
Supplementary Materials

A Algorithm details

A.1 Optimizing interval times

Algorithm 1: Optimizing interval times with the dynamics model.

Input :The pretrained state transition dynamics model P̂ (z0|z, a, s, ⌧), the replay buffer D, the
reward function R(s, a, s0), the time horizon T , and the number of episodes Ne.

Output :⇡!(a|s).
1 Initialize the policy ⇡!(a|s) (along with the action-value function Q

⇡(s, a));
2 for j 1 to Ne do
3 t 0;
4 Observe the initial state s from the environment;
5 Initialize the latent state z;
6 while t < T do
7 Select action a ⇠ ⇡!(·|s);
8 ŝ0 s;
9 for i 1 to |T | do

10 zi P̂ (·|z, a, s, i);
11 Decode ŝi from zi;
12 Select action âi ⇠ ⇡!(·|ŝi);
13 Calculate the immediate reward r̂i R(ŝi�1, a, ŝi) at the current time point t+ i;
14 end
15 Select the best incoming time interval ⌧⇤ argmax

⌧

P
⌧

i=1 �
i�1

r̂i + �
⌧
Q

⇡(ŝ⌧ , â⌧);
16 z

0
, s

0
, r z⌧⇤ , ṡ⌧⇤ ,

P
⌧
⇤

i=1 �
i�1

ṙi;
17 if s0 is not the terminated state then
18 Store the tuple (s, a, s0, r, ⌧) into D;
19 else
20 Store the tuple (s, a,NULL, r, ⌧) into D;
21 break;
22 end
23 Optimize ⇡! with data in D;
24 t, s, z t+ ⌧

⇤
, s

0
, z

0;
25 end
26 end

Our innovation of optimizing interval times is highlighted in blue in Algorithm 1. Note that we can
use either the imaginary reward r̂ from the dynamics model or the true reward r from the environment
for training the policy ⇡! , i.e., ṙ can be either r̂ or r, and similar case for ṡ⌧⇤ (line 16 of Algorithm
1). In this work, to focus on the efficacy of the optimized time schedules, we use the true reward r

and true observation s⌧⇤ ; but the optimal ⌧ is always determined using the imaginary reward r̂.

A key assumption of Algorithm 1 is that acting often using short time intervals will not hurt perfor-
mance, and that maximal interaction (i.e. ⌧ = 1 for discrete time) will have the optimal performance.
In many scenarios, this assumption seems reasonable and applying Algorithm 1 may work well. For
instance, in healthcare applications, it is safe to assume that more frequent monitoring of patients and
more careful tuning of their treatment plan should yield optimal performance, although in practice
this is not generally done due to e.g. resource constraints. However, this assumption does not hold for
all environments. For example, some Atari games require frameskipping, i.e., repeating actions for k
times, because we need enough changes in pixels to find a good policy. Also, some control problems
have an optimal time step for the underlying physical systems. In these situations, one might set a
minimum threshold a for ⌧ and apply the algorithm, i.e., ⌧ 2 [a,+1); together with the extension to
continuous time (Equation 14), we leave them to future work.

13

⌧
⇤ := argmax

⌧2[a,1)

Z
⌧

t=a

�
t
r̂ dt+ �

⌧
Q

⇡(ŝ⌧ , â⌧) (14)

A.2 Learning world models

Algorithm 2: Learning world models [Ha and Schmidhuber, 2018] for SMDPs.
Input :The replay buffer D, the reward function R(s, a, s0), the time horizon T , and the

number of episodes Nt for model learning and Ne for policy optimization.
Output :P̂ (z0, ⌧ |z, a, s),⇡!(a|s).

1 Initialize the policy ⇡!(a|s) (along with the action-value function Q
⇡(s, a));

2 Initialize the dynamics model P̂ (z0, ⌧ |z, a, s);

3 Collect a collection of trajectories h =
⇣
{s(n)

i
}Ln

i=0, {a
(n)
i

}Ln�1
i=0 , {⌧ (n)

i
}Ln�1
i=0

⌘Nt

n=1
using

random policies, where
P

Ln�1
i=0 ⌧

(n)
i

< T for 8n 2 {1, 2, . . . , Nt};
4 Train P̂ (z0, ⌧ |z, a, s) with h as described in Section 4.1;
5 for i 1 to Ne do
6 t 0;
7 Observe the initial state s from the environment or sample from a set of initial states;
8 Initialize the latent state z;
9 while t < T do

10 Select action a ⇠ ⇡!(·|s);
11 Predict the incoming time interval ⌧ and next latent state z

0 using P̂ (·|z, a, s);
12 Decode s

0 from z
0;

13 Calculate the reward r R(s, a, s0);
14 if s0 is not the terminated state then
15 Store the tuple (s, a, s0, r, ⌧) into D;
16 else
17 Store the tuple (s, a,NULL, r, ⌧) into D;
18 break;
19 end
20 Optimize ⇡! with data in D;
21 t, s, z t+ ⌧, s

0
, z

0;
22 end
23 end

Algorithm 2 assumes that the dynamics can be fully covered by random policies. However, these
may be far away from the optimal policy. Because the policy is trained only on fictional samples
without considering the planning horizon, there is no difference between learning in the virtual world
created by the dynamics model and the true environment. Thus, the performance of learned policies
is mainly determined by the model’s capacity.

Nevertheless, Algorithm 2 does not work well on more sophisticated Mujoco tasks, because the
dynamics cannot be fully explored by a random policy, and a long planning horizon makes the
compounding error of fictional samples accumulate very quickly. One might use an iterative training
procedure of Algorithm 2 [Ha and Schmidhuber, 2018, Schmidhuber, 2015] for more complex
environments, which interleaves exploration and learning. However, in order to combat the model
bias, this type of Dyna-style algorithm usually requires computationally expensive model ensembles
[Kurutach et al., 2018, Janner et al., 2019]. Thus, we turn to the MPC-style algorithm for planning
(Algorithm 3), which is also sufficiently effective to demonstrate a learned model’s capacity and is
more computationally efficient.

14

A.3 Model predictive control with actor-critic

Algorithm 3: Model predictive control (MPC) with DDPG for SMDPs.
Input :The replay buffer D, the environment dataset Denv , the reward function R(s, a, s0), the

planning horizon H , the search population K, the number of environment steps M and
the number of epochs E.

Output :P̂ (z0, ⌧ |z, a, s),⇡!(a|s), Q⇡

'
(s, a).

1 Initialize the actor ⇡!(a|s) and the critic Q
⇡

'
(s, a), and their target networks ⇡!0 and Q

⇡

'0 ;
2 Initialize the dynamics model P̂ (z0, ⌧ |z, a, s);
3 Gather a collection of trajectories using random policies, and save them into Denv;
4 for i 1 to E do
5 Train P̂ (z0, ⌧ |z, a, s) with data in Denv as described in Section 4.1;
6 Observe the initial state s from the environment;
7 Initialize the latent state z;
8 for j 1 to M do
9 for k 1 to K do

10 t
(k)
0 , ŝ

(k)
0 , z

(k)
0 0, s, z;

11 for h 1 to H do
12 Select action a

(k)
h�1 ⇠ ⇡!(·|ŝ(k)h�1);

13 z
(k)
h

, ⌧
(k)
h�1 P̂ (·|z(k)

h�1, a
(k)
h�1, ŝ

(k)
h�1);

14 Decode ŝ
(k)
h

from z
(k)
h

;
15 Calculate the reward r̂

(k)
h�1 R(ŝ(k)

h�1, a
(k)
h�1, ŝ

(k)
h

);
16 t

(k)
h
 t

(k)
h�1 + ⌧

(k)
h�1;

17 end
18 Select action a

(k)
H
 ⇡!(·|ŝ(k)H

);
19 end
20 Select the best sequence index k

⇤ argmax
k

P
H

h=1 �
t
(k)
h�1 r̂

(k)
h�1 + �

t
(k)
H Q

⇡

'
(ŝ(k)

H
, a

(k)
H

);
21 Select the best action a a

(k⇤)
0 ;

22 Observe the incoming time interval ⌧ and next observation s
0;

23 Encode the next latent state z
0 P̂ (·|z, a, s, ⌧);

24 Calculate the reward r R(s, a, s0);
25 if s0 is not the terminated state then
26 Store the tuple (s, a, s0, r, ⌧) into D;
27 else
28 Store the tuple (s, a,NULL, r, ⌧) into D;
29 Observe the initial state s from the environment;
30 Initialize the latent state z;
31 continue;
32 end
33 Optimize ⇡! and Q

⇡

'
with data in D;

34 Update target networks ⇡!0 and Q
⇡

'0 ;
35 s, z s

0
, z

0;
36 end
37 Store trajectories collected in the current epoch into Denv;
38 end

In Algorithm 3, the actor provides a good initialization of deterministic action sequences, and MPC
searches for the best one from these sequences plus Gaussian noises, i.e., we sample the action from
a normal distribution a ⇠ N (⇡!(·|s),�2), where �

2 is the noise variance (line 12 of Algorithm 3).
Further, in the vanilla MPC, the best sequence is determined by the cumulative reward of model
rollouts, however, the selected action may not be globally optimal due to the short planning horizon
H . The critic offers an estimate of expected returns for the final state of simulated trajectories,

15

which overcomes the shortsighted planning problem (line 20 of Algorithm 3). Note that we use the
deterministic action aH (without Gaussian noise) for the final state ŝH to calculate the action-value
function Q(ŝH , aH) (line 18 of Algorithm 3).

B Environment specifications

Windy gridworld. We extend the 7 ⇥ 10 gridworld to have continuous states s = (x, y) and
continuous-time actions. That is, picking an orientation (action) a = (�x,�y), agents move towards
this direction over arbitrary second(s) ⌧ 2 Unif{1, 7} for (⌧�x, ⌧�y). The agent is allowed to
“move as a king”, i.e., take eight actions, including moving up, down, left, right, upleft, upright,
downleft and downright. Specifically, the agent can move a = (�x,�y) in the gridworld every
second:

a = (�x,�y) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(0.17, 0) up ,

(�0.17, 0) down ,

(0,�0.17) left ,
(0, 0.17) right ,
(0.17p

2
,� 0.17p

2
) upleft ,

(0.17p
2
,
0.17p

2
) upright ,

(� 0.17p
2
,� 0.17p

2
) downleft ,

(� 0.17p
2
,
0.17p

2
) downright .

Every second, agents in the region with the weaker wind (x 2 [2.5, 8.5], y 2 [0, 7]) are pushed
to move upward for (�x,�y) = (0.174 , 0), and agents in the region with the strong wind (x 2
[5.5, 7.5], y 2 [0, 7]) are pushed to move upward for (�x,�y) = (0.172 , 0). If agents hit the
boundary of the gridworld, they will just stand still until the end of transition time ⌧ . Every second in
the gridworld incurs -1 cost until discovering the goal region (trigger +10 reward) or after T = 150
seconds. Thus, we are given the reward function

R(s, a, s0, ⌧) =

⇢
10� ⌧, s

0 = (x 2 [3, 4], y 2 [6.5, 7.5]),
�⌧, otherwise.

In addition, we feed the zero-centered state (x̄, ȳ) for both model training and policy optimization.

Acrobot. Acrobot, a canonical RL and control problem, is a two-link pendulum with only the
second joint actuated. Initially, both links point downwards. The goal is to swing up the pendulum by
applying a positive, neutral, or negative torque on the joint such that the tip of the pendulum reaches
a given height. The state space consists of four continuous variables, s = (✓1, ✓2, ✓̇1, ✓̇2), where
✓1 2 [�⇡,⇡] is the angular position of the first link in relation to the joint, and ✓2 2 [�⇡,⇡] is the
angular position of the second link in relation to the first; ✓̇1 2 [�4⇡, 4⇡] and ✓̇2 2 [�9⇡, 9⇡] are the
angular velocities of each link respectively. The reward is collected as the height of the tip of the
pendulum (as recommended in the work of [Wang et al., 2019]) after the transition time ⌧ :

R(s, a, s0) = � cos ✓1 � cos (✓1 + ✓2),

until the goal is reached or after T = 100.

HIV. The interaction of the immune system with the human immunodeficiency virus (HIV) and
treatment protocols was mathematically formulated as a dynamical system [Adams et al., 2004], which
can be resolved using RL approaches [Ernst et al., 2006, Parbhoo et al., 2017, Killian et al., 2017].
The goal of this task is to determine effective treatment strategies for HIV infected patients based on
critical markers from a blood test, including the viral load (V , which is the main maker indicating if
healthy), the number of healthy and infected CD4+ T-lymphocytes (T1, T ⇤

1 , respectively), the number
of healthy and infected macrophages (T2, T ⇤

2 , respectively), and the number of HIV-specific cytotoxic
T-cells (E), i.e., s = (T1, T2, T

⇤
1 , T

⇤
2 , V, E). To build a partially observerable HIV environment, T ⇤

1
and T

⇤
2 are removed from the state space. The anti-HIV drugs can be roughly grouped into two

main categories (Reverse Transcriptase Inhibitors (RTI) and Protease Inhibitors (PI)). The patient is
assumed to be given treatment from one of two classes of drugs, a mixture of the two treatments, or

16

provided no treatment. The agent starts at an unhealthy status s0 = [163573, 5, 11945, 46, 63919, 24],
where the viral load and number of infected cells are much higher than the number of virus-fighting
T-cells. The dynamics system is defined by a set of differential equations:

Ṫ1 = �1 � d1T1 � (1� ✏1) k1V T1

Ṫ2 = �2 � d2T2 � (1� f✏1) k2V T2

Ṫ
⇤
1 = (1� ✏1) k1V T1 � �T

⇤
1 �m1ET

⇤
2

Ṫ
⇤
2 = (1� ✏2)NT � (T

⇤
1 + T

⇤
2)� cV � [(1� ✏1) ⇢1k1T1 + (1� f✏1) ⇢2k2T2]V

Ė = �E +
bE (T ⇤

1 + T
⇤
2)

(T ⇤
1 + T

⇤
2) +Kb

E � dE (T ⇤
1 + T

⇤
2)

(T ⇤
1 + T

⇤
2) +Kd

E � �EE

where ✏1 = 0.7 (if RTI is applied, otherwise 0) and ✏2 = 0.3 (if PI is applied, otherwise 0) are
treatment specific parameters, selected by the prescribed action. See the specification of other
parameters in the work of [Adams et al., 2004].

The effective period is determined by the state (mainly determined by the viral load V) and the
treatment as follow:

⌧ ⇠

8
>>>>>>>>><

>>>>>>>>>:

Unif{7, 14} if V  104 and no treatment,
Unif{3, 7} if V  104 and any treatment,
Unif{3, 7} if 104  V  105 and no treatment,
Unif{3, 5} if 104  V  105 and (only RIT or only PI),
3 if 104  V  105 and (both RIT and PI),
3 if V � 105 and no treatment,
Unif{1, 2} if V � 105 and any treatment.

The reward is gathered based on the patient’s healthy state after effective period:

R(s, a, s0) = �0.1V � 20000✏21 � 2000✏22 + 1000E.

An episode ends after T = 1000 days and there is no early terminated condition. The state variables
are first put in log scale then normalized to have zero mean and unit standard deviation for both model
training and policy optimization.

Mujoco. We consider the fully observable Mujoco environments, where the position of the root
joint is also observed, which allows us to calculate the reward and determine the terminal condition
for simulated states easily. The action repeats ⌧ times with the following pattern:

⌧ =

�
d� c

2
cos (20⇡k✓vk2) +

c+ d

2

⇡

where c/d is the minimum/maximum action repetition times, ✓v is the angle velocity vector of all
joints and b·e is rounding to the nearest integer. We have c = 1 for all three locomotion tasks; d = 7
for the swimmer and the hopper and d = 9 for the half-cheetah.

Because we assume the intermediate observations are not available during action repetition, the
reward is calculated only based on the current observation s, the next observation s

0, the control input
a and and repeated times ⌧ :

R(s, a, s0, ⌧) =

8
><

>:

x
0�x

⌧
� 0.0001kak22, for the swimmer,

x
0�x

⌧
� 0.001kak22 + (alive), for the hopper,

x
0�x

⌧
� 0.1kak22, for the half-cheetah,

where x/x
0 is the previous/current position of the root joint, and there is an alive bonus of 1 for the

hopper for every step. Also, instead of setting a fixed horizon, we keep the original maximum length
of an episode in OpenAI Gym, i.e., the maximum number of environment steps over an episode is
1000 for all three tasks. We normalize observations so that they have zero mean and unit standard
deviation for both model training and policy optimization.

17

C Experimental details

C.1 Planning

Learning world models. For all three simpler domains, we collect Nt = 1000 episodes as the
training dataset, and collect another 100 episodes as the validation dataset. We optimize the policy
for Ne episodes until convergence, whose value is shown in Table 4. All final cumulative rewards are
evaluated by taking the average reward of 100 trials after training policies for Ne episodes.

Table 4: The choice of Ne for training policies until convergence.
Gridworld Acrobot HIV

model-based 1000 200 1500
model-free 1000 3500

Model predictive control with actor-critic. We switch between model training and policy opti-
mization every M = 5000 environment steps. Equipped with the value function from the critic, we
can choose a relatively shorter planning horizon H = 10, which maintains the good performance
while reducing the computational cost. We set a large search population K = 1000.

For model learning, the 90% collected trajectories are used as the training dataset and the remaining
10% are used as the validation dataset. Also, we divide a full trajectory into several pieces, whose
length is equal to (or less than) the MPC planning horizon H . Not only does it reduce the computa-
tional cost of training a sequential model, but also helps the dynamics model provide more accurate
predictions in a finite horizon.

Throughout all experiments, we use a soft-greedy trick for MPC planning to combat the model
approximation errors [Hong et al., 2019]. Instead of selecting the best first action (line 20 of
Algorithm 3), we take the average of first actions of the top 50 sequences as the final action for the
agent. This simple approach alleviates the impact of inaccurate models and improves the performance.

Initialization of latent states. While using the model for planning, initial latent states of recurrent-
based models are all zeros, but they are sampled from the prior distribution (standard normal
distribution) for models with the encoder-decoder structure.

C.2 Model learning

Scheduled sampling. As our model predicts the new latent state z
0 at time t + 1, it needs to be

conditioned on the previous state at the previous time step t. During training, there is a choice for
the source of the next input for the model: either the ground truth (observation) or the model’s own
previous prediction can be taken. The former provides more signal when the model is weak, while the
latter matches more accurately the conditions during inference (episode generation), when the ground
truth is not known. The scheduled sampling strikes a balance between the two. Specifically, at the
beginning of the training, the ground truth is offered more often, which pushes the model to deliver
the accurate short term predictions; at the end of the training, the previous predicted state is more
likely to be used to help the model focus on the global dynamics. In other word, the optimization
objective transits from the one-step loss to multiple-step loss. Therefore, the scheduled sampling can
prevent the model from drifting out of the area of its applicability due to compounding errors. We use
a linear decay scheme for scheduled sampling ✏ = max{0, 1� c · k}, where c = 0.0001 is the decay
rate and k is the number of iterations. However, we find that the scheduled sampling only works well
on the acrobot task.

Early stopping. On Mujoco tasks, we utilize early stopping to prevent from overfitting, i.e., we
terminate the training if the state prediction error (MSE in Equation 10) on the validation dataset does
not decrease for e training epochs and we use the parameters achieving the lowest state prediction
error as the final model parameters. Because the model already learns the dynamics after trained
for several epochs in Algorithm 3 and only needs to be refined for some novel situations, we use a
linear decay scheme: e = max(15 � k, 3), where k is the number of epochs in Algorithm 3. For
three simpler domains, we run 12,000 iterations without early stopping.

18

Model hyperparameters. We tune the hyperparameters for dynamics models on different domains,
but all baseline models use a same set of hyperparameters for comparison.

Table 5: Hyperparameters for dynamics models on different domains.
Gridworld Acrobot HIV Swimmer Hopper HalfCheetah

Learning rate 1e-3 5e-4 1e-3
Batch size 32 128

Latent dimension 2 10 128 400
Weight decay 1e-3

Scheduled sampling No Yes No
GRU one layer, unidirectional, Tanh activation

Encoder hidden to latent 5 20
Interval timer g N/A 20
� in Equation 9 0 0.01

ODE network f✓ 5 20 128 400
ODE solver Runge-Kutta 4(5) adaptive solver (dopri5)

ODE error tolerance 1e-3 (relative), 1e-4 (absolute) 1e-5 (relative), 1e-6 (absolute)

All hyperparameters are shown in Table 5. Specifically,

• “Learning rate” refers to the learning rate for the Adam optimizer to train the dynamics model.

• “GRU” refers to the architecture of the GRU in all experiments, including the encoder in the
Latent-RNN and Latent-ODE;

• For encoder-decoder models, we use a neural network with one layer and Tanh activation
to convert the final hidden state of the encoder to the mean and log variance (for applying
reparameterization trick to train VAE) of the initial latent state of the decoder. “Encoder hidden
to latent” refers to the number of hidden units of this neural network.

• We use a neural network with one layer and Tanh activation for the interval timer g. “Interval
timer g” refers to the number of hidden units of this neural network.

• We use a neural network with two layers and Tanh activation for the ODE network f✓. “ODE
network f✓” refers to the number of hidden units of this neural network.

• “ODE solver” refers to the numerical ODE solver we use to solve the ODE (Equations 6 and
7). Note that we do not use the adjoint method [Chen et al., 2018] for ODE solvers due to a
longer computation time.

• “ODE error tolerance” refers to the error tolerance we use to solve the ODE numerically.

C.3 Policy

DQN hyperparameters. The DQN for three simpler domains has two hidden layers of 256 and
512 units each with Relu activation. Parameters are trained using an Adam optimizer with a learning
rate 5e-4 and a batch size of 128. We minimize the temporal difference error using the Huber loss,
which is more robust to outliers when the estimated Q-values are noisy. We update the target network
every 10 episodes (hard update). The action is one-hot encoded as the input for DQNs. To improve
the performance of the DQN, we use a prioritized experience replay buffer [Schaul et al., 2015] with
a prioritization exponent of 0.6 and an importance sampling exponent of 0.4, and its size is 1e5. To
encourage exploration, we construct an ✏-greedy policy with an inverse sigmoid decay scheme from 1
to 0.05. Also, all final policies are softened with ✏ = 0.05 for evaluation.

DDPG hyperparameters. The DDPG networks for both the actor and critic have two hidden
layers of 64 units each with Relu activation. Parameters are trained using an Adam optimizer with a
learning rate of 1e-4 for the actor, a learning rate of 1e-3 for the critic and a batch size of 128. The
target networks are updated with the rate 1e-3. The size of the replay buffer is 1e6. To encourage
exploration, we collect 15000 samples with a random policy at the beginning of training, and add a
Gaussian noise N (0, 0.12) to every selected action.

19

Figure 5: Learning curves with all baselines on three simpler domains. The x-axis is the number
of episodes in Algorithm 2 (for the model-free baseline, the x-axis is the number of episodes in
the actual environment). The shaded region represents a standard deviation of average evaluation
over four runs (evaluation data is collected every 4 episodes). Curves are smoothed with a 20-point
window for visual clarity.

Discount factors. The discount factor is 0.99 for the windy gridworld and Mujoco tasks, is 0.995
for the HIV domain, and is 1 for the acrobot problem.

D Additional figures and tables

D.1 Learning curves of learning world models

Figure 6: Learning curves of different
policies on the partially observable HIV
environment.

Figure 5 shows the learning process of all baselines on
three simpler domains. Note that Figure 5 does not nec-
essarily demonstrate the sample efficiency because the
model-free method uses the online real data, whereas
the model-based approach (learning world models) uses
the offline real data. However, we still observe that the
Latent-ODE and ODE-RNN develop a high-performing
policy much faster than the model-free baseline over 1500
episodes in the HIV environment. The model-free base-
line converges after 3500 episodes. In addition, the ac-
robot problem clearly shows the model difference in terms
of abilities of modeling the continuous-time dynamics.
The Latent-ODE and ODE-RNN outperforms other mod-
els; The RNN and Latent-RNN, designed for discrete-time transitions, totally lose their ways in
continuous-time dynamics, but their similar performance might suggest the limited impact of archi-
tecture (recurrent vs. encoder-decoder); The �t-RNN and Decay-RNN also struggle on modeling
continuous-time dynamics though they leverage time interval information in different ways.

Moreover, Figure 6 shows the learning process of different policies on the partially observable HIV
environment. The latent policy ⇡

MB(a|spartial, z) develops a better-performing policy more quickly
than the vanilla model-based policy ⇡

MB(a|spartial) and the model-free policy ⇡
MF (a|spartial).

D.2 Full results of changing time intervals

Table 6 shows the cumulative rewards of policies learned on regular measurements using pretrained
models from the original irregular time schedule on three simpler domains. We can see that the
Latent-ODE surpasses other baseline models in most situations.

20

Table 6: The cumulative reward (mean ± std, over five runs) of all baselines for all time discretizations.
(a) windy gridworld; (b) acrobot; (c) HIV.

(a)

RNN �t-RNN Decay-RNN Latent-RNN ODE-RNN Latent-ODE Oracle

⌧ = 1 -31.59 ± 1.68 -43.21 ± 1.25 -31.69 ± 1.36 -32.22 ± 1.19 -47.31 ± 1.46 -34.24 ± 1.93 -44.17 ± 0.80

⌧ = 2 -31.95 ± 2.10 -39.37 ± 3.37 -32.27 ± 2.39 -32.75 ± 1.60 -32.40 ± 1.43 -33.82 ± 2.32 -31.61 ± 1.60

⌧ = 3 -35.08 ± 4.91 -34.49 ± 4.82 -35.03 ± 4.87 -43.74 ± 8.71 -36.61 ± 7.04 -32.74 ± 2.22 -32.29 ± 1.60

⌧ = 4 -38.55 ± 7.99 -36.00 ± 5.41 -40.58 ± 8.56 -36.94 ± 5.73 -64.10 ± 14.78 -33.26 ± 1.86 -32.81 ± 1.74

⌧ = 5 -44.33 ± 9.77 -42.97 ± 9.43 -43.55 ± 9.50 -36.87 ± 5.04 -87.50 ± 18.47 -33.84 ± 2.02 -33.35 ± 2.03

⌧ = 6 -43.14 ± 8.75 -54.78 ± 13.35 -53.76 ± 13.68 -42.95 ± 9.08 -99.36 ± 16.46 -35.76 ± 2.72 -34.17 ± 2.09

⌧ = 7 -61.01 ± 10.03 -64.55 ± 10.89 -60.78 ± 10.03 -52.32 ± 8.91 -114.70 ± 11.65 -49.31 ± 6.62 -35.93 ± 1.95

(b)

RNN �t-RNN Decay-RNN Latent-RNN ODE-RNN Latent-ODE Oracle

⌧ = 0.2 -407.46 ± 13.82 -281.92 ± 9.99 -285.07 ± 8.47 -237.25 ± 10.29 -190.82 ± 9.13 -171.37 ± 10.07 -78.75 ± 3.23

⌧ = 0.4 -268.36 ± 15.34 -199.72 ± 12.39 -268.33 ± 15.50 -258.23 ± 9.60 -128.93 ± 12.48 -82.24 ± 8.01 -48.76 ± 2.04

⌧ = 0.6 -150.10 ± 11.59 -168.28 ± 10.33 -154.53 ± 11.72 -232.42 ± 9.49 -106.56 ± 10.74 -68.58 ± 8.62 -47.30 ± 3.95

⌧ = 0.8 -143.98 ± 8.64 -145.16 ± 6.57 -180.71 ± 8.48 -188.45 ± 8.54 -72.00 ± 9.84 -63.81 ± 8.47 -38.18 ± 3.15

⌧ = 1 -147.25 ± 9.55 -66.16 ± 11.29 -138.52 ± 13.59 -155.81 ± 8.30 -51.78 ± 10.16 -39.24 ± 7.24 -23.14 ± 2.50

(c)

RNN �t-RNN Decay-RNN Latent-RNN ODE-RNN Latent-ODE Oracle

⌧ = 1 4.72 ± 0.55 2.25 ± 0.31 5.86 ± 0.70 7.02 ± 1.02 0.58 ± 0.07 7.73 ± 0.99 176.75 ± 56.50

⌧ = 2 7.28 ± 3.34 9.01 ± 3.29 8.76 ± 3.97 11.46 ± 5.07 2.80 ± 0.86 18.54 ± 7.10 70.74 ± 23.61

⌧ = 3 13.85 ± 4.84 20.10 ± 3.97 7.67 ± 3.47 26.60 ± 7.67 8.59 ± 2.72 4.95 ± 1.56 40.32 ± 5.56

⌧ = 4 7.30 ± 2.58 22.76 ± 4.78 7.20 ± 3.26 21.52 ± 4.59 12.30 ± 7.93 22.14 ± 2.32 35.58 ± 2.47

⌧ = 5 7.66 ± 1.79 17.21 ± 2.44 5.84 ± 1.62 16.95 ± 3.05 11.32 ± 1.09 21.60 ± 2.39 33.55 ± 1.97

⌧ = 6 5.36 ± 2.14 4.51 ± 1.41 3.52 ± 1.49 11.74 ± 3.20 7.82 ± 3.37 16.67 ± 2.79 19.74 ± 0.94

⌧ = 7 2.09 ± 0.77 7.34 ± 2.02 2.34 ± 0.97 9.83 ± 3.11 2.45 ± 0.20 8.21 ± 1.90 12.33 ± 0.91

21

	Introduction
	Related work
	Background and notation
	Approach
	Model definition and learning
	Planning and learning

	Experiments
	Experimental setup
	Demonstrations on simpler domains
	Continuous control: Mujoco

	Discussion and conclusion
	Appendix Algorithm details
	Optimizing interval times
	Learning world models
	Model predictive control with actor-critic

	Appendix Environment specifications
	Appendix Experimental details
	Planning
	Model learning
	Policy

	Appendix Additional figures and tables
	Learning curves of learning world models
	Full results of changing time intervals

