
Graph Stochastic Neural Networks for
Semi-supervised Learning: Supplemental Material

Haibo Wang1, 2,∗, Chuan Zhou3, 4, Xin Chen2,∗, Jia Wu5, Shirui Pan6, Jilong Wang2

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

3Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
4School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

5Faculty of Science and Engineering, Macquarie University, Sydney, Australia
6Faculty of Information Technology, Monash University, Melbourne, Australia
{wang-hb15, cx18}@mails.tsinghua.edu.cn, zhouchuan@amss.ac.cn,

jia.wu@mq.edu.au, shirui.pan@monash.edu, wjl@cernet.edu.cn

The supplemental material includes the following contents. Note that the symbols and the equation
indexes are consistent with those in the main paper.

• Theorem on Eq. (11) with the proof (Section 1).

• Pseudo-code of GSNN (Section 2).

• Detailed description for datasets (Section 3), baselines (Section 4), and adversarial attack
methods used to inject noise edges into the graph structure (Section 5).

1 Theorem on Eq. (11) with the Proof

In the main paper, after training the model, we employ pnet for inference with the expression shown
in Eq. (11). Actually, Eq. (11) can also be derived from Eq. (4) rigorously.

Theorem 5.1. Let θ∗ and φ∗ denote the optimal parameters after model training. According to
the definition in Eq. (4), the posterior distribution p(YU |A,X, YL) can indeed be approximated as
follows:

p(YU |A,X, YL) ≈
1

L

L∑
i=1

pθ∗(YU |A,X, zi)

where {z1, · · · , zL} are sampled instances from the variational distribution qφ∗(z|A,X, Y).

Proof. Assume that YU is a sampled instance from the variational distribution qφ∗(YU |A,X, YL)
(i.e., qnet1), then we have:

qφ∗(z|A,X, Y) = qφ∗(z|A,X, YL, YU) =
qφ∗(YU , z|A,X, YL)

qφ∗(YU |A,X, YL)
.

Since (1) qφ∗(YU , z|A,X, YL) is the variational distribution used to approximate the real joint
posterior pθ∗(YU , z|A,X, YL), (2) qφ∗(YU |A,X, YL) would be close to pθ∗(YU |A,X, z) after
model training, and (3) given A, X and z, the label information YU and YL are conditionally
independent, we have:

qφ∗(z|A,X, Y) ≈ pθ∗(YU , z|A,X, YL)

pθ∗(YU |A,X, z)
=
pθ∗(YU , z|A,X, YL)

pθ∗(YU |A,X, z, YL)
= pθ∗(z|A,X, YL).

∗Equal Contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Based on this approximation and the fact that distributions p(z|A,X, YL) and p
(
yv|gϕYL

(A,X; z)
)

can be modeled by parametric families of distributions pθ(z|A,X, YL) and pθ(yv|A,X, z) respec-
tively, it follows that

p(YU |A,X, YL) ,
∫
p(z|A,X, YL)p

(
YU |gϕYL

(A,X; z)
)
dz

=

∫
pθ∗(z|A,X, YL)pθ∗(YU |A,X, z) dz

≈
∫
qφ∗(z|A,X, Y)pθ∗(YU |A,X, z) dz

Based on Monte Carlo estimation, YU can therefore be approximately inferred as follows:

p(YU |A,X, YL) ≈
1

L

L∑
i=1

pθ∗(YU |A,X, zi) where zi ∼ qφ∗(z|A,X, Y)

The proof of this theorem is completed.

2 Pseudo-code of GSNN

The pseudo-code of GSNN is in Algorithm 1. Note that in our experiments, the numbers of sampled
instances of YU and z are both set to 1 (i.e., m = n = 1) for efficiency purpose. The algorithm
complexity of GSNN is linear to the scale of the graph.

Algorithm 1 GSNN

Input: Graph G with A, X and YL, the numbers of sampled instances of YU and z: m and n
Output: All parameters for qnet1, qnet2 and pnet

1: Initialize all parameters for qnet1, qnet2 and pnet
2: while L does not converge do
3: Calculate qφ(yv|A,X, YL) and hK−1

v for each node v using Eq. (7)
4: for i← 1 to m do
5: Sample YU from the distribution qφ(YU |A,X, YL)
6: Calculate qφ(z|A,X, Y) based on the sampled YU using Eq. (8)
7: for j← 1 to n do
8: Sample z from the distribution qφ(z|A,X, Y)
9: Calculate pθ(yv|A,X, z) based on the sampled z using Eq. (9)

10: end for
11: end for
12: Calculate the objective function L(θ, φ) using Eq. (10)
13: Update parameters of qnet1, qnet2 and pnet by gradient descent.
14: end while

3 Detailed Statistics for Datasets

The detailed statistics of three datasets used in this paper are listed in Table 1. It summarizes the
number of nodes, the number of edges, the dimension of features and the number of classes.

Table 1: Dataset statistics
Dataset #(Node) #(Edge) #(Feature) #(Class)

Cora 2,708 5,429 1,433 7
Citeseer 2,110 3,757 3,703 6
Pubmed 19,717 44,324 500 3

2

4 Detailed Description of Baselines

In this paper, when evaluating the performance in the standard experimental scenario and in the
label-scarce scenario, we compare with six state-of-the-art baselines used for graph-based semi-
supervised learning. Three of them are deterministic GNN-based models, which are GCN [1],
Graph Attention Networks (GAT) [2] and GraphSAGE [3] respectively. The other three adopt the
uncertainty modeling, which are Bayesian Graph Convolutional Neural Networks (BGCN) [4], G3NN
[5] and Graph Gaussian Processes (GGP) [6] respectively. When evaluating the performance in the
adversarial attack scenario, in addition to the above six baselines, we also compare with Robust
Graph Convolutional Networks (RGCN) [7], which is a state-of-the-art method against adversarial
attacks. The detailed description of these seven baselines are presented as follows:

• GCN [1]: It is one of the most classic GNN models, which defines the graph convolution
in the spectral domain and uses the first-order approximation to reduce the number of
parameters.

• GAT [2]: It defines the graph convolution in the spatial domain, which introduces the atten-
tion mechanism to assign different weights to different neighbor nodes when aggregating
the neighbor information.

• GraphSAGE [3]: It defines the graph convolution in the spatial domain, which samples a
fixed-size set of neighbors for information aggregation.

• BGCN [4]: It treats the observed graph as a realization from a parametric family of random
graphs and performs the inference for the joint posterior of random graph parameters and
node labels.

• G3NN [5]: It is a generative framework that models the joint distribution of node features,
labels, and graph structure, which also treats the graph as a random variable.

• GGP [6]: It introduces Gaussian processes to model the semi-supervised learning problem
on graphs and employs the scalable variational inference algorithm to perform the posterior
inference.

• RGCN [7]: It adopts Gaussian distributions as the hidden representations of nodes to absorb
the effects of adversarial attacks into the variances and employs a variance-based attention
mechanism to remedy the propagation of adversarial attacks.

5 Detailed Description of Adversarial Attack Methods

In Section 4.4 of the main paper, we evaluate the performance of GSNN and baselines in the presence
of three state-of-the-art adversarial attack methods, of which the detailed description is as follows:

• Meta-Train [8]: This method treats the adjacent matrix as a hyperparameter to be optimized
and further computes the meta-gradient of the attack loss w.r.t. it. It greedily modifies one
edge in each step based on the maximum gradient until the attack budget is reached. The
attack loss is calculated via nodes in the training set.

• Meta-Self [8]: This method is a variant of Meta-Train. It calculates the attack loss based on
nodes in the test set, where the labels are predicted by a trained surrogate model.

• min-max attack [9]: This method models the attack as a min-max optimization problem
and recovers a binary solution based on the discrete sampling after the optimization.

References
[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907, 2016.

[2] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

3

[4] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph convolutional
neural networks for semi-supervised classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5829–5836, 2019.

[5] Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-based
semi-supervised learning. In Advances in Neural Information Processing Systems, pages 3276–3285, 2019.

[6] Yin Cheng Ng, Nicolò Colombo, and Ricardo Silva. Bayesian semi-supervised learning with graph gaussian
processes. In Advances in Neural Information Processing Systems, pages 1683–1694, 2018.

[7] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks against
adversarial attacks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1399–1407, 2019.

[8] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta learning.
arXiv preprint arXiv:1902.08412, 2019.

[9] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. Topology
attack and defense for graph neural networks: An optimization perspective. In International Joint Conference
on Artificial Intelligence (IJCAI), 2019.

4

	Theorem on Eq. (11) with the Proof
	Pseudo-code of GSNN
	Detailed Statistics for Datasets
	Detailed Description of Baselines
	Detailed Description of Adversarial Attack Methods

