are injective across domains hi+1(V (S1)) and hj′(V (S∗1)). Thus,
if hi+2(v) = hj′+1(w) with v ∈ V (S1),w ∈ V (S∗1), then hi+1(v) = hj′(w) such that by inductive
hypothesis �1(v) = w and thus �(v) = w (and similarly for S2, S

∗
2 , and �2).

However, if there exists v ∈ V (S1),w ∈ V (S2), u ∈ V (S∗1,2) with hi+2(v) = hi+2(w) = hj′+1(u)
we need to make sure �(v) = �(w) = u (to always map identical values to each other), but then
� would not be a graph isomorphism since v ≠ w (we know S1 ∩ S2 = �). This could also be the
case for S∗1 , S∗2 , S1,2. But by uniqueness from rv we know hi+2(V (S1)) ∩ hi+2(V (S2)) = � and
hj′+1(V (S∗1))∩hj′+1(V (S∗2)) = �, so this cannot happen, and we can conclude that identical values
across hi+2(V (S1,2)) and hj′+1(V (S∗1,2)) are always mapped to each other.

Case 2: (S1=S2 = True). Which implies that S1 = S2 and S∗1 = S∗2 (in a stronger sense than
isomorphic). This means � = �1. Which means that � is bijection (no new vertices are added, only
an edge), and the new edge is also respected, so � is a graph isomorphism between S1,2 → S∗1,2 that
respects h1-values and edges, because �1 does so.

In addition, hi+2 and hj′+1 are injective across domains hi+1(V (S1,2)) and hj′(V (S∗1,2)) with
V (S1,2) = V (S1), V (S∗1,2) = V (S∗1). Thus, if hi+2(v) = hj′+1(w) with v ∈ V (s1),w ∈ V (S∗1),
then hi+1(v) = hj′(w) such that by inductive hypothesis �1(v) = w and thus �(v) = w. Since S1 =
S2 and S∗1 = S∗2 we can conclude that identical values across hi+2(V (S1,2)) and hj′+1(V (S∗1,2)) are
mapped to each other.

By Lemma 2 we know these two cases are exhaustive. Thus, � is a bijective isomorphism between
S1,2 and S∗1,2 with respect to edges and h1-values. Furthermore, the isomorphism maps identical
values across hi+2(V (S1,2)) and hj′+1(V (S∗1,2)) to each other.

Since h1-values are injective with respect to node labels, we are done.

B.2 Existence of Required Functions

We start by proving that there exists no continuous injective function from R2 to R.
Theorem 14. There exists no continuous injective function f ∶ R2 → R.

Proof. Suppose f ∶ R2 → R is continuous. Then the image (which is an interval in R2) of any
connected set in R2 under f is connected. Note that this is a non-degenerate interval (a degenerate
interval is any set consisting of a single real number) since the function is injective. Now, if you

17

remove a point from R2 it remains connected, but if we remove a point whose image is in the interior
of the interval then the image cannot be still connected if the function is injective.

We add some lemmas before we prove the main theorem of this section. All statements will be
concerning NPA using the functions put forward in Section 3.2.
Lemma 5. For NPA, all m1,m2

and h-values that appear are in N0

Proof. We show this through an informal induction argument. Since hinit(v) = l(v) ∈ N+ and
cinit(h) = (0,0, h + 1) we know that all h1-values are in N0, and for all c-values created at step 0
we have m1,m2 ∈ N0. Now since new m-values are created from m1

1,m
2
1,m

1
2,m

2
2 ∈ N0 through

m1
1,2 =m2

1+m2
2+1 ∈ N0,m

2
1,2 = 2(m2

1+m2
2+1) ∈ N0 it is not hard to see that all m1,m2 that appear

will be in N0. Similarly, new hi+1-values are created from hi-values through hi+1(v) = hi(v) ∈ N0

or hi+1(v) = hi(v) +m1 ∈ N0 (since m1 ∈ N0), so all h-values will be in N0.

Lemma 6. For any graph sk encoded by Algorithm 2 at step i on run G we have m2
k >

max(hi+1(V (Sk))) and each value in hi+1(V (Sk)) = rv(c(Sk), hi(V (Sk))) is unique.

Proof. We will prove this by strong induction on the number of steps i of the algorithm on run G.
Property P (i) is that any graph Sk encoded at step i on run G:

• m2
k >max(hi+1(V (Sk))), and

• each value in hi+1(V (Sk)) = rv(c(Sk), hi(V (Sk))) is unique

Base Case: P (0). This means Sk consists of a single vertex v. Thus, h1(V (Sk)) = {l(v)} ⊂ N+ and
it is unique. Consequently, m2

k = l(v)+1 > 0, such that m2
k >max(h1(V (Sk)) = l(v). We also note

that m1
k = 0.

Inductive Case: (∀i′ ≤ i, P (i′))→ P (i + 1).
Since i + 1 > 0 we have �E(sk)� > 0 so we can write V (S1,2) ∶= V (Sk) = V (S1) ∪ V (S2),
where S1, S2 were encoded before step i + 1, say step i1 and i2 respectively. By inductive hy-
pothesis, this means that all values in hi1+1(V (S1)) and all values in hi2+1(V (S2)) are unique,
and since S1, S2 ∈ Ai+1, by Lemma 4, these h-values cannot have changed before step i + 1 (i.e.
hi1+1�V (S1) = hi+1�V (S1), hi2+1�V (S2) = hi+1�V (S2)). Thus, each value in hi+1(V (S1)) and each
value in hi+1(V (S2)) is unique. By injective hypothesis we also know that

m2
1 >max(hi+1(V (S1))), m2

2 >max(hi+1(V (S2)))
From Lemma 5, we know m2

1,m
2
2 ∈ N0 and all h-values in N0, i.e. they are non-negative.

Now we have, with m1
1,2 =m2

1 +m2
2 + 1 > 0, that

hi+2(V (S1,2)) ∶= rv(c(S1,2), hi+1(v)) =
� hi+1(v) +m1

1,2, if v ∈ V (S1)
hi+1(v), else �

This means now that each value in hi+2(V (S1)) and each value in hi+2(V (S2)) is unique. This
is easier to see for hi+2(V (S1)) because rv is an injective function on the values of hi+1(V (S1))
which we know are all unique. However, since

m1
1,2 >max(hi+1(V (S2))), min(hi+1(V (S1))) ≥ 0

rv is also injective on hi+1(V (S2)). To prove this, suppose rv(hi+1(v)) = rv(hi+1(w)) with
v,w ∈ V (S2), then hi+1(v) = hi+1(w) unless, w.l.o.g, v ∈ V (S1),w ∉ V (S1) from which we reach
a contradiction since min(hi+1(V (S1))) +m1

1,2 >max(hi+1(V (S2))).
Since max(hi+1(V (S1))) +m2

2 + 1 >max(hi+1(V (S2))) we have
max(hi+2(V (S1,2))) =max(hi+1(V (S1)))

+m2
1 +m2

2 + 1< 2m2
1 +m2

2 + 1
18

Since m2
1,2 = 2m2

1+2m2
2+2 > 0 this means that max(hi+2(V (S1,2))) <m2

1,2. We can also conclude
m1

1,2,m
2
1,2 ∈ N+.

By Lemma 2, we know that either S1 = S2 or S1 ∩ S2 = �. If S1 = S2, then V (S1,2) = V (S1) =
V (S2) such that hi+2�V (S1,2) = hi+1�V (S1) +m1

1,2, which means that each value in hi+2(V (S1,2)) is
unique because each value in hi+1(V (S1)) is unique. Thus we are done, and we now assume that
S1 ∩ S2 = �.

This means that V (S1) ∩ V (S2) = � and
hi+2(V (S1)) ∩ hi+2(V (S2)) = �

since m1
1,2 >m2

1+m2
2 >max(hi+1(V (S2))), max(hi+2(V (S2))) =max(hi+1(V (S2))). Thus, all

values in
hi+2(V (S1,2)) = hi+2(V (S1)) � hi+2(V (S2))

are unique.

Thus we have proved P (i + 1).
Corollary 4. This also means that m1

k = 0 if and only if �E(Sk)� = 0 (i.e. in the base case). Thus, it

serves as the required zero-symbol.

Armed with this lemma we will now prove the following:
Lemma 7. For all graphs S,S∗ encoded at step i run G and j run G∗ respectively with c ∶= c(S) =
c(S∗), rv(c, ⋅) is injective across domains hi(V (S)) and hj(V (S∗)).
Remark 5. We reiterate, with a function f ∶X → Y being injective across domain X1 and X2 with
X1,X2 ⊂X , we mean that for all x1 ∈X1, x2 ∈X2 with f(x1) = f(x2) we have x1 = x2.

Proof. First if i = 0 or j = 0 we know that both i = j = 0 due to the zero-symbol, and then it is
vacuously true, because h0 does not exist and rv is not applied. So we assume i, j > 0.

Since i, j > 0 we have V (S) = V (S1) ∪ V (S2), V (S∗) = V (S∗1) ∪ V (S∗2). We also know(m1,m2) = (m1∗,m2∗). By Lemma 2 we know that either S1 = S2 or S1 ∩ S2 = �.

If S1 = S2, then since c(S) = c(S∗) we also have S∗1 = S∗2 , which means that V (S) = V (S1) =
V (S2) and V (S∗) = V (S∗1) = V (S∗2). This means that rv(c, h) = h +m1 = h +m1∗, which then is
injective and in particular injective across hi(V (S)) and hj(V (S∗)). Thus, we now assume that
S1 ∩ S2 = �.

This means that V (S1) ∩ V (S2) = �. Now suppose

rv(c, hi
a) = rv(c, hj

b)
with hi

a ∈ hi(V (S)), hj
b ∈ hj(V (S∗)). Consider two cases:

Case 1: hi
a ∈ hi(V (S1)). Then

rv(c, hi
a) = hi

a +m1 = hi
a +m1∗

Since m1∗ >max(hj(V (S∗2))) ≥ 0 and hi
a ≥ 0 (Lemma 6 and 5) we must have hj

b ∈ hj(V (S∗1)) such
that

rv(c, hj
b) = hj

b +m1∗
Because else

rv(c, hj
b) = hj

b <m1∗ < rv(c, hi
a)

This implies that hi
a = hj

b.

Case 2: hi
a ∉ hi(V (S1)) which means that hi

a ∈ hi(V (S2)). Suppose by contradiction that hj
b ∈

hj(V (S∗1)) then
rv(c, hi

a) = hi
a = rv(c, hi

b) = hi
b +m1∗ = hi

b +m1

But since m1 > max(hi(V (S2)) ≥ 0 and hi
b ≥ 0 (Lemma 6 and 5) we get a contradiction. This

means hj
b ∉ hj(V (S∗1)), hj

b ∈ hj(V (S∗2)) such that

rv(c, hi
a) = hi

a = rv(c, hj
b) = hj

b

We are done.

19

Consider the following functions:

⌧(i, j) = (i + j)(i + j + 1)
2

+ j, ⇢(i, j) = (i + j, ij)
Lemma 8. Two claims:

• ⌧ ∶ R ×R→ R is continuous and injective in N ×N→ N.

• ⇢ ∶ R ×R→ R is continuous and injective in {{i, j} � i, j ∈ N}→ N2
.

Proof. ⌧ is the well-known Cantor Pairing Function, see for example Wikipedia for proof of its
bijective properties on N2 → N, it is clearly continuous on R2 → R.

⇢ is cleary continuous in R2 → R2 and if i, j ∈ N then ⇢(i, j) ∈ N2. We will prove that it is injective
in {{i, j} � i, j ∈ N}→ N2:

Suppose (i + j, ij) = (x, y) we want to express i and j in terms of x and y. Rearranging and
substituting, we get i = x − j ⇒ (x − j)j = y⇒ j2 − xj + y = 0. Using the quadratic formula, and by
symmetry, we get

j = x ±�x2 − 4y
2

, i = x ±�x2 − 4y
2

If j = x+�x2−4y
2 , i = x−�x2−4y

2 (or other way around) the conditons i + j = x, ij = y holds. But if

j = x+�x2−4y
2 = i = x+�x2−4y

2 then i + j = x +�x2 − 4y and ij = x2

4 + x�x2 − 4y + x2−4y
4 and

conditions hold iff x2 = 4y which takes us back to our previous case. Similarly, if j = x−�x2−4y
2 = i =

x−�x2−4y
2 then i + j = x −�x2 − 4y, ij = x2

4 − x�x2 − 4y − x2−4y
4 and conditions hold iff x2 = 4y

which again takes us back to our first case. Thus, we have proved that ⇢ is injective.

Lemma 9. In the above setup, there exists a continuous and bounded function r ∶ R9 → R that is

injective in {N4,N4} ×N. Namely,

r(y1, h1,m1, n1, y2, h2,m2, n2, b) = ⌧�⌧�⇢(⌧4(y1, h1,m1, n1), ⌧4(y2, h2,m2, n2))�, b�

Proof. The proof follows from Lemma 8.

Lemma 10. For the functions defined in Section 3.2 and in this section, when used in NPA, we always

have (i) hj(v) ∈ N0 and (ii) c(Sk) = (yk,m1
k,m

2
k) ∈ N0 ×N0 ×N0 = N3

0.

Proof. (i) hj(v) ∈ N0 follows immediately from Lemma 5. Note that (ii) is true for all c-values
encoded at step 0 in NPA via cinit since all h-values are in N0, also we know that all m1

k,m
2
k ∈ N0

from Lemma 5. Thus, the only thing we need to consider is the subsequent application of r, and it is
applied to h-values, c-values, and {0,1}-indicators, all of which are in N0, to create new c-values.
Since r takes (N0)∗ to (N0)∗, which can be seen by inspection, the lemma follows.

Lemma 11. The rc function with the r-function from Lemma 9 is injective in all its variables.

Proof. Suppose
rc({(c11, h1

1), (c12, h1
2)}, b1) = rc({(c21, h2

1), (c22, h2
2)}, b2)

Where

c11 = (y11 ,m1
1, n

1
1), c12 = (y12 ,m1

2, n
1
2)

c21 = (y21 ,m2
1, n

2
1), c22 = (y22 ,m2

2, n
2
2)

20

https://en.wikipedia.org/wiki/Pairing_function

This means that

�r(y11 , h1
1,m

1
1, n

1
1, y

1
2 , h

1
2,m

1
2, n

1
2, b1),

n1
1 + n1

2 + 1, 2n1
1 + 2n1

1 + 2� =
�r(y21 , h2

1,m
2
1, n

2
1, y

2
2 , h

2
2,m

2
2, n

2
2, b2),

n2
1 + n2

2 + 1, 2n2
1 + 2n2

2 + 2�
Thus, from Lemma 9 we know r is injective in {N4,N4} ×N. By Lemma 10 we know all input to r
are in N0, thus, r is injective, which gives us

�{(c11, h1
1), (c12, h1

2)}, b1� = �{(c21, h2
1), (c22, h2

2)}, b2�
and we are done.

Lemma 12. For Algorithm 2 there exists functions rv , rc, hinit, cinit that satisfies the requirements

put forward in Theorem 8.

Proof. Consider the functions defined in Section 3.2 and in this section, as well as the results. The
lemma follows.

B.3 Corollaries

We add a remark about the subgraphs that are encoded during runs of NPA on a graph G.
Remark 6. On one run of NPA on graph G, the multiset W (G) encodes a collection of subgraphs of
G, for example, these subgraphs always include the vertices and the largest (by inclusion) connected
subgraphs. The order in which edges are processed determines which other subgraphs that are
encoded, but it is not too hard to see that if NPA is run on all possible orders on edges, and without
NPA changing the order, it will encode each combination of disjoint connected subgraphs. Since any
subraph consists of a collection of disjoint connected subgraphs, it will indirectly encode all possible
subgraphs.

Full proof of Lemma 3

Proof. (From [25]). We first prove that there exists a mapping f so that∑x∈X f(x) is unique for each
multiset X bounded size. Because X is countable, there exists a mapping Z ∶ X → N from x ∈ X to
natural numbers. Because the cardinality of multisets X is bounded, there exists a number N ∈ N so
that �X � < N for all X . Then an example of such f is f(x) = N−Z(x). This f can be viewed as a
more compressed form of an one-hot vector or N -digit presentation. Thus, h(X) = ∑x∈X f(x) is an
injective function of multisets. �(∑x∈X f(x)) is permutation invariant so it is a well-defined multiset
function. For any multiset function g, we can construct such � by letting �(∑x∈X f(x)) = g(X).
Note that such � is well-defined because h(X) = ∑x∈X f(x) is injective.

Corollary 5. There exists a function f such that any two graphs G and H in Gb are isomorphic if∑w∈W (G) f(w) = ∑w∈W (H) f(w).
Remark 7. Given a graph isomorphism class [S] and assuming NPA does not change the order of
the edges, there is a Turing-decidable function f[S] ∶ G → [0,1] that on input G returns 1 if there
exists S ∈ [S],H ∈ [G] with S ⊂H and 0 otherwise; in pseudo-code:

f[S] on input G,

∀H ∈ [G],∀S ∈ [S],
if W (S) ⊂W (H) return 1,

return 0

which is Turing-decidable since for any G ∈ G all such sets [G], [S],W (H),W (S) are finite.
However, a similar function for detecting the presence of a subgraph in isomorphism class [S]

21

in graph G given we only have one encoding E(G) for all of G must not exist. Without some
subset-information in the encoding we are left to (pseudo-code):

f[S] on input G,

∀H ∈ G,∃S ∈ [S], S ⊂H,

if E(G) = E(H) return 1,

return 0

which is Turing-recognizable but not Turing-decidable, because the number of graphs H ∈ G that
contain subgraphs in [S] is infinite. This points to the strength of having the encoding of a graph G
coupled with encodings of its subgraphs.

B.4 Use of Neural Networks

We make use of the following functions:

cinit(i) = (0,0, i + 1)
f1(i, j) = i + j + 1
f2(i, j) = 2i + 2j + 2
r(y1, h1,m1, n1, y2, h2,m2, n2, b) =
⌧�⌧�⇢(⌧4(y1, h1,m1, n1), ⌧4(y2, h2,m2, n2))�, b�
rv(. . . ,m,h, ind) = h + indm

Where

⌧(i, j) = (i + j)(i + j + 1)
2

+ j, ⇢(i, j) = (i + j, ij)
To a lesser extent we use

f3(i) = N−i
By Theorem 3, NNs can perfectly approximate any function on a finite domain so the case of Gb
is straightforward. However, for countably infinite G the situation is different. Note that these
functions are continuous (in R∗) but not bounded and that we are applying these functions recursively
and would want both the domain and the image to be bounded iteratively. Without losing any
required properties we can compose these functions, f , with an injective, bounded, and continuous
function with continuous inverse such as Sigmoid, �, in the following way f∗ = � ○ f ○ �−1, and use
hinit(l(v)) = �(l(v)). Then these functions can be pointwise approximated by NNs.

Lemma 13. � ∶ R → (0,1), �(x) = 1
1+ex is continuous, bounded, and injective. Also, its inverse

�−1 ∶ (0,1)→ R is continuous and injective.

Proof. � is continuous since the exponential function is continuous, and it is clearly bounded with
im(�) = (0,1). Furthermore, its inverse is �−1(x) = ln(1−xx) ∶ (0,1)→ R, thus it is injective. Since
ln is continuous so is �−1, and since �−1 is the inverse of a function, it is injective.

The required functions then become:

c∗init ∶ (0,1)→ (0,1), c∗init = � ○ cinit ○ �−1
f∗1 ∶ (0,1)2 → (0,1), f∗1 = � ○ f1 ○ �−1
f∗2 ∶ (0,1)2 → (0,1), f∗2 = � ○ f2 ○ �−1
r∗ ∶ {(0,1)4, (0,1)4} × (0,1)→ (0,1), r∗ = � ○ r ○ �−1
r∗v ∶ (0,1)3 → (0,1), r∗v = � ○ rv ○ �−1

It follows from the setup and Lemma 10 that if im(hinit) ⊂ {�(i) � i ∈ N} then all these functions
maintain their required properties. All these functions are continuous and bounded (iteratively on(0,1) by (0,1)) in R∗. Thus, by Theorem 6, they can be pointwise approximated by a NN. Yet,

22

Table 3: Edge-orders and levels.

Datasets: NCI1 MUTAG PROTEINS PTC
Avg # nodes: 30 18 39 26
Avg # edges: 32 20 74 26
O(median # edge-orders): degs-and-labels 107 105 1013 105

O(median # edge-orders): two-degs 109 107 1023 106

O(median # edge-orders): one-deg 1020 1014 1036 1016

O(median # edge-orders): none 1031 1017 1062 1023

Avg samples # levels: degs-and-labels 12 11 41 9
Avg samples # levels: two-degs 12 10 41 9
Avg samples # levels: one-deg 14 11 41 13
Avg samples # levels: none 12 14 39 13

for f3 the situation is a little different because we care about the sum ∑x∈X f3(x) over a bounded
multiset X . However, note that all the domain consists of N0 so f3 is bounded by (0,1]. Thus we
can pointwise approximate

f∗3 ∶ (0,1)→ (0,1] ∶ f∗3 = f3 ○ �−1

which suffices, and if X is bounded, so is the sum.

However, it also follows, due to the use of �, that the pointwise approximation error is going to be
more likely to cause problems for large values.

B.4.1 Approximation Error and its Accumulation

Recursive application of a NN might increase the approximation error. We have the following
equations describing successive compositions of a NN ':

��f(f(x)) −'('(x))��
= ��f(f(x)) −'(f(x) + ✏)��
= ��f(f(x)) − f(f(x) + ✏) + ✏��

Future work should investigate the effects of this likely accumulation.

B.5 Class-Redundancy, Sorting, Parallelize, and Subgraph Dropout

Again, the class-redundancy in the algorithm and functions we propose enters at the sort functions se
(sorts edges) and sv (sorts nodes within edges). Thus, a loose upper bound on the class-redundancy

is O((m!)2m). However, a more exact upper bound is O((t1!)(t2!) . . . (tk!)(2p)), where ti are the
sizes of the consecutive ties for the sorted edges, and p (bounded by m) is the number of ties for the
sorting of nodes within edges. An even better upper bound is

O((t1,1!) . . . (t1,l1 !)(t2,1!) . . . (tk,lk !)(2p))
where each ti,j is the number of ties within group j of groups of subgraphs that could be connected
within the tie i. The order in between disconnected tied subgraph groups does not affect the output.

In Table 3 you can find #edge-orders, that is O((t1,1!) . . . (t1,l1 !)(t2,1!) . . . (tk,lk !)), and #levels on
some datasets.

23

B.6 Neural Networks

For NPBA we let c(Si) = (c1i , c2i) be the encoding for a subgraph Si and use for rc:

i = �(Wi(c20 + c21) + bi)
f1 = �(Wfc

2
0 + bf)

f2 = �(Wfc
2
1 + bf)

g = tanh(Wg(c20 + c21) + bg)
o = �(Wo(c20 + c21) + bo)

c11,2 = f1 ∗ c10 + f2 ∗ c11 + i ∗ g
c21,2 = o ∗ tanh(c11,2)

For the NPA we use for rc({(c(S1), h1), (c(S2), h2)}, s ∶= S1=S2):
i = �(Wi,h(h1 + h2) +Wi,c(c21 + c22) +Wi,ss + bi)

f1 = �(Wf,hh1 +Wf,cc
2
1 +Wf,ss + bf)

f2 = �(Wf,hh2 +Wf,cc
2
2 +Wf,ss + bf)

g = tanh(Wg,h(h1 + h2) +Wg,c(c21 + c22) +Wg,ss + bg)
o = �(Wo,h(h1 + h2) +Wo,c(c21 + c22) +Wo,ss + bo)

c11,2 = f1 ∗ c11 + f2 ∗ c12 + i ∗ g
c21,2 = o ∗ tanh(c11,2)

Where s = S1=S2 and the encoding for a subgraph Si is c(Si) = (c1i , c2i) and the h-value of a node
vj is encoded by hj (so h1 and h2 above encode h(va) and h(vb) respectively).

For rv(c(S1,2), hv, t ∶= v∈V (s1)) we use (with a different set of weights)

i = �(Wi,cc
2
1,2 +Wi,tt + bi)

f = �(Wf,cc
2
1,2 +Wf,tt + bf)

g = tanh(Wg,cc
2
1,2 +Wg,tt + bg)

o = �(Wo,cc
2
1,2 +Wo,tt + bo)

hv = f ∗ hv + i ∗ g
Where t = v∈V (s1). Intuitively, we make it easy for the label to flow through.

C Experiments

C.1 Synthetic Graphs

The ordering of the nodes of a graph G are randomly shuffled before G is feed to NPA and the output
depends to some extent on this order. This makes it hard for a NN to overfit to the features that
NPA produces on a training set. For datasets where the class-redundancy is large (e.g regular graphs)
NPA might never produce the same encoding between the gradient steps and the training accuracy
evaluation. This may cause NNs to overfit to the encodings NPA produces during the batch updates
and underfit the encodings produced for evaluation of training accuracy. Even during training, NPA
(and NPBA) might never produce the same representation for the same graph twice.

C.2 Experiment Details

We try and compare algorithms at the task of classifying graphs. Every dataset maps each of its
graphs to a ground-truth class out of two possible classes.

We report the average and standard deviation of validation accuracies across the 10 folds within the
cross-validation. We use the Adam optimizer with initial learning rate 0.01 and decay the learning

24

rate by 0.5 every 50 epochs. We tune the number of epochs as a hyper-parameter, i.e., a single epoch
with the best cross-validation accuracy averaged over the 10 folds was selected.

In the experiments, the W (G) features are summed and passed to a classify-NN consisting of either
one fully-connected layer and a readout layer (for MUTAG, PTC, and PROTEINS) or two fully-
connected layers and a readout layer (for NCI1), where the hidden-dim of the fully connected layers
is of size dhidden. For hinit we use a linear-layer followed by a batchnorm (for MUTAG, PTC, and
PROTINES) or a linear-layer followed by activation function and batchnorm (for NCI1). In addition,
for NCI1 we used dropout=0.2 after each layer in the classify-net and on the vectors of W (G) before
summing them.

Also, in our experiments we skipped including the wi features for the single nodes. In fact, all datasets
consist of connected graphs.

For the NPBA tree-lstm the dimensions of c1 and c2 is dhidden. For the NPA the dimensions of c1
and c2 is dhidden and the dimension of h is dhidden�2.

We used the following settings for dhidden and batch size:

• PTC, PROTEINS, and MUTAG we used dhidden = 16, and batch-size=32.
• NCI1 we used dhidden = 64, and batch-size=128.

25

	Introduction
	Theory
	Preliminaries
	Bounded Graphs
	Unbounded Graphs
	Learning and Graph Isomorphism Problems
	Algorithmic Idea

	Method
	The Algorithm
	Existence of Required Functions
	Corollaries
	Use of Neural Networks
	A Baseline
	Class-Redundancy, Sorting, Parallelize, and Subgraph Dropout

	Experiments
	Synthetic Graphs

	Discussion
	Broader Impact
	Acknowledgements
	Theory
	Preliminaries: Additional Definitions, Remarks, and Proofs
	Additional Definitions and Remarks
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Bounded Graphs
	Proof of Theorem 3
	Proof of Theorem 4

	Unbounded Graphs
	On Remark 1
	Theorems and Proofs
	Proof of Theorem 5
	Proof of Theorem 6

	Algorithmic Idea
	Proof of Theorem 7

	Method
	Algorithm
	Proof of Theorem 8

	Existence of Required Functions
	Corollaries
	Use of Neural Networks
	Approximation Error and its Accumulation

	Class-Redundancy, Sorting, Parallelize, and Subgraph Dropout
	Neural Networks

	Experiments
	Synthetic Graphs
	Experiment Details

