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Abstract

Graph Neural Networks (GNNs) have achieved remarkable performance in the
task of the semi-supervised node classification. However, most existing models
learn a deterministic classification function, which lack sufficient flexibility to
explore better choices in the presence of kinds of imperfect observed data such
as the scarce labeled nodes and noisy graph structure. To improve the rigidness
and inflexibility of deterministic classification functions, this paper proposes a
novel framework named Graph Stochastic Neural Networks (GSNN), which aims
to model the uncertainty of the classification function by simultaneously learning
a family of functions, i.e., a stochastic function. Specifically, we introduce a
learnable graph neural network coupled with a high-dimensional latent variable to
model the distribution of the classification function, and further adopt the amortised
variational inference to approximate the intractable joint posterior for missing
labels and the latent variable. By maximizing the lower-bound of the likelihood
for observed node labels, the instantiated models can be trained in an end-to-end
manner effectively. Extensive experiments on three real-world datasets show that
GSNN achieves substantial performance gain in different scenarios compared with
state-of-the-art baselines.

1 Introduction

Graphs are essential tools to represent complex relationships among entities in various domains,
such as social networks, citation networks, biological networks and physical networks. Analyzing
graph data has become one of the most important topics in the machine learning community. As an
abstraction of many graph mining tasks, semi-supervised node classification, which aims to predict
the labels of unlabeled nodes given the graph structure, node features and labels of partial nodes, has
received significant attention in recent years. Graph Neural Networks (GNNSs), in particular, have
achieved impressive performance in the graph-based semi-supervised learning task [1} 2} [3} 14, [5].

Most existing GNN models are designed to learn a deterministic classification function. This kind of
design makes them look simple and artistic, but the other side of the coin is that the deterministic
classification function makes these GNN models lack sufficient flexibility to cater for kinds of
imperfect observed data. For example, in many real situations, the ground-truth labels of nodes
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are often expensive or difficult to obtain, which leads to the sparseness of the labeled nodes. The
insufficient supervision information can easily lead to the overfitting of the deterministic classification
functions, especially when there are no additional labeled nodes as the validation set for early-
stopping. Another example is the noise in the graph structure. Arisen in nature or injected deliberately
by attackers, noise is prone to affect the neighbor information aggregation and misleads the learning
of deterministic classification functions. The rigidness and inflexibility of deterministic classification
functions make it difficult for them to bypass these similar issues and explore better choices.

In line of the aforementioned observations, this paper proposes a novel Graph Stochastic Neural
Network (GSNN for short) to model the uncertainty of GNN classification functions. GSNN aims to
learn simultaneously a family of classification functions rather than fitting a deterministic function.
This empowers GNNs the flexibility to handle the imperfection or noise in graph data, and further
bypass the traps caused by sparse labeled data and unreliable graph structure in real applications.

Specifically, we treat the classification function to be learned as a stochastic function and integrate it
into the process of label inference. To model the distribution of the stochastic function, we introduce
a learnable neural network, which is coupled with a high-dimensional latent variable and takes the
message-passing form. To infer the missing labels, we need to obtain the joint posterior distribution
of labels for unlabeled nodes and the classification function, of which the exact form is intractable in
general. To solve the problem, we adopt the amortised variational inference [6, (7] to approximate the
intractable posterior distribution with the other two types of neural networks. By maximizing the
lower-bound of the likelihood for observed node labels, we could optimize all parameters effectively
in an end-to-end manner. We conduct extensive experiments on three real-world datasets. The results
show that compared with state-of-the-art baselines, GSNN not only achieves comparable or better
performance in the standard experimental scenario with early-stopping, but also shows substantial
performance gain when labeled nodes are scarce (no early-stopping) and there are deliberate edge
perturbations in the graph structure.

2 Related Work

Graph Neural Networks for Graph-based Semi-supervised Learning: Recently, GNNs have
been attracting considerable attention [8 9} [10]. The early ideas are to derive different forms of
the graph convolution in the spectral domain based on the graph spectral theory [1} [11} [2 3 [12].
Bruna et al. [1] propose the first generation spectral-based GNN. To reduce the computational
complexity, Defferrard et al. [2]] propose to use a K-order Chebyshev polynomial to approximate
the convolutional filter, which avoids intense calculations of eigendecomposition of the normalized
graph Laplacian. Kipf and Welling [3]] further simplify the graph convolution by the first-order
approximation. which reduces the number of parameters and improves the performance. Another line
of research is to directly perform graph convolution in the spatial domain [13} 4} [14}[15/116]. Gilmer
et al. [13] generalize spatial-based methods as a message-passing mechanism. Hamilton et al. [4]
propose a general inductive framework, which could learn an embedding function that generalizes to
unseen nodes. Velickovié et al. S]] further introduce the attention mechanism, which assigns different
weights to neighbor nodes and aggregate features with discrimination. Besides, other works also
demonstrate that considering edge attributes [17], adding jumping connections [18]] and modeling the
outcome dependency [[19]] would be beneficial. However, these models generally learn a deterministic
classification function, which lack sufficient flexibility to handle imperfect observed data such as the
scarce labeled nodes and noisy graph structure.

Uncertainty Modeling for Graph-based Semi-supervised Learning: There are also some works
using uncertainty modeling for graph-based semi-supervised learning, which are related to this paper
[20, 21, 22]]. Ng et al. [22] introduce Gaussian processes to model the semi-supervised learning
problem on graphs, which mitigates the over-fitting to some extent. Zhang et al. [21]] treat the
observed graph as a realization from a parametric family of random graphs and propose bayesian
graph convolutional neural networks to incorporate the uncertain graph information. Ma et al [20]
further propose a flexible generative framework to model the joint distribution of the graph structure
and the node labels. Most of these works typically model the uncertainty of the observed data (e.g.,
graph structure). Different from them, in this paper, we view the classification function as a stochastic
function and straightly model its distribution, which brings better performance in many scenarios.



3 Our Solution

In this paper, we define an undirected graph as G = (V| E), where V' = {vy, ..., v } represents a set
of N nodes and £ C V x V is the set of edges. Let A € {7\(,), }E}N XN denote the binary adjacency
matrix, i.e., A, , = 1 if and only if (u,v) € E. Let X € R"*" be the node attribute matrix, where
F'is the feature dimension and the feature vector of node v is expressed as x,,. Each node is labeled
with one class in C' = {cy, ..., ¢|c}. In practice, only partial nodes come with labels. The set of these
labeled nodes is denoted as V7, and the set of unlabeled nodes is denoted as Vi; := V' \ V.. For the
task of semi-supervised node classification, given A, X and the label information of V7, the goal is
to infer the labels of nodes in Vi by learning a classification function f. The classification results can
be denoted as Y := {y,,, ..., Yu } Where each y. is a |C|-dimension probability distribution on C.

Most existing GNN models typically aim to learn a deterministic classification function, which lack
sufficient flexibility to cater for kinds of imperfect observed data. For example, they are easy to overfit
or be misled when labeled nodes are scarce or there exists noise in the graph structure. Therefore,
instead of fitting a deterministic function, we here aim to learn a family of classification functions,
which can be organized as a stochastic function § with the distribution denoted as p( f). Under this
setting, the distribution of Y can be formalized as follows:

(YA, X) 2 / p(Hp(YF(A, X)) df = / p() T ol f(A, X)) df "

veEV

where we use p(Y|f(A, X )) to denote the distribution of Y corresponding to the classification
function f. Eq. (1) assumes that the label inference for each node is conditionally independent, given
a selected classification function f, the adjacency matrix A and the attribute matrix X.

3.1 Framework for GSNN

In order to model the uncertainty of the classification function in Eq. (I)), we here approximate the
stochastic function § using a learnable function g, (e.g., a neural network with parameters ) with a
random latent vector 3 involved as below:

3(A, X) £ go(A, X; 3) 2)

where the prior distribution of 3 is p(z) defined as multivariate standard normal, i.e., p(z) =
N(z;0,I). Note that the randomness of §F is induced by 3 and the expression capacity of F is
captured by the structure of g, (.;.). Combined Eq. (2) with Eq. (1), the distribution p(Y'| A, X) can
be rewritten as follows:

p(Y[A,X) = /p(Z) 11 p(v.l9,(A, X;2)) dz 3)

veV

where p(y,|g,(A, X; z)) is a distribution on C of node v. In the semi-supervised transductive
setting, the label information for labeled nodes in V7, is also known. Denote Y7, := {y, }vcv, and
Yy :=Y \ Y.. Under the above setting, the conditional distribution of Yy, given A, X and Y7, can
be formalized as follows:

P04 X Y2) 2 [ p(e1A X0 [] plunla, (4.X:2) d= @
veVy

where p(z|A, X, Yy) is the posterior distribution of the latent vector 3 and ¢y, are parameters to be
learned when Y7, is taken into consideration.

We assume that the distributions p(z| A, X, Y1) and p(yu|gey, (A, X; 2)) in Eq. (4) can be mod-
eled by parametric families of distributions py(z|A, X, Y1) and py(y,| A, X, z) respectively, whose
probability density function is differentiable almost everywhere w.r.t. 6. To predict Yy via mod-
eling the distribution of the classification function, we need to obtain an intractable joint posterior
po(Yu, z|A, X,Y). To solve the problem, we adopt the variational inference. We introduce a
variational distribution ¢4 (Yy, 2| A, X, Y}) parameterized by ¢ to approximate the true posterior
po(Yu, z|A, X, Yr). To learn the model parameters ¢ and 6, we aim to optimize the evidence lower
bound (ELBO) of the log-likelihood function for the observed node labels, i.e., logpg (Y1 | A, X).
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Figure 1: The overview of GSNN framework. ¢4 (Y|4, X, Y1), ¢4(2|A, X, Y ) and pg(Y|A, X, 2)
are respectively instantiated by ¢pet1, Gnet2 and p,e:. Colored circles represent the observed data,
including A, X and Y. Yy and z in the colorless circles are sampled from corresponding distri-
butions. The blue, red and green dotted lines correspond to the first, second and third items of the
ELBO objective function in Eq. () respectively.

Following the standard derivation of the variational inference, the ELBO objective function can be
obtained as follows:

p(2)
1 YI|A, X)>E 1 YA, X 1
ngg( L| ; ) = q(p(YU,ZA,X,YL)( ng@( | ) ,Z) + log Q¢(YU,Z|A,X,YL)> (5)
£ Lprpo(0,9)

The variational joint posterior could be further factorized as ¢4(Yy,2|A,X,Yr) =
qs(YulA, X,Y1)qs(z|A, X,Y) noting that Y = Y, U Y. From a sampling perspective, it can be
explained that the distribution of the random latent vector 3 depends on the observed data and Yy
sampled from the approximate posterior distribution g, (Y| A, X,Yz). On this basis, the ELBO
objective function can be rewritten as follows:

Lrrpo(9,0) =Eq,vyia,x,v0)Ees(z1a,x,v) logpe(YL|A, X, 2) —
EQ¢(YU|A7X7YL)KL(q¢(Z|A7X7Y) ||p(z)) - (6)
Eq¢(YU|AaX7YL) ( log q¢(YU|A) Xa YL) - Eq¢(z|A,X,Y) lngg(YU|A7 X7 Z))

where KL(.||.) represents the Kullback-Leibler divergence between two distributions. The first term
of Eq. () is the opposite of the cross-entropy between ground-truth label vectors and the predicted
class distributions for labeled nodes. The form of the third term is similar to the KL divergence, which
characterizes the distribution difference between ¢4 (Y| A, X, Y1) and pg (Y| A, X, z). Based on
the amortised variational inference [6l [7], g4(Yr/|A, X, Y1), ¢s(2]|A, X,Y) and py(Y|A, X, z)
can be fitted by different types of neural networks, which would be described in detail in Section
[3.2] The overall framework is referred as graph stochastic neural networks (GSNN for short), whose
overview is shown in Fig. [T}

3.2 Model Instantiation, Training and Inference

In this part, we instantiate ¢, (Y| A, X, Y1), ¢o(2]|A, X,Y) and pg(Y|A, X, z) with three neural
networks (z.€., gnet1, Gnet2 and ppeq) respectively.
Instantiating g, (Yy/| A, X, Y1) with gpet1: The neural network gy, is designed into the form

of message-passing. It consists of K layers to aggregate the features of neighbor nodes with the
following layer-wise propagation rule:

k k—1 k—1pk—1ypk—1
h"u =p ( Z Ay h‘u anetl)v k=1,.,K
u€ENe{v}iU{v} (7)
q¢(yv|A,X,YL) = Cat(yv|h1{<)7 veVy
where Ne{v} is the set of neighbor nodes of node v. h” is the hidden representation for node v

in the k" layer and h0 = x,,. The parameter af,jul represents the aggregation coefficient between



node v and node u. The parameter matrix Wé:}l represent the trainable parameters in the k" layer.

The activation functions of the first K — 1 layers (i.e., p*, ..., p =2) are ReLU, and the activation
function for the K" layer is softmax, which constructs the categorical distribution Cat(.), i.e.,
q4(Yu|A, X,Y7). Note that Y7, is not used as the input for g1, but as the supervision information
for training gy¢¢1 in the Eq. (IEI) below.

Instantiating g4 (z|A, X,Y") with gnet2: The posterior distribution ¢4(2z|A, X ,Y") depends on
four parts of information: A, X, Yy and Y. Since gnet1 has involved A and X, we therefore
directly use the hidden representations of the (K — 1) layer in g,,¢¢1 to represent A and X. The
unlabeled information Y7; could be obtained by sampling from the output of g,.¢1 and Y7, is directly
taken as one of the input for ¢,.:2. Inspired by variational auto-encoders [[7], we let the variational
posterior be a multivariate Gaussian with a diagonal covariance structure, which is flexible and could
make the second item of the ELBO objection in Eq. (6)) be computed analytically. Accordingly, g2
is designed as follows:

ro = MLP([h Yy.]), veV
r = Readout({r, },ev) 8)
a6(2|A, X, Y) = N (z; u(r), o (r)I)

where .|| is the concatenation operation, MLP represents the multi-layer perceptron, Readout(.) func-

tion summarizes all input vectors into a global vector, and the MLP functions 1(.) and o%(.) convert
r into the mean and standard deviation, which parameterise the distribution of ¢4(z|A, X,Y).

Instantiating pe (Y | A, X, z) with pye;: Given z sampled from g4 (2| A, X,Y"), pre specifies an
instance of the stochastic function § (i.e., function g defined in Eq. (2)). The network architecture
of Pyt 1s similar to that of g,¢;1, which takes the sampled global latent variable z as well as A and
X as input, and outputs the probability distributions on C for all nodes. Assume that the hidden
representation of node v in the K'” layer is denoted as e, and the initial latent representation of
node v is defined as the concatenation between x,, and z, i.e., € = @, ||z. The predicted categorical
distribution can be expressed as follows:

po(yn]|A, X, 2) = Cat(yv|e£<), veV 9)

Model Training: To optimize the object function in Eq. (6), we adopt Monte Carlo estimation to
approximate the expectations w.r.t g4(Yy|A, X,Yy) and ¢4(z|A, X,Y). Specifically, we first
sample m instances of Yy from ¢, (Y| A, X, YL). After that, for each instance of Yy, we further
sample n instances of z from ¢4 (z| A, X,Y"). With these sampled instances, we could approximately
estimate the object function Lz 5o (6, ¢). We leverage reparameterization to calculate the derivatives
w.r.t the parameters in Gnet1, Gnet2 and ppes. Since z is continuous and g4 (z|A, X, Y) takes on
a Gaussian form, the reparameterization trick of variational auto-encoders [[7] can be directly used
here. While Yy is discrete, we adopt the Gumbel-Softmax reparametrization [23] for gradient
backpropogation. As we mentioned above, Y7, could be used as the supervised information to guide
the parameter update of g,¢;;. Therefore, we additionally introduce a supervised object function
Ls(¢) =loggs(Yr|A, X). The overall objective function is given as follows:

The model can be optimized effectively in an end-to-end manner and the optimal parameters are
denoted by 6* and ¢*, i.e., 0%, ¢* = arg I%z:ﬁx L0, ).

Model Inference: After the above training, p(Yy|A,X,Y.) can be seen as the expecta-
tion of pg«(Yu|A, X, z) w.rt. ¢p-(2|A,X,Y). We first sample L instances of Yy from
g4+~ (Yu]A, X, Y7), and then for each sampled instance of Y;;, we sample a instance of z. from
¢4+ (2|A, X,Y"). We use Monte Carlo estimation for approximate inference, formulated as follows:

L
1
p(YulA, X, Yy) ~ Z;pe*(YU\A,X,zi) (1n)
This approximation can also be derived from Eq. @) with the proof in the supplemental material.

3.3 Algorithm Complexity Analysis

Because ¢,¢;1 and pj,; share the similar message-passing model structure, the computational com-
plexity of them is O(| E|), where |E| represents the number of edges in the graph. The computational



complexity of gpero is O(N), where N is the number of nodes. On this basis, during the training
phase, the overall computational complexity is O(|E| + mN + mn|E|), where m and n are respec-
tively the number of sampled instances of Y7; and z. In our experiments, we find that one sample (i.e.,
m = n = 1) could achieve comparable results with multiple samples. For efficiency, we only sample
once for both Yy and z. During the inference phase, the calculation only involves p,,.;. Therefore,
the overall computational complexity is O(L|F|), where L is the number of sample instances from
p(z). We can see that the complexity is linear to the scale of the graph. The pseudo-code of the
algorithm is provided in the supplemental material.

4 [Experiments

In this section, we empirically evaluate the performance of GSNN on the task of semi-supervised
node classification in different scenarios: (1) the standard experimental scenario with the validation
set for early-stopping, (2) the scarce labeled nodes scenario (no validation set for early-stopping),
and (3) the adversarial attack scenario. Note that we mainly consider the noise injected by adversarial
attack methods, since they can incur obvious impact on the performance of many existing GNNGs.
[24] 25 1261 27]]. Our reproducible code is available at https://github.com/GSNN/GSNN.

4.1 Experimental Settings

Datasets. We conduct experiments on three commonly used benchmark datasets: Cora, Citeseer and
Pubmed [25} 28], where nodes represent documents and edges represent citation relationships. Each
node is associated with a bag-of-words feature vector and a ground-truth label. Detailed statistics
for the three datasets are provided in the supplemental material. In different experiment scenarios,
we will adopt different dataset setup (e.g., dataset partition method) following the standard practice,
which would be described when presenting experimental results in corresponding sections.

Baselines. When we evaluate the performance in the standard experimental settings and the scarce
labeled nodes settings, we compared with six state-of-the-art models, three of which are GCN
[3], GraphSAGE [4] and Graph Attention Networks (GAT) [5]]. The other three adopt uncertainty
modeling for graph-based semi-supervised learning. They are Bayesian Graph Convolutional Neural
Networks (BGCN) [21]], G3NN [20] and Graph Gaussian Processes (GGP) [22]] respectively. BGCN
and G®NN model the uncertainty of the graph structure, and GGP introduces the Gaussian processes
to prevent from over-fitting. When we evaluate the performance in the adversarial attack settings, in
addition to the above six baselines, we also compare with Robust Graph Convolutional Networks
(RGCN) [29], which is a state-of-the-art method against adversarial attacks. More detailed description
about the baselines are provided in the supplemental material.

Our Model. For the proposed GSNN framework, we could adopt different information aggregation
mechanisms for g,¢¢1 and py¢; to instantiate the models. In this paper, we implement two variants,
whose aggregation mechanisms are consistent with GCN (i.e., mean aggregation) [3] and GAT (i.e.,
attention-based aggregation) [5] respectively. Note that other advanced information aggregation
mechanisms can also be involved here to improve the performance. The two variants are termed as
GSNN-M and GSNN-A.

Parameter Settings. For all baselines, we adopt the default parameter settings reported in corre-
sponding papers. For our proposed two models (¢.e., GSNN-M and GSNN-A), in ¢y¢¢1 and Py, We
employ two information aggregation layers, and other settings related to hidden layers are consistent
with GCN [3] and GAT [5] respectively. For example, the number of hidden units for GSNN-M
is set to 16 and that for GSNN-A is set to 64. Besides, GSNN-A also employs the multi-head
attention mechanism in the first hidden layer with 8 attention heads. For both GSNN-M and GSNN-A,
the dimension of the hidden variable z is set to 16. In g2, we first employ a two-layer MLP to
generate the representation r,, for each node v, whose dimension is 16. After that, we summarize
all representations into a vector and use two fully-connected networks to convert it into the mean
and covariance matrix for the multivariate Gaussian distribution. As mentioned in Section [3.3] both
the numbers of sampled instances of Y7; and z are set to 1 for efficiency purpose. We use the Adam
optimizer [30] during training, with the learning rate as 0.01 and weight decay as 5 x 10~%, and set
the epoch number as 200. During the inference phase, the sampling number L in Eq. is set to 40.



In the experiments, we train our models and baselines for 50 times and record the mean classification
accuracy and standard deviation.

4.2 Standard Experimental Scenario

In this section, we evaluate the performance of GSNN and baselines under the standard experimental
scenario used in the work [3]]. Specifically, in each dataset, 20 nodes per class are used for training,
1000 nodes are used for evaluation and another 500 nodes are used for validation and early-stopping.

The experimental results (mean and standard deviation) are summarized in Table[T} We can see that
under the standard experimental scenario, BGCN, G*NN and GGP do not show obvious advantages
and perform even worse than the
deterministic GNN-based models
(i.e., GCN, GAT and GraphSAGE)
in many cases. The reason behind
is that the validation set could help
these GNN-based models find rela- Algorithm Cora Citeseer Pubmed

tively good classification functions, GCN 3149 £ 051 7034 L 070 7893 L 049
which can prevent the model from GAT 83.01 £ 040 7091 +079 7857 +0.75
overfitting to a large extent. Both  G.,,hSAGE  82.89+£1.01  70.08 £ 0.78  78.28 + 0.42

BGCN and G*NN attempt to model
BGCN 81.20 £ 0.80 72.20+0.60 76.60 £ 0.70

the uncertainty of the graph struc- GNN  8290+030 73.10+0.50 77.60 4 0.70
ture. However, the potential distri-

Table 1: Average classification accuracy with standard devia-
tion under the standard experimental scenario. The bold marker
denotes the best performance on each dataset.

. . GGP 81.254+033 67.18£0.66 7691 +0.52
butions of different graph data may
vary greatly, which limits the per- GSNN-M 8394+ 047 72204045 79.12+ 031
formance of these two methods on GSNN-A  83.08+049 71.66 +023 78.99 + 0.31

some datasets (e.g., Pubmed). GGP

adopts Gaussian processes to model the node classification task, of which the fitting capacity is not
as good as neural networks that could effectively learn the node representations. Therefore, the
performance of it is not ideal.

Compared with baselines, our models achieve comparable or better performance in standard experi-
mental scenario. Note that GSNN-M and GSNN-A adopt the consistent aggregation mechanism with
GCN and GAT respectively, while the results show that the two proposed models outperform GCN
and GAT on all datasets, which demonstrates the effectiveness of modeling the uncertainty of the
classification function.

4.3 Label-Scarce Scenario

In general, the labeled nodes are difficult or expensive to obtain. A more practical scenario is that we
only have a very small proportion of labeled nodes for training and no additional labeled nodes for
early-stopping. In this section, we evaluate the performance of GSNN and baselines when labeled
nodes are scarce. Specifically, in each dataset, we randomly select a certain percentage of labeled
nodes for training, and the rest of nodes are used for evaluation. Note that the number of labeled
nodes in each class could be different under this dataset partition setting.

For Cora and Citeseer, we set the percentage of labeled nodes for training from 1% to 5%, while for
Pubmed, we set the percentage from 0.1% to 0.5% because the total number of nodes in Pubmed is
about an order of magnitude higher than the other two datasets. The experimental results are shown
in Table|2] We observe that, compared with baselines, GSNN-M and GSNN-A achieve substantial
performance gain, which demonstrates that modeling the uncertainty of the classification function
could effectively alleviate the overfitting problem on the complex graph data. BGCN models the
uncertainty of the graph structure, which improves the performance of the deterministic GNN-based
models on Cora and Citesser to some extent. However, its performance cannot be generalized to
Pubmed because of the difference of the potential graph structure for different datasets. Although
G>NN also models the distribution of the graph structure, the complex model structure make it easy
to overfit without early-stopping. Therefore, modeling the distribution of the classification function
provides more flexibility and better copes with the label-scarce scenario.



Table 2: Average classification accuracy under the label-scarce scenario with different ratios. The
bold marker denotes the best performance on each dataset. Due to space constraints, we do not show
the standard deviation here.

Dataset | Ratio | GCN  GAT  GraphSAGE | BGCN G°NN  GGP | GSNN-M  GSNN-A

5% | 79.87 80.61 79.08 81.69  78.05 75.80 82.21 82.49

4% | 79.35 80.22 78.89 80.85 75.07  72.41 82.11 82.44

Cora 3% | 7842 79.33 78.52 80.51 62.74 6891 82.69 81.66
2% | 76.73  T77.96 76.82 77.98 47.11  56.30 81.05 79.94

1% | 66.58 70.09 68.18 71.23 3295 46.71 71.76 71.62

5% | 70.55 69.41 68.40 71.45 70.72  65.11 71.24 71.89

4% | 69.11 68.33 67.13 70.37 7041  64.61 69.74 71.10

Citeseer | 3% | 68.26 67.11 65.54 70.18 65.04 58.49 70.26 70.88
2% | 67.01 67.37 66.41 68.31 56.16 53.18 68.47 70.24

1% | 60.08 61.39 61.25 63.25 30.28  49.57 62.21 64.91

0.5% | 82.18 80.01 81.32 78.25 82.73 7897 82.17 80.70

04% | 80.85 79.09 79.82 76.32 81.53  75.86 81.70 79.92

Pubmed | 0.3% | 79.98 77.95 79.51 75.62  79.80  75.25 80.69 79.10
02% | 76.33 77.01 77.54 73.01 76.59  59.28 78.12 78.89

0.1% | 69.21 70.99 71.42 6792 4246 5592 72.23 73.17

4.4 Adversarial Attack Scenario

In this section, we employ three state-of-the-art global adversarial attack methods (i.e., Meta-Train
[25], Meta-Self [25] and min-max attack [26]), which aim at reducing the overall classification
accuracy, to inject noise edges into the graph structure, and further evaluate the performance of
GSNN and baselines in the presence of them. Detailed description for the three attack methods is
provided in the supplemental material. The experimental settings about the adversarial attacks and
dataset partition follow the work [25]]. The attack budgets, i.e., the ratio of perturbed edges to all
clean edges, is set to 0.05. Without loss of generality, all three attack methods are performed based
on the vanilla GCN [3], which means that they mainly affect the mean aggregation mechanism. For
each poisoned graph, 10% of nodes are used for training and the rest of nodes are used for evaluation.

We conduct experiments on Cora.
The experimental results are shown
in Table Bl Here we add a robust
GNN model (i.e., RGCN [29])) as
a baseline. We have the following

Table 3: Average classification accuracy with standard devia-
tion under the adversarial attack scenario on Cora. The bold
marker denotes the best performance.

meaningful observations: (1) Under Algorithm Meta-Train Meta-Self min-max attack
the three attack methods, the perfor- GCN 7625+ 032 7517 +£038 7546 + 035
mance of GCN reduces drastically GAT 81354062 78.87+039 8137+ 047

because it serves as the surrogate  GraphSAGE  76.54 +0.56  75.69 + 048  76.59 + 0.55

model of the attacks. Meanwhile,
they can transfer to other deter- BGCN 8392038 8129+041  81.93+0.62
G3NN 83.14 +0.36  81.28 +£0.28 80.68 + 0.47

ministic GNN-based models (i.e.,
GraphSAGE and GAT). However, GGP 7853 £0.16 77.14+0.11 77.68 £0.15

GSNN could effectively alleviate RGCN 79.76 £ 0.39  77.85 £ 045 79.48 £ 0.43

the impacts of attacks by modeling = GoNN-M ~ 84.57+0.76 80.134+0.66  83.76 + 0.77
the uncertainty of the classification  GSNN-A 8448 +0.85 82.15+0.70  84.45 4+ 0.82
function. We can see that GSNN-M

and GSNN-A significantly improve

the performance of GCN and GAT, and also outperform RGCN, which is a state-of-the-art method
against the adversarial attacks. Note that although the attack methods mainly affect the mean ag-
gregation mechanism, GSNN-M still maintains good performance. (2) BGCN and G*NN could
capture the underlying structure that exists in graph data. Therefore, they have capacity to improve
the robustness against the adversarial attacks. Compared with them, GSNN does not need to modify
the graph structure, which has more flexibility and achieves better or comparable performance.




5 Conclusion

In this paper, we propose a novel GSNN for semi-supervised learning on graph data, which aims to
model the uncertainty of the classification function by simultaneously learning a family of functions.
To model the distribution of the classification function, we introduce a learnable graph neural network
coupled with a high-dimensional random latent vector, and further adopt the amortised variational
inference to approximate the intractable joint posterior of the missing labels and the latent variable.
Extensive experimental results show that GSNN outperforms the state-of-the-art baselines on different
datasets. It shows great potential in label-scarce and adversarial attack scenarios. This paper focuses
on the uncertainty of the GNN classification function. How to integrate more information, such as
the label dependency and structure uncertainty, into the framework for inference is an interesting
problem in the future.
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Broader Impact

Our work could bring the following positive impacts. (1) The proposed framework, which models
the uncertainty of the classification function, provides a new idea for semi-supervised learning on
graph data. (2) In practice, labeled nodes are generally scarce and expensive to obtain. GSNN could
effectively alleviate the overfitting problem and improve the performance. (3) Noise could render
deterministic GNN-based models vulnerable, while GSNN could alleviate the negative impacts of
noise to a large extent. Many real-world applications, especially the risk-sensitive applications (e.g.,
financial transaction), would benefit from it.

Similar with many other GNNs, one potential issue of our model is that it provides limited interpreta-
tion of its predictions. We advocate peer researchers to make a profound study on this to improve
the interpretability of modern GNN architectures and make GNNs applicable in more risk-sensitive
applications.
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