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Abstract

In this paper, we study the adaptive complexity of maximizing a monotone gross
substitutes function under a cardinality constraint. Our main result is an algo-
rithm that achieves a 1 − ε approximation in O(log n) adaptive rounds for any
constant ε > 0, which is an exponential speedup in parallel running time com-
pared to previously studied algorithms for gross substitutes functions. We show
that the algorithmic results are tight in the sense that there is no algorithm that
obtains a constant factor approximation in õ(log n) rounds. Both the upper and
lower bounds are under the assumption that queries are only on feasible sets (i.e.,
of size at most k). We also show that under a stronger model, where non-feasible
queries are allowed, there is no non-adaptive algorithm that obtains an approxima-
tion better than 1/2 + ε. Both lower bounds extend to the class of OXS functions.
Additionally, we conduct experiments on synthetic and real data sets to demon-
strate the near-optimal performance and efficiency of the algorithm in practice.

1 Introduction

In this paper, we study the problem of maximizing gross substitutes functions in the adaptive com-
plexity model. Gross substitutes are an extremely well-studied class of functions in microeconomics.
The concept of gross substitutes was first introduced in the seminal work by Arrow and Debreu as
a sufficient condition on the valuation functions of buyers to guarantee the existence of equilibria in
markets with indivisible items [1]. It was later shown to also be a necessary condition [20]. Gross
substitutes functions are also studied in the contexts of stable matchings in two-sided markets [2, 33],
combinatorial auctions [3], and trading networks [23, 25], and have been rediscovered in multiple
fields under different names. We refer the reader to [31] for a survey of the different definitions.

In theoretical computer science and optimization, gross substitutes are considered as a subclass of
submodular functions, as they satisfy the diminishing returns property. For monotone submodu-
lar functions, it is well known that a greedy algorithm that iteratively selects the element with the
maximal marginal contribution to its current solution obtains a 1 − 1/e approximation for max-
imization under a cardinality constraint [30] and that this bound is optimal for polynomial-time
algorithms [29, 19]. For gross substitutes functions, the greedy algorithm returns an optimal so-
lution [13]. Thus, from a purely algorithmic perspective, gross substitutes represent an important
subclass of submodular functions: it is the most expressive class of submodular functions that can be
optimized exactly under cardinality constraints in polynomial time. Not only is gross substitutability
a sufficient condition for the optimality of greedy, but it is also a necessary condition [31].1

1In the context of Walrasian equilibrium, gross substitutes correspond exactly to the class of functions for
which the greedy algorithm is optimal for all price vectors [31].
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A recent line of work began investigating the adaptive complexity of submodular optimization [8, 6,
15, 11, 18, 9, 5, 17, 12, 7, 10, 16, 26]. The adaptive complexity model was introduced in [8] as an
information theoretic measure for the parallel runtime of an algorithm. Informally, the adaptivity of
an algorithm is its number of sequential rounds, when each round can perform polynomially-many
function evaluations in parallel. Since the greedy algorithm adds a single element to the current
solution at every iteration, it has adaptivity that is linear in the cardinality constraint k, which, in the
worst case, is Ω(n). Until recently, there was no known constant factor approximation algorithm
whose adaptivity is sublinear in k for maximizing a submodular, or even a gross substitutes function.

The main result in [8] is an algorithm that obtains a constant factor approximation arbitrarily close
to 1/3 in O(log n) rounds, which was an exponential speedup in parallel runtime for maximizing
monotone submodular functions under a cardinality constraint. They also showed that there is no
õ(log n) adaptive algorithm that achieves a constant approximation. The algorithm in [8] uses a
technique called adaptive sampling that was first extended by [6, 15] to obtain an approximation
that is arbitrarily close to the optimal 1− 1/e, and then by other papers in this genre [18, 5, 17, 26].

Although there has been a great deal of work on submodular maximization in the adaptive com-
plexity model, this work has focused on general submodular functions and little is known about the
adaptive complexity of maximizing gross substitutes functions. On one hand, gross substitutes are
a superclass of additive and unit-demand functions. For additive and unit demand algorithms, it is
trivial to obtain an approximation arbitrarily close to optimal (i.e. 1 − ε, for any constant ε) with
only 1 round. On the other hand, gross substitutes are a subclass of submodular functions. Thus, all
the results in the adaptive complexity model for submodular functions also apply to gross substitutes
and there is aO(log n)-adaptive algorithm that obtains an approximation arbitrarily close to 1−1/e
for maximizing monotone gross substitutes under a cardinality constraint. But to obtain near optimal
results, the only algorithm known is the greedy algorithm whose adaptivity is linear in k.

How many rounds are needed to find a (near) optimal solution to the problem of
maximizing gross substitutes under a cardinality constraint?

Main results. We first show that the number of rounds needed to find a solution that is arbitrar-
ily close to optimal for maximizing monotone gross substitutes under a cardinality constraint is
O(log n). In particular, for any ε > 0, there exists an O(log(n)/ε3) adaptive algorithm that obtains
a 1−ε approximation in expectation. This near-optimal algorithm provides an exponential improve-
ment in parallel runtime compared to previous algorithms for maximizing gross substitutes. We also
provide two lower bounds. The first shows that there is no non-adaptive, i.e. 1-adaptive, algorithm
that obtains an approximation better than 1/2 + ε for maximizing monotone gross substitutes under
a cardinality constraint. This hardness result shows a sharp separation between gross substitutes and
additive and unit demand functions which can both be optimized arbitrarily well in a single round.
The second lower bound is a conditional lower bound. Assuming that the algorithm queries sets
of size O(k), there is no õ(log n) algorithm that obtains a constant approximation for maximizing
monotone gross substitutes under a cardinality constraint.

Furthermore, we conduct experiments on synthetic bipartite graphs and Twitter data. We observe
that the algorithm has near-optimal performance while running in exponentially fewer parallel
rounds. Additionally, the adaptive algorithm outperforms its benchmarks on a range of different
valuations. In practice, we observe that the true number of rounds the algorithm requires is much
lower than the theoretical bound for the approximation guarantee.

1.1 Technical Overview

The algorithm. To show low adaptivity and near-optimal approximation, we first define two
classes of algorithms called impatient greedy and stochastic greedy. Each iteration of a stochastic
greedy algorithm selects an element whose marginal contribution is in expectation a 1− ε approxi-
mation to the optimal marginal contribution at that iteration. We show that this algorithm obtains a
1− ε approximation for gross substitutes.

Most low adaptivity algorithms for submodular functions use a technique called adaptive sampling
[8, 15, 18, 17, 5, 6, 26]. Unfortunately, adaptive sampling does not guarantee that elements added to
the solution have near-optimal contribution at each iteration, which fails to give near-optimal guar-
antees for gross substitutes (see example in Appendix A.2). Instead, the algorithm leverages a recent
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adaptive sequencing technique [7] that guarantees near-optimality of the marginal contributions of
elements added. However, adaptive sequencing from [7] has O(log(n) log(k)) adaptivity.

To improve the adaptivity, we introduce the class of impatient greedy algorithms, which begin by
adding elements as long as their marginal contributions are above some fixed threshold, i.e., not
necessarily close to optimal. We show that with threshold OPT

εk , impatient greedy algorithms obtain
near-optimal approximation guarantees for gross substitutes. The main algorithm employs the adap-
tive sequencing technique starting with a threshold equal to OPT

εk . With this low threshold, adaptivity
is improved from O(log(n) log(k)) to O(log n) with an arbitrarily small loss in the approximation.
In this paper, we only consider maximization under cardinality constraint and leave general matroid
constraints for future work. Since the greedy algorithm does not yield the optimal solution for gross
substitutes under matroid constraints, many of these techniques cannot be immediately extended.

Lower bounds. Previous lower bound constructions in the adaptive complexity model [8, 9] are
submodular, but not gross substitutes, so novel constructions are needed. The functions we construct
to be hard to optimize are OXS functions, thus our lower bounds also hold for this subclass of gross
substitute functions. The main challenge in the analysis of õ(log n) rounds lower bound is handling
the subtle interactions between the different rounds of queries by the algorithm. Our approach is
related to the round elimination technique from communication complexity.

2 Preliminaries

We assume value oracle access to a function f : 2N → R. An algorithm is r-adaptive if it consists of
r sequential rounds where the algorithm may perform poly(n) function evaluations f(S) in parallel
at every round. A function f is submodular if it exhibits the diminishing returns property, i.e.,
fS(a) ≥ fT (a) for all S ⊆ T ⊆ N and a ∈ N \ T , where fS(T ) := f(S ∪ T ) − f(S) is the
marginal contribution of T to S. We abuse notation and write f(a), fS(a) for f({a}) and fS({a})
when clear from context. As discussed in the introduction, there exist many equivalent definitions
for gross substitutes (GS), see [31] for a detailed survey. We give the definition which we use
for the analysis. A function f is gross substitutes if it is submodular and for all S, T ⊆ N and
a ∈ S, f(S) + f(T ) ≤ maxb∈T {f(S \ a) + f(T ∪ a), f(S ∪ b \ a) + f(T ∪ a \ b)} . We show
our lower bounds for gross substitutes by constructing families of OXS functions. A function f with
N = {a1, . . . , an} is a unit-demand function if there are n positive weights w1, . . . , wn ∈ R+ s.t.
f(S) = maxai∈S wi. A function f is an assignment function (OXS) if f is the convolution of r unit-
demand functions u1, . . . , ur: f(S) =

∨
i∈[r] ui(S) := max ·∪i∈[r]Si=S

∑
i∈[r] ui(Si) where sets

S1, . . . Sr are a partition of S. These three classes are related as follows [27]: OXS ( GS ( SM.

3 O(log n) Rounds Suffice for Near Optimal Approximation

In this section we describe an algorithm for maximizing gross substitutes functions which has low
adaptivity and returns a solution whose approximation guarantee is arbitrarily close to optimal. To
prove these properties we first define two classes of algorithms – impatient greedy and stochastic
greedy algorithms. We show that impatient greedy algorithms yield low adaptivity algorithms for
gross substitutes functions and that stochastic greedy algorithms yield approximately optimal al-
gorithms. We then define our main algorithm which is both an impatient greedy algorithm and a
stochastic greedy algorithm and can, therefore, instantiate the guarantees for both to show that the
algorithm isO(log n) adaptive and achieves an approximation guarantee arbitrarily close to optimal.

3.1 IMPATIENT GREEDY Analysis

An impatient algorithm first collects items with marginal contribution to the current set above some
input threshold t. In the second stage, the algorithm adds the remaining elements using the greedy
algorithm. We show that by choosing the correct threshold t, this algorithm performs nearly opti-
mally for gross substitutes functions. This choice of the threshold is the crucial step in showing a
good approximation guarantee is achievable in few rounds. All proofs are deferred to Appendix B.

With threshold t = OPT

εk , we show that stochastic greedy performs near optimally for gross substi-
tutes. This follows from the fact that the number of elements chosen in the first loop is bounded by
εk (Lemma 3). We defer the analogous result for submodular functions to Appendix B.3.
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Algorithm 1 IMPATIENT GREEDY

1: Input f(·), k, t
2: S ← ∅, X ← N
3: while X 6= ∅ and |S| < k do
4: X ← {a : fS(a) ≥ t}
5: S ← S ∪ {ai} where ai is chosen u.a.r. from X

6: while |S| < k do
7: X ← {a : fS(a) = maxx fS(x)}
8: S ← S ∪ {ai} where ai is chosen arbitrarily from X

9: return S

Theorem 1. Given a monotone gross substitutes function f : 2N → R, IMPATIENT GREEDY with
threshold t = OPT

εk returns a set S such that f(S) ≥ (1− ε)OPT.

3.2 STOCHASTIC GREEDY Analysis

In this section, we show that the stochastic greedy algorithm can guarantee a strong approximation to
the optimal solution of gross substitutes functions. At each step i of the algorithm, noise parameters
are sampled from distributionDi and an approximate maximal element is chosen (Algorithm 2). For
submodular functions, stochastic greedy algorithms give approximations arbitrarily close to 1− 1/e
with high probability when k is sufficiently large [22]. Noisy versions of the greedy algorithm on
submodular functions are a vast area of research [32, 24, 21, 34, 22]. However, for gross substitutes
functions, this has not been studied.

We prove results for gross substitutes functions, which may be of interest even outside the context
of adaptive complexity. In particular, we show that for gross substitutes functions, an algorithm
that selects an element which is, in expectation, an α approximation to the element with the largest
marginal contribution at each iteration provides an α approximation to the optimal solution. This
idea is crucial in proving our main result in Theorem 3.

Algorithm 2 STOCHASTIC GREEDY

1: S ← ∅
2: for i ∈ [k] do
3: (ξi, ζi) ∼ Di
4: X = {a : fS(a) ≥ ξi maxx fS(x)− ζi}
5: S ← S ∪ {ai} where ai is chosen u.a.r. from X

6: return S

We first state the following lemma from [31] which will be useful for bounding the marginal contri-
bution obtained at each step of the algorithm. All proofs are deferred to Appendix C.

Lemma 1 ([31]). Let f be a gross substitutes function, then ∀S, T ⊆ [n] with |S| = |T | and
s ∈ S \ T , we have f(S) + f(T ) ≤ maxt∈T\S {f(S ∪ t \ s) + f(T ∪ s \ t)}.

We can use this to show that at any iteration, there exists an element with high marginal contribution
to the current solution (Lemma 5) and obtain the following approximation guarantee.

Theorem 2. Given a gross substitutes function f : 2N → R, let S be the set of size k selected by
STOCHASTIC GREEDY with ξ̂ = mini E[ξi] and ζ̂ =

∑
i E[ζi]. Then E[f(S)] ≥ ξ̂OPT− ζ̂.

It now follows that the stochastic variant of the greedy algorithm gives a good approximation to
the maximal value when ξ̂ ≈ 1 and ζ̂ ≈ 0. In the case where the expected noise is bounded and
E [ξi] = 1 − ε and ζi = 0 for all i, we can get a good approximation to the optimal solution in
expectation, i.e. E [f(S)] ≥ (1− ε)OPT.

This is indeed the case for the algorithm discussed in the next section. We note that for submodular
functions, while the approximation ratio of 1 − 1/e is preserved under noise, it is not always true
that the noisy output is close to the output of the greedy algorithm. See example in Appendix A.1.
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3.3 The Low Adaptivity Algorithm for Gross Substitutes

We now describe an algorithm for maximizing gross substitutes functions, GROSS SUBSTITUTES
ADAPTIVE SEQUENCING (GSAS), which has O(log n) rounds and returns a solution whose ap-
proximation guarantee is arbitrarily close to optimal. In the analysis, we show how to exploit the
guarantees of the two variants presented previously by constructing an algorithm with similar ap-
proximation guarantees using a small number of adaptive query rounds. We analyze the performance
for both submodular and gross substitutes monotone functions and show that for gross substitutes
functions a 1−O(ε) approximation is obtained2. All proofs are deferred to Appendix D.

Adaptive sequencing. In this paper we develop an algorithm that is based on the adaptive se-
quencing technique recently proposed in [7] which was developed to obtain constant factor ap-
proximation guarantees under matroid constraints. The overwhelming majority of low-adaptivity
algorithms use a different technique called adaptive sampling [8, 15, 18, 17, 5, 6, 26], which was in-
troduced in [8]. Adaptive sampling algorithms sample a large number of sets of elements at every it-
eration to estimate marginal contributions. These estimates, which rely on concentration arguments,
are then used to either add a random set R to S or discard elements with low expected contribution
to R ∪ S. Since gross substitutes functions are submodular, adaptive sampling provides a 1 − 1/e
approximation but fails to give near-optimal guarantees (see Appendix A.2 for an example).

In contrast to adaptive sampling, adaptive sequencing techniques generate at every iteration a single
random sequence (a1, . . . , a|X|) of the elements X not yet discarded. Let Al = (a1, . . . , al) be a
sequence of elements. A prefix Ai? = (a1, . . . , ai?) of the sequence is then added to the solution S,
where i? is the largest position i such that a large fraction of the elements inX has high contribution
to S ∪Ai−1. Elements with low contribution to the new solution S are then discarded from X .

Algorithm 3 GROSS SUBSTITUTES ADAPTIVE SEQUENCING (GSAS)

1: Input f(·), ε, ∆, t?

2: S ← ∅, t← t?

3: for ∆ iterations do
4: X ← N
5: while X 6= ∅ do
6: a1, ..., ak∗ ← random sampling from X of size k∗ = min(k − |S|, |X|)
7: Xi ←

{
a ∈ X : fS∪{a1,...,ai−1}(a) ≥ t

}
for all i ∈ [k∗]

8: i∗ ← min {i : |Xi| ≤ (1− ε)|X|}
9: S ← S ∪ {a1, ..., ai∗−1}

10: X ← Xi∗

11: t← (1− ε)t
12: return S

Variants of Greedy. Adaptive sequencing described in [7] can be viewed as a parallel STOCHAS-
TIC GREEDY algorithm. It starts with a high threshold t? and lowers the threshold as the algorithm
continues. The initial threshold t? is set to max f(a) so that the algorithm will not discard good ele-
ments. In the case where OPT = max f(a), the number of threshold decrements to guarantee a good
approximation isO(log(k)), which results in the total adaptive complexity ofO(log(k) log(n)). Us-
ing the abstraction of IMPATIENT GREEDY, we can set a lower initial threshold t? = OPT

εk in GSAS
to reduce complexity. We show that the number of rounds needed by the outer loop will decrease to
∆ = O(1/ε2). From Section 3.1, this threshold adjustment does not greatly effect the performance.

Note that GSAS requires the value of OPT to set the initial threshold. We can bypass this by running
several estimations for OPT in parallel, setting OPT ∈

{
(1 + ε)i max f(a)| i ∈

[
lnn
ε

]}
, where the

running time of each will be truncated by ∆ iterations. We will show that a close approximation of
OPT is sufficient. From now on, we denote the initial value of t as t? where OPT

(1+ε)εk ≤ t
? ≤ OPT

εk .

2For submodular functions this algorithm obtains a 1− 1/e−O(ε) approximation to the optimal solution.
We give the analysis in Appendix D.4
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We now show our main results that GSAS achieves a 1−O(ε) approximation inO(log n) adaptive
rounds. We start by showing logarithmic adaptivity. At a high level, low adaptivity follows from the
fact that each inner iteration makes at most log(n)/ε rounds and the outer loop runs ∆ times.

Lemma 2. Given ε > 0 and ∆ = 1/ε2, GSAS terminates after O(log(n)/ε3) rounds.

We now outline a proof sketch for gross substitutes maximization with low adaptivity. We defer the
analogous result for submodular functions and its proof to Appendix D.4.

Theorem 3. For any monotone gross substitutes function f and ε > 0, GSAS is a O(log(n)/ε3)
adaptive algorithm that returns a set S such that E[f(S)] ≥ (1−O(ε))OPT.

Proof Sketch. Since the initial threshold of GSAS is lowered, we handle the first iteration separately
and similarly to how we handle IMPATIENT GREEDY. We then show that remaining iterations
behave similarly to STOCHASTIC GREEDY. Let S1 be the set at the end of the first iteration. Then,
either S1 is optimal or is small in size w.h.p., i.e. f(S1) = OPT or |S1| < 3εk (Lemma 6).

We now consider all remaining iterations and show that GSAS approximately maximizes a surrogate
function g(A) := f(S1∪A) over cardinality constraint k−|S1|. After the first iteration, there are no
elements with marginal contribution exceeding OPT

εk and the algorithm can be reduced to the original
version in [7] on g after S1 has been selected. The approximation guarantee follows from the fact
that for each iteration, the threshold t is an approximate upper bound on the maximal marginal
contribution of an element a to the intermediate solution S, i.e. t ≥ (1− ε) maxa gS(a) (Lemma 7).
It then follows that GSAS behaves similarly to STOCHASTIC GREEDY where E [ξi] ≥ 1 − 2ε and
ζi = 0 (Lemma 8). We can then use Theorem 2 from STOCHASTIC GREEDY to show that indeed S
approximately maximizes g with constraint k − |S1|.
Combining this result with the analysis of the first iteration, we show that S combined with S1

approximately maximizes f with constraint k. Finally, we handle the possibility of early termination.
Since we miss at most k elements, we have a loss of at most tk = εOPT. Thus, we get that GSAS
gives a 1−O(ε) approximation. �

The approximation can also hold with high probability using Markov’s Inequality by running poly-
nomially many copies of the algorithm and choosing the maximal one.

4 Lower Bounds

In this section, we present lower bounds on the adaptive complexity of maximizing gross substi-
tutes. We first show that there is no 1-adaptive algorithm that obtains a 1/2 + ε approximation, for
any constant ε > 0 (constructions and proofs deferred to Appendix E). This lower bound shows a
sharp separation between gross substitutes and additive and unit demand functions, which can be
optimized to be arbitrarily close to 1 in just one round.

Theorem 4. There is no non-adaptive, i.e. 1-adaptive, algorithm that obtains, with probability
ω( 1

n ), a 1/2 + ε approximation for maximizing monotone gross substitutes functions under a cardi-
nality constraint, for any constant ε > 0.

We now show a lower bound for algorithms with multiple adaptive rounds. More precisely, we show
that there is no õ(log n) adaptive algorithm that obtains a constant approximation for maximizing
OXS functions when the queries are of size O(k). The main challenge in extending the result from
one round is handling the subtle interactions between the different rounds of queries.

We now discuss the assumption that the queries are of size O(k). We first note that in the context
of learning or optimization from past observations and decisions, it is natural that past observations
and decisions must also be feasible according to the problem constraint, i.e., of size at most k. In
addition, we also note that most of the existing algorithms, e.g. greedy and local search, as well as
the algorithm from the previous section, only query feasible sets of size at most k.

Theorem 5. There is no ( logn
4 log(logn) − 1)-adaptive algorithm that obtains, with probability ω( 1

n ), a
1

logn approximation for maximizing monotone gross substitutes functions under a cardinality con-
straint when the queries are sets of size O(k).
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Figure 1: OXS valuation results on synthetic graphs G1, G2, G3 and G4 (Figures 1a, 1b, 1c, 1d) and
tweets with #ad, #spon, #giveaway and #win hashtags G5, G6, G7 and G8 (Figure 1e, 1f, 1g, 1h).

5 Experiments

To evaluate the performance of GSAS, we conduct experiments on synthetic and real datasets.

Experimental setup. In our first set of experiments, we construct bipartite graphs with n play-
ers, m items (nodes) and valuations (edge weights) to simulate OXS valuations using synthetic and
real data. We then compare the performance of GSAS against different benchmarks across varying
values of k. We select k = 100 elements on synthetic data and k = 150 on real data. Our second ex-
periment analyzes the spectrum of unit-demand and additivity. OXS valuations can be represented as
the sum of max of item values. In one extreme, valuations are additive so that v(A) =

∑
a∈A v(a);

in the other extreme, they are unit-demand valuations so that v(A) = maxa∈A v(a). In this ex-
periment, we explore the performance of GSAS by constructing OXS valuations that are strictly
unit-demand, additive and in the spectrum and selecting k = 32 items for each valuation. For all of
the experiments we have used ε = 0.1.

Benchmarks. We compare GSAS to the following baselines. Trimmed Greedy is the GREEDY
algorithm limited by the number of rounds used by GSAS to return a set of size smaller than k.
Without this limitation, the algorithm returns the optimal value. RANDOM samples, in one round,
n many k-tuples and returns the best sample. TOP-k selects k elements with largest marginal
contribution to empty set in a single round. Adaptive Sampling adds sets of elements in each
round by iteratively filtering out elements of low marginal contribution and selecting elements of
high value [6]. Learned Opt first learns the OXS valuation function using sampling and then uses
GREEDY to optimize the learned function [4]. We omit OPT from our plots since in our experiments
OPTand GSAS are empirically indistinguishable.

5.1 Datasets

We briefly discuss the generation of synthetic graphs and the constructed Twitter network for the
first set of experiments and OXS valuations for the second set. See Appendix F for more details.

Synthetic graphs. We generate the first graph by following the construction detailed in Appendix
A.2 (G1) and a second using the construction detailed in Appendix E.3 with n = 5000 ground set
elements (G2). We construct two additional random bipartite graphs with n = 275 ground set items
and m = 200 players with the probability of an edge fixed at 0.25 (G3) and 0.75 (G4).

Twitter graphs. We filter Twitter data for specific hashtags and extract keywords from each tweet.
For each hashtag, we use roughly 500 tweets to construct a bipartite graph with “players" represent-
ing advertisements and “items" representing keywords. The valuation of the keyword is determined
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by the length of the tweet and the popularity of the keyword. We focus on four different hashtags,
each used to construct a different graph: #ad (G5), #spon (G6), #giveaway (G7) and #win (G8).

OXS valuations. To analyze the spectrum of unit-demand and additivity, we construct the follow-
ing OXS valuations. We fix the number of n = 1024 items in the ground set. An item of type i,
aj , has value v(aj) = i. We vary the number of item types of items by parameter m, where there
are n/m items of each type and each m yields a different OXS valuation. In our construction, all
players have the same valuation. In one extreme, for m = 1, there is one item type and all 1024
items have value 1, which represents a unit-demand valuation. In the other extreme, m = 1024 so
that there is exactly one item of each type, which represents an additive function.

5.2 Experimental Results

General performance. Overall, on our synthetic graphs, GSAS (blue) performed near optimally
and outperformed the baselines of TRIMMED GREEDY, TOP K, LEARNED OPT and RANDOM (Fig-
ures 1a, 1b, 1c, 1d). It was able to obtain high value in much fewer rounds than the traditional
GREEDY, which can be seen in the gap of performance between GSAS and TRIMMED GREEDY.
We note that LEARNED OPT essentially learns a constant function and cannot distinguish between
elements, which causes it to perform similarly to RANDOM.

On the Twitter data, we attempt to select certain advertising tweets that value keywords highly to
maximize revenue for an ad placement agency. Sample keywords that were contained in selected
ads are listed in Figure 2. We found that for smaller k, GSAS needed as many rounds as GREEDY
to terminate so that the performance of both algorithms is near equivalent for k smaller than 80.
However, for larger values of k, GSAS terminated in much fewer rounds (Figures 1e, 1f, 1g, 1h).

On Twitter datasets, the oracle call to calculate the OXS valuation is computationally expensive as it
includes a maximal weight matching step. Due to computation constraints, we do not use ADAPTIVE
SAMPLING, which requires many oracle calls, as a benchmark. In Figure 2, we show the inferior
performance of ADAPTIVE SAMPLING compared to GSAS on one such Twitter graph.

#ad #spon #giveaway #win
learn spiderman win case
free learn light light
lives sign free enter
work free body find
win work time free

Figure 2: On the left, GSAS outperforms ADAPTIVE SAMPLING on a Twitter graph. Top keywords
for each hashtag are listed on the right.

Fewer number of rounds. We note that in our experimental results, the true number of rounds
needed for GSAS to terminate is much lower than the theoretical one of log(n)/ε3. First, in order
to reach value of t = εOPT/k, only log(ε−1)/ε rounds are needed. Second, in the inner loop,
the factor of log(n)/ε is an upper bound and adding more elements into the solution set results
in fewer rounds. Additionally, we found that the outer iteration terminated prematurely when the
solution set reached k elements. These empirical observations show that GSAS can be much more
computationally efficient than GREEDY. Even so, the number of rounds preformed by GSAS was
quiet low and presented an improvement in the number of needed rounds. We elaborate on it in
Appendix F.

Spectrum of UD-additivity In the two extremes where the OXS valuation is strictly additive or
unit-demand (UD), TOP-K performs optimally by selecting the elements with the highest marginal
contribution to the empty set in one round. In the general case where the objective valuation lies
in the spectrum of UD-additivity, we found that GSAS outperforms its baselines in all regimes. In
Figure 3, we normalize all values to the optimal solution as computed by GREEDY. Algorithms that
perform better have values close to 1 in the figure.
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Figure 3: Performance of algorithms on UD-additive valuations.

Broader Impact

This work focuses on the adaptivity of maximizing gross substitutes functions. While previous work
has been done on maximizing submodular functions, a superclass of gross substitutes, little is known
about the adaptivity complexity to achieve optimal results for this particular class of functions.
Our results show an exponentially faster algorithm with near-optimal approximation guarantees for
optimization of gross substitute valuations, which have numerous applications in microeconomics
and market design [2, 33, 3, 23, 25] and appear in multiple fields such as discrete mathematics [28]
and number theory [14].

The algorithm presented in this work is particularly relevant to applications on large datasets where
sequential algorithms such as GREEDY become impractical and computationally infeasible. By us-
ing a low-adaptivity algorithm such as GSAS, we are able to take advantage of parallelization and
dramatically speed up computation on large datasets. In Section 5, we show an application of this
algorithm on large constructed Twitter networks to efficiently match keywords in advertisements
to bidders or advertisers. In our experimental results, we show both the effective performance and
computational efficiency of using GSAS on different networks. This shows that the limited adap-
tivity of GSAS can be effectively leveraged to analyze trends on other large-scale social networks
and applications.
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