A Details from section 2

Proof of Lemma 1. By definition we have

T T
w) =Y (w —u,g0) =D (20,90 (01— |ul]) +||u||Z Tall 9
t=1

t=1

=RY(|ul) + |ul|RF (IIuH) '

B Details from section 3

Proof of Theorem 2. For any fixed u € W, let r = max /.

Tl

”u” € [0,1] and ”'“” € W. Therefore, similar to the proof of Lemma 1, we decompose the regret
agalnst u as:

cw r’. Note that by definition we have

¢ - [RAWNIRS ru
(we —u,gt) = Z Zt, 9t) i +Tz<zt_Magt>7
= t=1 t=1

t=1

which, by the guarantees of Ay, and Az, is bounded in expectation by
9 (”“”L\/T + uldL\/T) :
T T

Finally noticing % < r by the definition of c finishes the proof. O

C Details from section 4

Proof of Lemma 3. Denote by w,; = v,.2;. By Jensen’s inequality we have

T T T

> Efl(wy) — (u)] =E lz 0 (w) — () |+ E [l (wy) — £ (wy)]

t=1 . t=1 t=1 (5)
Z E 6} (wi) — l(w)].

We now continue under the assumption that ¢; is L-Lipschitz. After completing the proof of the first

equation of Lemma 3 we use the S-smoothness assumption to prove the second equation of Lemma
3.

Note that the condition |{z:, g:)| < 1 in Algorithm 4 indeed holds in this case since Z = W C B and
llg¢ll2 < L by the Lipschitzness condition.
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Using the L-Lipschitz assumption we proceed:

T

DB (we) — L(w)] <Y E[6 (we) — 6 (w)] + Y B[ (u) — b(w)]

H
Il
i

E[6;" (wi) = 6" (w)] + E[Lv|[|05¢]2]

-

~
Il
-

E[6;" (we) — 6" (w)] + E[5L|ve]

-

-
Il
—

-

E 67 (wi) — &' (u)] + E[0L|v]

H_
Il
-

T

+ Y R (we) — £ (1))

t=1

M=

<STE[G (1) — 6" (w)] + 2E[SL v

~
Il
—

Now, by using the L-Lipschitz assumption once more we find that

T
D E (1= a)u) = £ (w)] < of[uf.TL (6)

t=1

By using equation (6), the convexity of ¢;*, and Lemma 2 we continue with:

T T
> Efl(wy) — L(w)] <Y E (b — (1 - a)u, )] + 2E[6L|vs|] + af|u].TL
T
F (o ) ] 2 [ n]
+ Y 2E[§L|v]] + of|ul|.TL
Tt 1

S o0 -5 (1]« Znun S (e — i)

- 2T6LHTLH + alul.TL

where £;(v) = v(z¢,§:) + 20 L|v| as defined in Algorithm 5, & = Ty (1 — @)u, and r > 0 is such

that ”’”” c Z.

Finally, by using the convexity of /;, plugging in the guarantee of .4y, and using Theorem 6 we
conclude the proof of the first equation of Lemma 3:

T
> B[l (wy) — b (u)]
< orsr ‘“H Z( |“”> oo | + 14l g li@t —a,d1) | + aful.TL

~ L
=0 (1 + T&LHT—H 1 @va/ﬂr ”"J'éd VT + auzTL> ,
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Next, we continue from equation (5) under the smoothness condition. Using the definition of
smoothness we find

T
D B (we) — bi(u)] <

M=

T
E (6" (we) = £ (w)] + Y E[6" (u) — ()]

~
Il
—

-

E 67 (we) — 6 (w)] + E [38]ve*[|05¢ 3]

H_
Il
-

-

E 67 (we) — 6 (w)] + E [36%[v[* 5]

“
Il
—

-

E [0} () — 6" (w)] + E [50%|v|*3]

~
Il

+
="

B0} (wr) — 6" (wy)]

B

<SR [0 (i) — 02 (w)] + E [B6%|vy]?] .

H
l
—

Using equation (6), the convexity of ¢;*, and Lemma 2 we continue with:

S E () — fo(w)

IN |
="

E [(d — (1~ a)u, g)] + E [56|ur[*] + allul,TL

t=1

I
[M]=

e [(o— 20 z1,g0] + & [557u] Z” E ({2 — 6 60)] + allull:TL

t=1

852 (”“”) +ZE[ (”“”)} Z”“” (2 — i 60)] + allul2TL,

where £;(v) = v{(zq, §;) + B6%v? as defined in Algorithm 5. Finally, by using the convexity of /;,
plugging in the guarantee of .Ay,, and using Theorem 6 we conclude the proof:

'ﬂ

D Ell(wr) — bi(w)]

2 T T
S T652 (”:‘f”) +E Z <Ut - ”,f:”> 3!@(%) + @E [Z<Zt - ﬂ;gt> + OZ”’UJHQTL
t=1 t=1
2
-0 <1+T552 <|1:|> ||u”L VT + — ”u” dL\er &% 2TL>.
O

Theorem 6. Suppose that {;(0) = 0, that {; is L-Lipschitz for all t, and that Z C B. For
u € (1 — &) Z, Online Gradient Descent on (1 — o) Z with learning rate n = ./ ﬁ satisfies

T
Zzt_u!]t

Proof. The proof essentially follows from the work of Zinkevich [27], Flaxman et al. [13] and using
the assumptions that ¢;(0) = 0 and that ¢; is L-Lipschitz. We start by bounding the norm of the

SQC%L\/T.
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gradient estimate:

d
lgello =516 (wo)lllsel>

:—5|€t(vt(zt + (SSt)) — gt(0)| (7)
t
L]z (-; dsills _ dL(L —5a +6)

By using equation (7) and the regret bound of Online Gradient Descent [27] we find that

T
a) n X
+ §Z|\gt|\§
t=1

(1-a) 7 <dL(1 _5a+5)>2T

T T

Z<ztagt> - zegllli)Z;@ﬂQ

t=1

IN

Plugging inn =/ % completes the proof. O
C.1 Details of section 4.1

Proof of Theorem 3. First, since ¢;(0) = 0, ¢; is L-Lipschitz, and z; € (1 — @)Z = (1 — a)B we
have that
dL(l1 —a+46 2dL
(080) < zdlblgel < (1 — ) EE=2FD 2L ®)

where the first inequality is the Cauchy-Schwarz inequality and the second is due to equation (7).
Since [00:(vt)| < |z, gt)| + 20L = Ly, we can use Lemma 3 to find

~ dL
E[Rr(u)] = O (6TL||u|| + ||u||7\/f—|— aTL|u|2) :
Plugging in o = 0 and § = min{1,VdT~1} completes the proof. O

Proof of Theorem 4. By equation (8) | (2, §.)| < 24-. Since v; < 5 we have that
dL +25 _ B(dL +2)

- dL
\(%t(vtﬂ ST +2|’Ut|ﬁ(52 S

) - 0
If [|ull2 < 5% applying Lemma 3 with o = 0 gives us
T
B |> tiwi) - &(U)] 6 (14708 ulP + Jul 2VT ). ©)
t=1

If [|ul|2 > 5% then using the Lipschitz assumption on ¢; and equation (9) with u = 0 gives us

[Z gt wt — gt

Zét ’U}t — gt + Et(O) — Et(u)]

= O(1 + ulloLT)
— O(1 + [ul38°LT),

(10)

where we used that [|u|2 > #5. Adding equations (9) and (10) gives

E Z Li(wy) — le(u) | =

dL
(1 + 3017 + T8l + ) 22 ﬁ)
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Setting § = min{1, (dL)'/3T~1/6} gives us

T
E [Z (wn) — o) | = O (1 -+ max{l[ull®, [l }SELT)E + max{ul}, |ul }AL*6VT)
t=1

O

C.2 Details of section 4.2

Proof of Theorem 5. First, to see that z; + ds; € W recall that by assumption YW C B. Since o = §
we have that z; + ds; € (1 — )W +6S C (1 — )W + W = W. For any fixed u € W, let

r’. Note that by definition we have M € [0,1] and % € W . By using equation

[

TS MaX oy
(8) we can see that |04, (v¢)| < 4 + 25 L. By definition, 2 < c. This implies that the regret of Ay, is

0] (1 + ”—:f” % VT ) Applying Lemma 3 with the parameters above we find

E

T
> li(wy) — Ci(u)

_ dL
_o (1 + (lulls + ellwl)TLS + cl|ullsLVT + C”u”aﬁ> '

Finally, setting § = min{1, Vdr—Y 4} completes the proof:

T
E [Z (i (wy) — &(u)] =0 (1+ (lulle + cllul)VaT** + clul dLVT)
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