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A Detailed derivation on Eq. 7411

For detailed derivation of Eq. 7, firstly we write J in the form of element-wise computation. Here412

Ui[a, b] denotes the (a, b) element of matrix Ui.413

J =
∑

i,j∈[m]

(
λ tr(UjU

>
i AiUiU

>
j Aj) + tr(UjU

>
i Wij)

)
=

∑
i,j∈[m]

(
λ tr(U>i AiUiU

>
j AjUj) + tr(U>i WijUj)

)
=

∑
i,j∈[m]

(
λ

d∑
y=1

ni∑
a=1

ni∑
b=1

d∑
z=1

nj∑
p=1

nj∑
q=1

Ui[a, y]Ai[a, b]Ui[b, z]Uj [p, z]Aj [p, q]Uj [q, y]

+

d∑
y=1

ni∑
a=1

nj∑
p=1

Ui[a, y]Wij [a, p]Uj [p, y]

)
(12)

computing the partial derivative with respect to Ui[a, y]:414

∂J

∂Ui[a, y]
=
∑
j∈[m]

(
λ

ni∑
b=1

d∑
z=1

nj∑
p=1

nj∑
q=1

Ai[a, b]Ui[b, z]Uj [p, z]Aj [p, q]Uj [q, y]

+

nj∑
p=1

Wij [a, p]Uj [p, y]

) (13)

and it can be equivalently written in the matrix form:415

∂J

∂Ui
=
∑
j∈[m]

(
λAiUiU

>
j AjUj +WijUj

)
(14)

By substituting Ui = U0
i , we will get Eq. 7.416

B Implementation details and discussions417

B.1 Compact matrix form implementation418

The multi-graph KB-QAP objective in Eq. 3 can be equivalently written in a compact matrix form,419

whereby the computational efficiency can be easily benefited with GPU parallelization. Inspired by420

[32], the matching objective in Eq. 3 can be written as:421

max
U

λ tr(UU>AUU>A) + tr(UU>W) (15)

where U is the joint matching matrix by stacking all Ui at their first dimension. A is the joint422

adjacency matrix by placing Ai at its diagonal, and W is the joint node-to-node similarity matrix:423

U =

 U0

...
Um

 , A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Am

 , W =

 W00 · · · W0m

...
. . .

...
Wm0 · · · Wmm


The update step of GA-MGM (L6 of Alg. 1) can be replaced with424

V← λAUU>AU+WU (16)

The clustering weight can also be fused with this compact matrix form, by modifying Eq. 8 as425

max
U

λ tr(UU>A(UU> ◦M)A) + tr(UU>W) (17)

12



Table 3: The averaged inference time of learning-free GA-MGM and GA-MGMC w/ or w/o the
compact matrix form, on the Willow dataset (in line with Tab. 1 and the right half of Tab. 2).

compact matrix inference time (s)

GA-MGM X 1.1
× 345.6

GA-MGMC X 107.2
× 252.0

where ◦ denotes element-wise multiplication, and Mni:n(i+1),nj :n(j+1)
= Cij introduces the clustering426

information to the multi-cluster multi-graph matching objective. Therefore, considering additionally427

clustering, the update step in GA-MGMC can be replaced with428

V← λA(UU> ◦M)AU+ (W ◦M)U (18)

where Mni:n(i+1),nj :n(j+1)
= Bij encodes the clustering weight. As shown in Tab. 3, we empirically429

discover that significant acceleration could be achieved with this compact matrix form, which is430

probably due to the low efficiency of the built-in iterations in Python and PyTorch automatically431

leverages the SIMD parallelization of GPU with the compact matrix form. The speedup in MGM432

problem is more significant, mainly because the Face dataset contains 108 images and is much larger433

than other categories. The speedup with GPU becomes more significant given a larger problem size.434

B.2 Initialization435

Initialization of matching. The initialization of {Ui} (i.e. U with the compact matrix form) is436

required, as the Taylor expansion requires a set of {U0
i } to compute the partial derivative of the437

first order series. Our graduated assignment method is insensitive to the initialization and can be438

randomly initialized, while in comparison, the line of post-processing based multi-graph matching439

methods requires precise initialization by either two-graph matching [28, 11, 13] or multi-graph440

matching [32]. In our implementation, we adopt the initialization strategy introduced in the main441

paper: for all Ui ∈ {Ui}, each element is initialized by 1/d + 10−3z, where d is the size of442

universe (see discussions following Definition 1) and z ∼ N(0, 1) is random variable from uniform443

distribution.444

We experiment with different initialization configurations and other initialization techniques, e.g.445

initialize by spectral multi-matching [11], which will be discussed in Sec. E.2. Since our method is446

not sensitive to initialization, we adopt random initialization for its cost-efficiency.447

Initialization of projectors. For the MGM problem, our GA-MGM introduced in Alg. 1 firstly448

works with coarse linear assignment solvers, i.e. Sinkhorn method with large τ , then gradually449

converge to a high-quality discrete solution with shrinking τ , and finally the discrete Hungarian450

algorithm. Initializing the projector in Alg. 1 with coarse Sinkhorn method works fine with the MGM451

problem. For the MGMC problem, where GA-MGMC (Alg. 2) repeatedly calls GA-MGM (Alg. 1)452

in its loop, a more cost-efficient strategy can be adopted to initialize the projector. In implementation,453

for each distinct value of β, the projector is initialized by Sinkhorn with a large τ when GA-MGM454

is called for the first time. For later iterations with the same β, the projector is initialized with the455

Hungarian algorithm, because only relatively small changes will occur in the clustering result, and the456

corresponding matching result should not change violently. Projection with the Hungarian algorithm457

is adequate for such circumstances. We empirically find such an initialization technique improves the458

inference speed and the stability of our MGMC approach.459

B.3 Construction of edges460

We follow [32] when constructing the edge weights for multi-graph matching. For the weighted461

adjacency matrix of Gi, we firstly compute the length between every pair of nodes: lab = ||pa − pb||462

where pa, pb are the (x, y) coordinates of keypoints in images. The corresponding Ai[a, b] is463

computed as464

Ai[a, b] = exp(− l2ab
σ l̂2

) (19)
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Table 4: Parameter configurations to reproduce our reported results in this paper.

param Willow Object Class CUB2011 descriptionMGM MGMC MGM MGMC

lr 10−3 10−3 10−3 10−4 learning rate
lr-steps {200,1000} {100,500} {2000} {1000} lr /= 10 at these number of iterations

λ 1 1 0.1 0.1 weight of the quadratic term
τw 0.05 0.05 0.05 0.05 Sinkhorn regularization for pairwise matching
{β} - {1, 0.9, 0} - {1, 0.9} the list of clustering weight values
τ0 0.1 {0.1, 0.1, 0.1} 0.05 {0.05, 0.05} init value of Sinkhorn regularization for GA-MGM

τmin 10−2 {10−2, 10−2, 10−3} 10−3 {10−2, 10−2} lower limit of Sinkhorn regularization for GA-MGM
γ 0.8 0.8 0.8 0.8 shrinking factor of tau in GA-MGM

#SKIter 10 10 100 100 max iterations of Sinkhorn
#MGMIter 1000 1000 500 500 max iterations in the innerloop of GA-MGM (Alg. 1)

#MGMCIter - 10 - 10 max iterations in the loop of GA-MGMC (Alg. 2)
σ 1 1 1 1 the scaling factor of edges

where l̂ is the median value of all lab and σ is the scaling factor. The diagonal part of Ai is set as465

zeros. We empirically set σ = 1 in all experiments.466

B.4 Parameter setting467

In this section we firstly present the set of parameters to reproduce the reported results, then some468

empirical experiences in tuning the parameters are discussed. The detailed configuration of our model469

parameters is listed in Tab. 4, which are tuned by greedy search on the training dataset (discussed in470

the following in details).471

When determining the parameters, we adopt a greedy strategy because there are too many parameters.472

We first select the graduated assignment related parameters under the learning-free setting then473

the learning-related parameters. The iteration numbers #SKIter, #MGMIter, #MGMCIter are set474

to be large enough to ensure the convergence under most situations. τw follows the configuration475

in previous deep graph matching networks [17, 39]. τ0 is searched with ×2 interval, and τmin is476

searched with ×10 interval. As validated by the experiment in Sec. E.1 and Fig. 4 that moderately477

good clustering can be achieved with less accurate matching, we set larger values for τmin in early478

loops for GA-MGMC. We test different combinations of β values including {1, 0.9, 0.8, 0.5, 0}, and479

select the best-performing configuration. γ is searched at 0.05 interval, and we find γ = 0.8 best480

balances speed and accuracy. The quadratic weight λ is searched at ×10 interval, and γ = 1, γ = 0.1481

seems suitable choices for Willow dataset and CUB2011 dataset, respectively. The scaling factor482

of edges σ is initialized set as 1 and works well, therefore not modified during experiments. It is483

worth noting that there may exist better parameter configuration for the involved tasks, as we do not484

conduct exhaustive search on all combinations of parameter settings which is also intractable. As an485

unsupervised learning task, parameters are tuned on the training dataset.486

C Time and space complexity487

The time and space complexities of Alg. 1 and Alg. 2 are analyzed in this section. Without loss488

of generality, we assume all graphs contain n nodes for easy analysis. For GA-MGM (Alg. 1),489

considering the compact matrix form discussed in Sec. B.1, the update of V takes a chain of490

matrix multiplication where A,W ∈ Rmn×mn,U ∈ [0, 1]mn×d. This product should be efficiently491

computed using the chain order algorithm which selects the order with the lowest cost. Considering492

vanilla matrix multiplication (O(N3) time complexity for two N ×N matrices), the most efficient493

computing order for the update of V takesO(3m2n2d+2mnd2+mnd), sincemn > d for MGM and494

MGMC problems, it is equivalent to O(m2n2d). The space complexity is O(m2n2) which is equal495

to the size of largest encountered matrix. For each Vi, since n ≤ d and we add dummy variables,496

the Sinkhorn step takes O(d2) each row/column normalization. By setting the largest number of497

iterations KSK, the Sinkhorn step takes O(KSKmd
2) for m graphs. The occupied space is O(md2)498

during Sinkhorn iterations. When adding dummy nodes, the Hungarian projection takesO(md3) time499

complexity and O(md2) space complexity. Therefore, for a maximum of K iterations in GA-MGM,500

the overall time complexity of GA-MGM (Alg. 1) is O(Km2n2d+K1KSKmd
2 +K2md

3), where501

K1,K2 are the number of times when Sinkhorn and Hungarian method is called, respectively, and502

K1 +K2 = K.503
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For our tested cases where m is large and d − n is relatively small, it holds mn2 ≥ KSKd and504

mn2 ≥ d2, the time complexity of Alg. 1 can be simplified as O(Km2n2d), where K is the max505

number of iterations. The space complexity of GA-MGM (Alg. 1) is O(m2n2). Similar analysis506

can be applied to GA-MGMC (Alg. 2), where the time complexity is O(K ′Km2n2d) where K ′ is507

the number of iterations in GA-MGMC, and the space complexity is O(m2n2). It is worth noting508

that the time complexity analyses are based on single-thread operations, and most operations in our509

proposed method are based on matrix computation, with which acceleration could be easily achieved510

with GPU. For example, our reported inference time in Tab. 2 grows little from the smaller-scaled511

problem to the larger-scaled problem. In comparison, other peer methods suffer from magnitudes of512

growth in inference time, when scale up to the larger problem.513

D Experiment details514

D.1 Dataset details515

Willow Object Class1 [15] contains 304 images from 5 categories, collected from Caltech-256 [48]516

(208 faces, 50 ducks and 66 winebottles) and Pascal VOC 2007 [49] (40 cars and 40 motorbikes).517

Each image contains one object and is labeled with 10 common semantic keypoints with no outliers.518

It is worth noting that there are originally 209 face images, but the face image No. 0160 is labeled519

with only 8 keypoints (which is probably a mistake), and we exclude this image during evaluation.520

CUB2011 dataset2 [44] includes 11,788 bird images from 200 categories with closely 50%/50%521

split of training/testing images for each category, and each bird is labeled with a partial of 15522

keypoints. The keypoints may be self-occluded which results in partial matching, the poses of birds523

may vary from flying, standing and swimming, and the images may contain different illumination524

and background situations. All these factors yield challenges to the matching task. In our experiment,525

only matching within the same category is considered.526

D.2 Computing infrastructure527

Experiments are conducted on our Linux workstation with Xeon-3175X@3.10GHz, RTX8000, and528

128GB memory.529

D.3 Data pre-processing530

All images are resized to 256 × 256 and normalized, before passed to the VGG16 network. The531

raw RGB values are firstly divided by 256 (i.e. normalized to [0, 1)), and normalized by mean532

[0.485, 0.456, 0.406] and STD [0.229, 0.224, 0.225] which are collected from ImageNet statistics.533

D.4 Detailed results of Tab. 2534

Detailed result of MGMC test on Willow Object Class dataset is listed in Tab. 5, 6, where both mean535

and STD statistics are shown. Tab. 5 contains the result with 8 Cars, 8 Ducks and 8 Motorbikes536

(in line with the left part of Tab. 5), and Tab. 6 contains the result with 40 Cars, 50 Ducks and 40537

Motorbikes (in line with the right part of Tab. 6). Compared to peer methods, our methods are538

with higher STD, but still outperforms other competing methods. Our methods runs significantly539

faster among peer methods especially on the larger-sized problem, which is desired for real-world540

applications.541

D.5 Detailed results of Fig. 2542

In the main paper, we only report the f1-score of MGM problem on CUB2011 dataset due to limited543

space. As shown in Fig. 3, here we provide more detailed result on the MGM problem of CUB2011544

dataset, including matching precision, recall, and f1-score. Our unsupervised learning GANN-MGM545

surpasses GMN [16], and performs comparatively against novel supervised deep graph matching546

1http://www.di.ens.fr/willow/research/graphlearning/WILLOW-ObjectClass_dataset.zip
2http://www.vision.caltech.edu.s3-us-west-2.amazonaws.com/visipedia-data/CUB-200-

2011/CUB_200_2011.tgz
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Table 5: MGMC on Willow dataset with 8 Cars, 8 Ducks, 8 Motorbikes (mean and STD by 50 tests).

method learning CP RI CA MA time (s)

RRWM [2] free 0.420±0.036 0.546±0.013 0.347±0.019 0.748±0.069 0.3
CAO-C [10] free 0.435±0.044 0.549±0.017 0.352±0.024 0.875±0.059 2.7

CAO-PC [10] free 0.445±0.043 0.552±0.015 0.357±0.021 0.867±0.065 1.4
DPMC [19] free 0.435±0.044 0.549±0.016 0.352±0.023 0.886±0.082 1.0

GA-MGMC (ours) free 0.921±0.058 0.905±0.063 0.893±0.063 0.653±0.146 10.6
GANN-MGMC (ours) unsup. 0.976±0.037 0.970±0.045 0.963±0.051 0.896±0.072 5.2

Table 6: MGMC on Willow w/ 40 Cars, 50 Ducks, 40 Motorbikes (mean and STD by 50 tests).

method learning CP RI CA MA time (s)

RRWM [2] free 0.592±0.000 0.681±0.002 0.556±0.003 0.751±0.000 8.8
CAO-C [10] free 0.623±0.010 0.686±0.002 0.561±0.003 0.906±0.000 1051.5

CAO-PC [10] free 0.665±0.006 0.695±0.003 0.572±0.005 0.886±0.000 184.0
DPMC [19] free 0.585±0.001 0.653±0.000 0.511±0.000 0.941±0.001 97.5

GA-MGMC (ours) free 0.890±0.060 0.871±0.061 0.850±0.061 0.669±0.122 11.7
GANN-MGMC (ours) unsup. 0.974±0.034 0.968±0.035 0.956±0.039 0.906±0.047 9.2
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Figure 3: Mean and STD of precision, recall and f1-score of MGM and supervised two-graph
matching on CUB2011 dataset. MGM statics are computed from all graph pairs each category, and
two-graph matching statics are computed from 1000 random graph pairs.
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Figure 4: Study on the effectiveness of gradually decreasing the clustering weight β from 1 to 0 for
the MGMC problem. In this experiment, the 3-cluster MGMC problem on Willow dataset (40 Cars,
50 Ducks, 40 Motorbikes, in line with the right half of Tab. 2) is solved, and clustering and matching
metrics are plotted with respect to the number of iterations in GA-MGMC. In this run, β drops from
1 to 0.9 at iteration 3, and drops from 0.9 to 0 at iteration 6. If both matching and clustering do
not change, it means that both of them have converged and β is declined at next iteration. When
β declines, the matching accuracy improves because more confidence is counted on the clustering
result, and the clustering accuracy also improves when more accurate matching is obtained.

methods PCA-GM [17] and CIE [34] on all matching metrics. The reason why our unsupervised547

learning GANN-MGM performs better on testing data than training data is probably because the548

testing set is slightly easier than the training set, as our learning-free version GA-MGM also performs549

better on testing data.550

16



time log(time)
mean var mean var mean var mean var

1/d+z/10^4 0.903 0.073 0.881 0.083 0.871 0.079 0.642 0.129 9.4 0.974972
1/d+z/10^3 0.890 0.060 0.871 0.061 0.850 0.061 0.669 0.122 11.7 1.068928
1/d+z/10^2 0.906 0.070 0.890 0.072 0.877 0.078 0.677 0.123 11.5 1.059185

1/d+z/10 0.901 0.080 0.887 0.074 0.870 0.084 0.638 0.135 12.1 1.083503
1/d+z 0.908 0.063 0.891 0.064 0.872 0.079 0.620 0.139 14.0 1.146128

spectral spectral 0.908 0.060 0.888 0.070 0.877 0.069 0.626 0.129 12.0 1.077731
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Figure 5: Ablation study on different initialization techniques with learning-free GA-MGMC on
the 130 graphs-MGMC problem of Willow dataset (in line with right half of Tab. 2). Random
initialization with different denominators are compared, together with GA-MGMC initialized by
spectral matching [11].
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Figure 6: Ablation study by different γ values on the 130 graphs MGMC task on Willow dataset (in
line with the right half of Tab. 2). The left image includes all clustering, matching, and inference time
statistics, and we zoom in to focus on the matching accuracy (MA) in the right image.

E Further study551

E.1 Validation of graduated assignment on MGMC problem552

We validate that our GA-MGMC method works by gradual improvement on both matching and553

clustering, finally achieving satisfying matching and clustering results. In Fig. 4, we plot the clustering554

and matching metrics with respect to the iteration index, when a learning-free GA-MGMC model555

deals with the 130-graph MGMC problem on Willow Object Class dataset (in line with right half556

of Tab. 2). As shown in Fig. 4, the algorithm starts with no clustering information, resulting in557

a low-quality matching at the first iteration, with which a moderately good clustering is achieved.558

With decreased clustering weight β, more accurate clustering again improves matching accuracy and559

vice versa, finally reaching a satisfying matching and clustering result. Therefore, our GA-MGMC560

improves matching and clustering simultaneously with graduated assignment.561

E.2 Ablation study562

Ablation studies are conducted on the MGMC problem on Willow dataset with 40 Cars, 50 Ducks,563

40 Motorbikes, which is in line with the right half of Tab. 2.564

For the random initialization of {Ui}, we also experiment with other initialization techniques,565

e.g. initialize by spectral multi-matching [11]. As shown in Fig. 5 where different denominator566

configurations are compared with spectral matching, different initialization techniques perform567
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Table 7: Matching accuracy on Willow dataset (50 tests), where the backbone net of GA-MGM-PIA
is built with PIA-GM [17].

method learning car duck face mbike wbottle

GA-MGM (ours) free 0.746±0.153 0.900±0.106 0.997±0.021 0.892±0.139 0.937±0.072
GA-MGM-PIA [17] free 0.380±0.103 0.434±0.153 0.484±0.102 0.450±0.161 0.421±0.064

GANN-MGM (ours) unsup. 0.964±0.058 0.949±0.057 1.000±0.000 1.000±0.000 0.978±0.035
GANN-MGM-PIA [17] unsup. 0.394±0.009 0.493±0.026 0.501±0.009 0.426±0.023 0.478±0.006

Table 8: MGMC on Willow w/ 40 Cars, 50 Ducks, 40 Motorbikes (mean and STD by 50 tests).
method learning CP RI CA MA time (s)

GA-MGMC (ours) free 0.890±0.060 0.871±0.061 0.850±0.061 0.669±0.122 11.7
GA-MGMC-PIA [17] free 0.607±0.102 0.645±0.068 0.514±0.102 0.261±0.060 17.9

GANN-MGMC (ours) unsup. 0.974±0.034 0.968±0.035 0.956±0.039 0.906±0.047 9.2
GANN-MGMC-PIA [17] unsup. 0.567±0.061 0.633±0.029 0.451±0.044 0.255±0.023 19.2

comparatively in all metrics. Therefore, our graduated assignment method is not sensitive to different568

initialization techniques, and we adopt random initialization for its cost-efficiency.569

We also test different configurations of γ from 0.5 to 0.95 at 0.05 interval. As shown in Fig. 6,570

the inference time decreases with respect to growing γ, and the matching accuracy (MA) peaks at571

γ = 0.8. For γ < 0.6, the graduated assignment method becomes hard to converge, resulting in572

relatively lower accuracy and more inference time. The clustering-related metrics do not change573

significantly with γ. Our selected γ = 0.8 achieves best average MA and moderately good clustering574

results with satisfying inference time.575

E.3 Feature extraction with GNN576

Many recent efforts in learning deep graph matching networks involve learning graph structures577

with graph neural networks. Here we experiment our method with graph convolutional network,578

which can be viewed equivalent to replacing the VGG16 CNN in our pipeline by PIA-GM [17]579

(which contains a VGG16 and 3-layer GCN). The more powerful PCA-GM is not considered in our580

experiment because it seems nontrivial to define the cross-graph convolution operation in PCA-GM581

when jointly matching multiple graphs. In this experiment, the VGG16 net of PIA-GM is initialized582

with ImageNet weights and the GCN layers are randomly initialized for fair comparison with [17].583

As shown in Tab. 7 and Tab. 8 where MGM and MGMC problems on Willow dataset are considered,584

respectively, the performance of methods involving PIA-GM are relatively poor compared to their585

GNN-free variants. A possible explanation is that initialization is important for unsupervised learning586

on GANN-MGM and GANN-MGMC, and random initialization may be inadequate for the GCN587

layers. Powerful unsupervised initialization techniques may be adopted for the GCN weights, and we588

think it may be beyond the scope of this paper and leave this for future work.589

E.4 Visualization of clustering result590

A visualization of the prediction of GANN-MGMC is shown in Fig. 7, where our proposed approach591

correctly separates most images. The poses of birds do not vary much inside the ground truth cluster,592

as most Honored Grebes are swimming, most Baird Sparrows are standing and most Caspian Terns are593

flying. However, there also exist a flying grebe (3rd image on first row) and a standing tern (7th image594

on last row), and it is quite interesting that these two images are the only two misclassified images in595

this run, suggesting that our GANN-MGMC works well when distinguishing different poses, which596

is reasonable. Such phenomenon is probably caused by our manually defined graph-wise similarity597

metric for clustering (in Eq. 9), as the structural agreement term encourages to distinguish different598

graph structures (i.e. different poses), and the node-wise similarity term may care more about local599

image feature rather than the high-level image feature that is required for image classification tasks.600

The visualization result in Fig. 7 suggests that with our matching-aware clustering measure (Eq. 9),601

our MGMC approach works by utilizing the structural information in graphs. It happens to work with602

this MGMC problem on CUB2011, where most birds from different categories can be distinguished603

by different graph structures. However, we also believe that achieving better clustering result among604

different bird categories with high-level image feature is beyond the scope of this paper, because it is605
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051.Horned_Grebe

113.Baird_Sparrow

143.Caspian_Tern

Figure 7: The visualization of clustering result on the MGMC problem of CUB2011 dataset. The
images are separated in three rows according to their ground truth categories, and the color of the
outer box (red/blue/yellow) shows the precited categories.

beyond the scope of graph information (i.e. node information and edge information) that is available606

for the most general MGMC task considered in this paper.607
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