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Abstract

We introduce CuLE (CUDA Learning Environment), a CUDA port of the Atari
Learning Environment (ALE) which is used for the development of deep rein-
forcement algorithms. CuLE overcomes many limitations of existing CPU-based
emulators and scales naturally to multiple GPUs. It leverages GPU parallelization
to run thousands of games simultaneously and it renders frames directly on the
GPU, to avoid the bottleneck arising from the limited CPU-GPU communication
bandwidth. CuLE generates up to 155M frames per hour on a single GPU, a finding
previously achieved only through a cluster of CPUs. Beyond highlighting the differ-
ences between CPU and GPU emulators in the context of reinforcement learning,
we show how to leverage the high throughput of CuLE by effective batching of
the training data, and show accelerated convergence for A2C+V-trace. CuLE is
available at https://github. com/NVlabs/culel

1 Introduction

Initially triggered by the success of DQN [[13], research in Deep Reinforcement Learning (DRL) has
grown in popularity in the last years [[10, 12, [13]], leading to intelligent agents that solve non-trivial
tasks in complex environments. But DRL also soon proved to be a challenging computational
problem, especially if one wants to achieve peak performance on modern architectures.

Traditional DRL training focuses on CPU environments that execute a set of actions {a;_1 } at time
t — 1, and produce observable states {s;} and rewards {r;}. Environment data is then processed
by a Deep Neural Network (DNN) on the GPU to select the next action, {a;}, which is copied
back to the CPU. This sequence of operations defines the inference path, whose main aim is to
generate training data. A training buffer on the GPU stores the states generated on the inference
path; this is periodically used to update the DNN’s weights 6, according to the training rule of the
DRL algorithm (training path). A computationally efficient DRL system should balance the data
generation and training processes, while minimizing the communication overhead along the inference
path and consuming, along the training path, as many data per second as possible [1}[2]. The solution
to this problem is however non-trivial and many DRL implementations do not leverage the full
computational potential of modern systems [19]].

We focus our attention on the inference path and move from the traditional CPU implementation
of the Atari Learning Environment (ALE), a set of Atari 2600 games that emerged as an excellent
DRL benchmark [3}[11]. We show that significant performance bottlenecks stem from CPU-based
environment emulation because the CPU cannot run a large set of environments simultaneously and
the CPU-GPU communication bandwidth is limited. To both investigate and mitigate these limitations
we introduce CuLE (CUDA Learning Environment), a DRL library containing a CUDA enabled
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Table 1: Average training times, raw frames to reach convergence, FPS, and computational resources
of existing accelerated DRL schemes, compared to CuLE. Data from [8]]; FPS are taken from the
corresponding papers, if available, and measured on the entire Atari suite for CuLE.

Algorithm Time Frames FPS Resources
Ape-X DQN [8] 5 days 22,800M 50K 376 cores, | GPU
Rainbow [7] 10 days 200M — 1 GPU
Distributional (C51) [4] 10 days 200M — 1 GPU

A3C [12] 4 days — 2K 16 cores
GA3C [1]2] 1 day — 8K 16 cores, 1 GPU
Prioritized Dueling [22] 9.5 days 200M — 1 GPU

DQN [13] 9.5 days 200M — 1 GPU

Gorila DQN [14] 4 days — — > 100 cores
Unreal [9] — 250M — 16 cores
Stooke (A2C / DQN) [19] hours 200M 35K 40 CPUs, 8 GPUs (DGX-1)
IMPALA (A2C + V-Trace) [6] mins/hours 200M 250K 100-200 cores, 1 GPU
CuLE (emulation only) N/A N/A 41K-155K System I (1 GPU)
CuLE (inference only, A2C, single batch) N/A N/A 39K-125K System I (1 GPU)
CuLE (training, A2C + V-trace, multiple batches) 1 hour 200M 26K-68K System I (1 GPU)
CuLE (training, A2C + V-trace, multiple batches)* mins 200M 142-187K System III (4 GPUs)

*FPS measured on Asterix, Assault, MsPacman, and Pong.

Table 2: Systems used for experiments.

System Intel CPU NVIDIA GPU
1 12-core Core i7-5930K @3.50GHz Titan V
II 6-core Core 17-8086K @5GHz Tesla V100

111 20-core Core E5-2698 v4 @2.20GHz x 2  Tesla V100 x 8, NVLink

Atari 2600 emulator that renders frames directly in GPU memory, avoids off-chip communication
and achieves high GPU utilization by processing thousands of environments in parallel—something
so far achievable only through large and costly distributed systems. Compared to the traditional
CPU-based approach, GPU emulation improves the utilization of the computational resources: CuLE
on a single GPU generates more Frames Per Seconcﬂ (FPS) on the inference path (between 39K and
125K, depending on the game, see Table[I)) compared to its CPU counterpart (between 12.5K and
19.8K). CuLE’s throughput is of the same order of magnitude of much larger distributed systems,
like IMPALA [6] or a DGX-1 [20], which eventually leads to a significant reduction in the wall
clock training time and therefore to an immediate practical advantage [18 21} 5] for the researchers
working in this field. Beyond offering CuLE (https://github.com/NVlabs/cule) as a tool for
research in the DRL field, our contribution can be summarized as follow:

(1) We identify common computational bottlenecks in several DRL implementations that prevent
effective utilization of high throughput compute units and effective scaling to distributed systems.

(2) We introduce an effective batching strategy for large environment sets, that allows leveraging the
high throughput generated by CuLE to quickly reach convergence with A2C+V-trace [6], and show
effective scaling on multiple GPUs. This leads to the consumption of 26-68K FPS along the training
path on a single GPU, and up to 187K FPS using four GPUs, comparable (Table[I) to those achieved
by large clusters [20l 16].

(3) We analyze advantages and limitations of GPU emulation with CuLE in DRL, including the effect
of thread divergence and of the lower (compared to CPU) number of instructions per second per
thread, and hope that our insights may be of value for the development of efficient DRL systems.

2 Related Work

2Raw frames are reported here and in the rest of the paper, unless otherwise specified. These are the frames
that are actually emulated, but only 25% of them are rendered and used for training. Training frames are obtained
by dividing the raw frames by 4—see also [6].


https://github.com/NVlabs/cule

The wall clock convergence time of a DRL algorithm is determined by two main factors: its sample
efficiency and the computational efficiency of its implementation. Here we analyze the sample and
computational efficiency of different DRL algorithms, in connection with their implementation.

We first divide DRL algorithms into policy gradient and Q-value methods, as in [19]. Q-learning
optimizes the error on the estimated action values as a proxy for policy optimization, whereas policy
gradient methods directly learn the relation between a state, s;, and the optimal action, a;; since at
each update they follow, by definition, the gradient with respect to the policy itself, they improve
the policy more efficiently. Policy methods are also considered more general, e.g. they can handle
continuous actions easily. Also the on- or off-policy nature of an algorithm profoundly affects both its
sample and computational efficiency. Off-policy methods allow re-using experiences multiple times,
which directly improves the sample efficiency; additionally, old data stored in GPU memory can be
used to continuously update the DNN, leading to high GPU utilization without saturating the inference
path. The replay buffer has a positive effect on the stability of learning as well [[13]. On-policy
algorithms saturate the inference path more easily, as frames have to be generated on-the-fly using
the current policy and moved from the CPU to the GPU for processing with the DNN. On-policy
updates are generally effective but they are also more prone to fall into local minima because of
noise, especially if the number of environment is small — this is the reason why on-policy algorithms
largely benefit (in term of stability) from a significant increase of the number of environments.

Policy gradient algorithms are often on-policy: their efficient update strategy is counterbalanced by
the bottlenecks in the inference path and competition for the use of the GPU along the inference
and training path at the same time. Acceleration by scaling to a distributed system is possible but
inefficient in this case: in IMPALA [6] a cluster with hundreds of CPU cores is needed to accelerate
A2C, while training is desynchronized to hide latency. As a consequence, the algorithm becomes
off-policy, and V-trace was introduced to deal with off-policy data (see details in the Appendix).
Acceleration on a DGX-1 has also been demonstrated for A2C and PPO, using large batch sizes
to increase the GPU occupancy, and asynchronous distributed models that hide latency, but require
periodic updates to remain synchronized [19] and overall achieves sublinear scaling with the number
of GPUs.

During the review process, we came to know about Sample Factory [17], a high-throughput training
system that, like CuLE, is designed to optimize the efficiency and resource utilization of reinforcement
learning algorithms on a single machine. In contrast with CuLE, Sample Factory uses CPU simulation
and a novel GPU-based sampler; like in the case of CuLE and other high throughput systems [6} [19],
off-policy correction is then needed to process the large amount of generated data. Studying in
detail the commonalities and complementary aspects of CuLE and Sample Factory may easily lead
to further developments towards the creation of computationally efficient reinforcement learning
systems.

3 CUDA Learning Environment (CuLE)

In CuLE, we emulate the functionality of many Atari emulators in parallel using the CUDA program-
ming model, where a sequential host program executes parallel programs, known as kernels, on the
GPU. In a trivial mapping of the Atari emulator to CUDA, a single thread emulates both the Atari
CPU and TTA processors to read code from the ROM, advance the game state, and update pixels
in the framebuffer. However, the contrasting nature of the code execution, dominated by reading
from RAM/ROM, and frame rendering tasks, writing hundreds of pixels to the framebuffer, poses
a serious issue in terms of performance, such as thread divergence and an imbalanced number of
kernel resources, such as registers, required by each task. To mitigate these issues, CuLE uses two
CUDA kernels: the first one first loads data from GPU global memory, where we store the state
of each emulator, and the 128 bytes RAM data; it also reads the ROM instructions from constant
memory then executes and stores the updated game state into global memory. It is important to
note that this first kernel does not execute the TIA instructions read from the ROM, but copies them
into a TIA instruction buffer, which we implemented to decouple the execution of the CPU and
TIA instructions in CuLE. The second CuLE kernel emulates the functionality of the TIA processor:
it first reads the instructions stored in the TIA instruction buffer, executes them to update the TIA
registers, and renders the 160 x 210 output framebuffer in global GPU memory. Despite processing



the TIA instructions twice this implementation has several advantages over the single-kernel trivial
implementation. First of all, the requirements, in terms of registers per thread, and the chance of
having divergent code are different for the Atari CPU and TIA kernels, and the use of different kernels
improves GPU utilization. A second advantage that we exploit is that not all frames are rendered
in ALE: the input of the RL algorithm is the pixelwise maximum between the last two frames in a
sequence of four, so we can avoid calling the TIA kernel when rendering of the screen is not needed.
A last advantage, not exploited in our implementation yet, is that the TIA kernel may be scheduled
on the GPU with more than one thread per game, as rendering of diverse rows on the screen is indeed
a parallel operation - we leave this optimization for future developments of CuLE.

To better fit our execution model, our game
reset strategy is also different from the one BPL constant
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tialized in CuLE. At the end of an episode, . ] ' .
each emulator randomly selects one of the Figure 1: Our CUDA-based Atari emulator uses an

cached states as a seed and copies it into Atari CPU kernel to emulate the functioning of the Atari
the terminal emulator state. CPU and advance the game state, and a seconq TIA kgr-
nel to emulate the TTA and render frames directly in
Some of the choices made for the imple- GPU memory. For episode resetting we generate and
mentation of CuLE are informed by ease store a cache of random initial states. Massive paral-
of debugging, like associating one state up- lelization on GPU threads allows the parallel emulation
date kernel to one environment, or need for  of thousands of Atari games.
flexibility, like emulating the Atari console
instead of directly writing CUDA code for
each Atari game. A 1-to-1 mapping between threads and emulators is not the most computationally
efficient way to run Atari games on a GPU, but it makes the implementation relatively straightforward
and has the additional advantage that the same emulator code can be executed on the CPU for
debugging and benchmarking (in the following, we will refer to this implementation as CuLEcpy).
Despite these issues, the computational advantage provided by CuLE over traditional CPU emulation
remains significant.

4 Experiments

Atari emulation We measure the FPS under different conditions: we get an upper bound on the
maximum achievable FPS in the emulation only case, when we emulate the environments and use a
random policy to select actions. In the inference only case, we measure the FPS along the inference
path: a policy DNN selects the actions, CPU-GPU data transfer occur for CPU emulators, while both
emulation and DNN inference run on the GPU when CuLE is used. This is the maximum throughput
achievable by off-policy algorithms, when data generation and consumption are decoupled and run
on different devices. In the training case, the entire DRL system is at work: emulation, inference,
and training may all run on the same GPU. This is representative of the case of on-policy algorithms,
but the FPS are also affected by the computational cost of the specific DRL update algorithm; in our
experiments we use a vanilla A2C [15], with N-step bootstrapping, and N = 5 as the baseline (for
details of A2C and off-policy correction with V-trace, see the Appendix).
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Figure 2: FPS and FPS / environment on System I in Tableg for OpenAl Gym [15]], CuLEcpy, and
CuLE, as a function of the number of environments, under different load conditions: emulation only,
and inference only. The boxplots indicate the minimum, 25th 5th 75th percentiles and maximum
FPS, for the entire set of 57 Atari games.

Table 3: Training FPS, DNN’s Update Per Second (UPS), time to reach a given score, and corre-
sponding number of training frames for four Atari games, A2C+V-trace, and different configurations
of the emulation engines, measured on System I in Table 2] (System III for the multi-GPU case). The
best metric in each row is in bold.

Engine | OpenAl Gym | CuLE, 1 GPU | CuLE,4GPUs | Game
Envs 120 120 120 1200 | 1200 1200 1200 1200 x4
Batches 1 5 20 20 1 5 20 20x4
N-steps | 5 520 20 5 5 20 20 |
SPU 5 1 1 1 5 1 1 1
Training KFPS 42 34 3.0 49 10.6 115 11.0 42.7 -
UPS 7.0 283 247 4.1 1.8 9.6 9.1 8.9 E
Time [mins] | 20.2 — 42,6 442 18.8 9.4 9.9 7.9 i
Training Mframes (for average score: 800) 5.0 — 7.5 13.0 12.0 6.5 6.5 18.0
Training KFPS 43 33 3.0 49 11.9 12.5 12.1 46.6 ><
UPS 7.1 279 248 4.1 2.0 10.4 10.0 9.7 5
Time [mins] 8.1 352 144 271 — 14.0 34 2.5 ;::Z
Training Mframes (for average score: 1,000) 2.0 7.0 2.5 8.0 — 10.5 2.5 7.0
Training KFPS 4.0 33 2.8 4.8 9.0 9.6 9.2 35.5 g
UPS 6.7 271 237 4.0 15 8.0 7.7 7.4 £
Time [mins] | 16.6 205 147 12.4 — 6.9 11.8 24 o.:
Training Mframes (for average score: 1,500) 4.0 4.0 2.5 35 — 4.0 6.5 3.0 s
Training KFPS 43 34 3.0 4.8 10.5 11.2 10.6 41.7K
UPS 72 281 249 4.0 1.8 9.3 8.9 8.7 %
Time [mins] | 212 122 8.4 8.7 — 5.9 3.1 24 £
Training Mframes (for average score: 18) 5.5 2.5 1.5 2.5 — 4.0 2.0 6.0

Figs. 2(a)}2(b)| show the FPS generated by OpenAI Gym, CuLEcpy, and CuLE, on the entire set
of Atari games, as a function of the number of environments. In the emulation only case, CPU
emulation is more efficient for a number of environments up to 128, when the GPU computational
power is not leveraged because of the low occupancy. For a larger number of environments, CuLE
significantly overcomes OpenAl Gym, for which FPS are mostly stable for 64 environments or
more, indicating that the CPU is saturated: the ratio between the median FPS generated by CuLE
with 4096 environment (64K) and the peak FPS for OpenAl Gym (18K) is 3.56 x. In the inference
only case there are two additional overheads: CPU-GPU communication (to transfer observations),
and DNN inference on the GPU. Consequently, CPU emulators achieve a lower FPS in inference
only when compared to emulation only; the effects of the overheads is more evident for a small
number of environments, while the FPS slightly increase with the number of environments without
reaching the emulation only FPS. CuLE’s FPS are also lower for inference only, because of the latency
introduced by DNN inference, but the FPS grow with the number of environments, suggesting that
the computational capability of the GPU is still far from being saturated.

Factors affecting the FPS Figs. shows that the throughput varies dramatically across
games: 4096 CuLEcpy environments run at 27K FPS on Riverraid, but only 14K FPS for Boxing: a
1.93x difference, explained by the different complexity of the ROM code of each game. The ratio
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Figure 3: FPS as a function of the environment step, measured on System I in Table [2| for emulation
only on four Atari games, 512 environments, for CuLE; each panel also shows the number of resetting
environments. FPS is higher at the beginning, when all environments are in similar states and thread
divergence within warps is minimized; after some steps, correlation is lost, FPS decreases and
stabilizes. Minor oscillations in FPS are possibly associated to more or less computational demanding
phases in the emulation of the environments (e.g., when a goal is scored in Pong).

between the maximum and minimum FPS is amplified in the case of GPU emulation: Riverraid runs
in emulation only at 155K FPS when emulated by CuLE and 4096 environments, while UpNDown
runs at 41K FPS —a 3.78 X ratio.

To better highlight the impact of thread divergence on throughput, we measure the FPS for CuLE,
emulation only, 512 environments, and four games (Fig. E]) All the environments share the same
initial state, but random action selection leads them to diverge after some steps. Each environment
resets at the end of an episode. The FPS is maximum at the very beginning, when all the environments
are in similar states and the chance to execute the same instruction in all the threads is high. When
they move towards different states, code divergence negatively impacts the FPS, until it reaches an
asymptotic value. This effect is present in all games and particularly evident for MsPacman in Fig. 3}
it is not present in CPU emulation (see Appendix). Although divergence can reduce FPS by 30%
in the worst case, this has to be compared with case of complete divergence within each thread and
for each instruction, which would yield 1/32 ~ 3% of the peak performances. Minor oscillations of
the FPS are also visible especially for games with a repetitive pattern (e.g. Pong), where different
environments can be more or less correlated with a typical oscillation frequency.

Performances during training Fig. [4| compares
the FPS generated by different emulation engines on
a specific game (Assaultﬂ for different load condi-
tions, including the training case, and number of envi-
ronments. As expected, when the entire training path
is at work, the FPS decreases even further. However,
for CPU emulators, the difference between FPS in
the inference only and training cases decreases when
the number of environments increases, as the system

is bounded by the CPU computational capability and ! " P eionmens
CPU-GPU communication bandwidth. In the case of

the CPU, scaling to multiple GPUs would be ineffec- Figure 4: FPS generated by different emula-
tive for on-policy algorithms, such GA3C [1L 2]}, or tion engines on System I in Table [2) for As-
sub-optimal, in the case of distributed systems [6,[19]. sault, as a function of the number of environ-
On the other hand, the difference between inference ments, and different load conditions for A2C
only and training FPS increases with the number of ~Wwith N-step bootstrapping, N = 5).
environments for CuLE, because of the additional

training overhead on the GPU. The potential speed-up provided by CuLE for vanilla A2C and Assault
in Fig. dis 2.53x for 1,024 environments, but the system is bounded by the GPU computational
power; as a consequence, better batching strategies that reduce the training computational overhead as
well as scaling to multiple GPUs are effective to further increase the speed-up ratio, as demonstrated
later in this Section.

When data generation and training can be decoupled, like for off-policy algorithms, training can be
easily moved to a different GPU and the inference path can be used at maximum speed. The potential
speed-up provided by CuLE for off-policy algorithms is then given by the ratio between the inference
only median FPS for CuLE (56K) and CuLEcpy (18K), which is 3.11x for 4,096 environments.

3Other games for which we observe a similar behavior are reported in the Appendix, for sake of space.



Furthermore, since the FPS remains flat for CPU emulation, the advantage of CuLE amplifies (for
both on- and off-policy methods) with the number of environments.

Frames per second per environment Fig. show the FPS / environment for different
emulation engines on System I, as a function of the number of environments. For 128 environments
or fewer, CPU emulators generate frames at a higher rate (compared to CuLE), because CPUs are
optimized for low latency, and execute a high number of instructions per second per thread. However,
the FPS / environment decrease with the number of environments, that have to share the same
CPU cores. Instead, the GPU architecture maximizes the throughput and has a lower number of
instructions per second per thread. As a consequence, the FPS / environment is smaller (compared
to CPU emulation) for a small number of environments, but they are almost constant up to 512
environments, and starts decreasing only after this point. In practice, CuLE environments provide
an efficient means of training with a diverse set of data and collect large statistics about the rewards
experienced by numerous agents, and consequently lowering the variance of the value estimate. On
the other hand, samples are collected less efficiently in the temporal domain, which may worsen the
bias on the estimate of the value function by preventing the use of large N in N-step bootstrapping.
The last paragraph of this Section shows how to leverage the high throughput generated by CuLE,
considering these peculiarities.

Memory limitations Emulating a massively large number of environments can be problematic
considering the relatively small amount of GPU DRAM. Our PyTorch [16] implementation of A2C
requires each environment to store 4 84x84 frames, plus some additional variables for the emulator
state. For 16K environments this translates into 1GB of memory, but the primary issue is the combined
memory pressure to store the DNN with 4M parameters and the meta-data during training, including
the past states: training with 16K environments easily exhausts the DRAM on a single GPU (while
training on multiple GPUs increases the amount of available RAM). Since we did not implement
any data compression scheme as in [§], we constrain our training configuration to fewer than 5K
environments, but peak performance in terms of FPS would be achieved for a higher number of
environments - this is left as a possible future improvement.

A2C We analyze in detail the case of A2C with CuLE on a single GPU. As a baseline, we consider
vanilla A2C, using 120 OpenAI Gym CPU environments that send training data to the GPU to update
the DNN every N = 5 steps. This configuration takes, on average, 21.2 minutes (and 5.5M training
frames) to reach a score of 18 for Pong and 16.6 minutes (4.0M training frames) for a score of
1,500 on Ms-Pacman (Fig. E], red line; first column of Table E]) CuLE with 1,200 environments
generates approximately 2.5x more FPS compared to OpenAl Gym, but this alone is not sufficient
to improve the convergence speed (blue line, Fig.5). CuLE generates larger batches but, because
FPS / environment is lower when compared to CPU emulation, fewer Updates Per Second (UPS) are
performed for training the DNN (Table 3, which is detrimental for learning.

A2C+V-trace and batching strategy To better leverage CuLE, and similar in spirit to the approach
in IMPALA [6], we employ a different batching strategy on the GPU, but training data are read in
batches to update the DNN every Steps Per Update (SPU) steps. This batching strategy significantly
increases the DNN’s UPS at the cost of a slight decrease in FPS (second columns of OpenAl Gym
and CuLE in Table @, due to the fact that the GPU has to dedicate more time to training. Furthermore,
as only the most recent data in a batch are generated with the current policy, we use V-trace [6] for
off-policy correction. The net result is an increase of the overall training time when 120 OpenAl Gym
CPU environments are used, as this configuration pays for the increased training and communication
overhead, while the smaller batch size increases the variance in the estimate of the value function and
leads to noisy DNN updates (second column in Table [3] orange lines in Fig.[5)). Since CuLE does
not suffer from the same computational bottlenecks, and at the same time benefits from the variance
reduction associated with the large number (1,200) of environments, using the same batching strategy
with CuLE reduces the time to reach a score of 18 for Pong and 1,500 for Pacman respectively to
5.9 and 6.9 minutes. The number of frames required to reach the same score is sometimes higher
for CuLE (Table [3), which can lead to less sample efficient implementation when compared to the
baseline, but the higher FPS largely compensates for this. Extending the batch size in the temporal
dimension (N-steps bootstrapping, N = 20) increases the GPU computational load and reduces both
the FPS and UPS, but it also reduces the bias in the estimate of the value function, making each DNN
update more effective, and leads to an overall decrease of the wall clock training time, the fastest
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Figure 5: Average testing score and standard deviation on four Atari games as a function of the
training time, for A2C+V-trace, System III in Table [2] and different batching strategies (see also
Table[3). Training frames are double for the multi-GPU case (black line). Training performed on
CuLE or OpenAl Gym; testing performed on OpenAl Gym environments (see the last paragraph of
Section [)).

convergence being achieved by CuLE with 1,200 environments. Using OpenAl Gym with the same
configuration results in a longer training time, because of the lower FPS generated by CPU emulation.

Generalization for different systems Table 4] reports the FPS for the implementations of vanilla
DQN, A2C, and PPO, on System I and II in Table 2} The speed-up in terms of FPS provided by
CuLE is consistent across different systems, different algorithms, and larger in percentage for a
large number of environments. Different DRL algorithms achieve different FPS depending on the
complexity and frequency of the training step on the GPU.

Table 4: Average FPS and min/max GPU utilization during training for Pong with different algorithms
and using different emulation engines on different systems (see Table[2); CuLE consistently leads to
higher FPS and GPU utilization.

Algorithm  Emulation engine

FPS [GPU utilization %]
System I [256 envs] System I [1024 envs] ‘ System II [256 envs] System II [1024 envs]

OpenAl 6.4K [15-42%] 8.4K [0-69%] 10.8K [26-32%) 21.2K [28-75%]
DQN CuLEcpy 7.2K [16-43%] 8.6K [0-72%] 6.8K [17-25%] 20.8K [8-21%]
CuLE 14.4K [16-99%] 25.6K [17-99%] 11.2K [48-62%] 33.2K [57-77%]

OpenAlI 12.8K [2-15%] 15.2K [0-43%] 24.4K [5-23%] 30.4K [3-45%]

A2C CuLEcpy 10.4K [2-15%] 14.2K [0-43%] 12.8K [1-18%] 25.6K [3-47%]
CuLE 19.6K [97-98%] 51K [98-100%] 23.2K [97-98%) 48.0K [98-99%]

OpenAl 12K [3-99%] 10.6K [0-96%] 16.0K [4-33%] 19.2K [4-62%]

PPO CuLEcpy 10K [2-99%] 10.2K [0-96%] 9.2K [2-28%] 18.4K [3-61%]
CuLE 14K [95-99%] 36K [95-100%] 14.4K [43-98%) 28.0K [45-99%]

5 Conclusion

As already shown by others in the case of DRL on distributed system, our experiments show that
proper batching coupled with a slight off-policy gradient policy algorithm can significantly accelerate
the wall clock convergence time. Although the wall clock metric only partially describes the efficiency
of the learning procedure, it is among the most important from the practical point of view [18} 121} 5];
furthermore, since research is often limited by the turnaround time of experiments, reducing training



time accelerates the discovery of new algorithms. CuLE has the additional advantage of allowing
effective scaling to systems with multiple GPUs.

CuLE dramatically increases the number of parallel environments, but because of the low number of
instructions per second per thread on the GPU, training data can be narrow in the time direction. This
can be problematic for problems with sparse temporal rewards, but rather than considering this as a
pure limitation of CuLE, we believe that this peculiarity opens the door to new interesting research
questions, like active sampling of important states [[7, 22] that can then be effectively analyzed on
a large number of parallel environments with CuLE. CuLE also hits a new obstacle, which is the
limited amount of DRAM available on the GPU; studying new compression schemes, like the one
proposed in [7], as well as training methods with smaller memory footprints may help extend the
utility of CuLE to even larger environment counts, and design better GPU-based simulator for RL in
the future. Since these are only two of the possible research directions for which CuLE is an effective
investigation instrument, CuLE comes with a python interface that allows easy experimentation and
is freely available to any researcher at https://github.com/NVlabs/cule.

6 Impact Statement

As interest in deep reinforcement learning has grown so has the computational requirements for
researchers in this field. However, the reliance of DRL on the CPU, especially for environment simu-
lation/emulation, severely limits the utilization of the computational resources typically accessible to
DL researchers, specifically GPUs. Though Atari is a specialized DRL environment, it is arguably one
of the most studied in recent times and provides access to several training environments with various
levels of difficulty. The development and testing of DRL using Atari games remains a relevant and
significant step toward more efficient algorithms. There are two impact points for CuLE: 1) Provide
access to an accelerated training environment to researchers with limited computational capabilities.
2) Facilitate research in novel directions that explore thousands of agents without requiring access
to a distributed system with hundreds of CPU cores. Although leaving RL environments "as-is"
on CPUs and parallelizing across multiple nodes is indeed the shortest path to make progres, it is
also inherently inefficient, in terms of the resource utilization on the local machine, and expensive,
since it requires access to a large number of distributed machines. The more efficient use of the
computational resources could also lead to a smaller carbon footprint.
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